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Abstract. Multilevel organization of morphometric data (cells are “nested” within patients) requires special methods for studying
correlations between karyometric features. The most distinct feature of these methods is that separate correlation (covariance)
matrices are produced for every level in the hierarchy. In karyometric research, the cell-level (i.e., within-tumor) correlations
seem to be of major interest. Beside their biological importance, these correlation coefficients (CC) are compulsory when dimen-
sionality reduction is required. Using MLwiN, a dedicated program for multilevel modeling, we show how to use multivariate
multilevel models (MMM) to obtain and interpret CC in each of the levels. A comparison with two usual, “single-level” statistics
shows that MMM represent the only way to obtain correct cell-level correlation coefficients. The summary statistics method
(take average values across each patient) produces patient-level CC only, and the “pooling” method (merge all cells together and
ignore patients as units of analysis) yields incorrect CC at all. We conclude that multilevel modeling is an indispensable tool for
studying correlations between morphometric variables.

1. Introduction

In Part 1, we considered methods of testing hypoth-
esis with the help of multilevel models, using an ex-
ample of exploring nature and significance of differ-
ences between benign and malignant follicular tumors
of the thyroid. Another type of research questions that
can arise in the morphometry is concerned with corre-
lation structure of karyometric features. First, correla-
tion structure can be interesting and important by itself;
that is, we can group the measured features on the basis
of correlations and thus judge what aspects of nuclear
morphology they reflect. Second, correlation (or co-
variance) matrix can be used to perform dimensionality
reduction, i.e., to eliminate redundant variables, which
do not convey any more information in addition to oth-
ers. Dimensionality reduction usually is accomplished
by factor or cluster analysis and is sometimes very im-
portant before fitting other types of models (e.g., clas-
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sificatory) [5]. In the present article, we report our first
experience of using multilevel models for studying cor-
relations between karyometric variables. In analogy to
Part 1, a comparison with the “single-level” statistics
is made in order to demonstrate the major benefits of
the new technique.

2. Materials and methods

Materials and methods used were described in Part 1.
The same data set containing 15378 cells nested within
78 tumors was used. However, only 7 out of 8 mea-
sured nuclear features (see Table 1 in Part 1) were
used in the present study. We experienced convergence
problems with the full model, and thus decided to ex-
clude IOD, as a secondary feature deriving directly
form NA and indirectly from MGV.

3. Statistical analysis and results

3.1. Some theoretical considerations

As discussed in Part 1, the most important difference
of multilevel models against “single-level” statistics is
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Table 1

Pearson correlation coefficients between karyometric features. In each cell, uppermost left CC is for cell-level (MLwiN), lowermost left CC for
tumor-level (MLwiN), and right CC is that obtained in the “pooling” method

Variable NA NC MGV SDGV SkewGV KurtGV

SAD −0.145 0.100 −0.018 0.196 −0.005 0.261 0.499 0.486 −0.053 −0.346 −0.183 −0.374

0.357 0.523 0.490 0.470 −0.618 −0.551

KurtGV 0.019 −0.216 −0.036 −0.245 −0.191 −0.342 −0.198 −0.371 0.319 0.443

−0.503 −0.681 −0.562 −0.558 0.660

SkewGV −0.394 −0.471 −0.208 −0.328 −0.721 −0.808 0.292 0.178

−0.578 −0.588 −0.884 −0.015

SDGV −0.219 −0.054 −0.104 0.106 −0.353 −0.247

0.186 0.520 −0.070

MGV 0.553 0.625 0.221 0.370

0.721 0.678

NC 0.209 0.373

0.737

that the variance of the dependent variable(s) is split
into corresponding levels of the data hierarchy. In the
context of studying correlations, this means that we ob-
tain two different covariance matrices andtwo sets of
correlation coefficients (CC) – one for each level. And
again, we are confronted with thelevel-related inter-
pretation of these CC.

To calculate covariance matrices, we must create a
multivariate multilevel model (MMM). In MMM, all
correlated variables are considered “multivariate re-
sponse” and thus, specified as dependent variables, in
the left part of the model equation. In the right part,
we can specify constant term only (“empty model”),
or add some additional covariates – e.g., DIAGNOSIS.
In the former case we obtain overall CC for the entire
population of follicular thyroid tumors, whereas in the
latter case, separate CC for adenomas and carcinomas
are computed.

As with all linear models, MMM require assump-
tions of normality, linearity and homoscedasticity to be
met. These assumptions are checked in the same way
as in the univariate models (see Part 1). After log trans-
form of NA, there were no serious violations of these
assumptions in our study.

Note that the current version of MLwiN [7] does not
include direct facilities for studying correlations and
performing dimensionality reduction. Therefore, cor-
relation matrices produced by MLwiN were imported
into SPSS 10.0 and submitted to factor and cluster
analyses using SPSS syntax language [6].

3.2. Correlation coefficients

The CC produced by MLwiN for both levels in our
study are given in Table 1. Note that for the same pairs

of variables, CC are often rather different, sometimes
even quite opposite. This emphasizes the importance
of the level-related nature of these CC. Level-1 CC
are those we would expect to getwithin a given single
tumor. For example, CC of−0.145 between NA and
SAD at level-1 means that,within a single given tumor,
larger nuclei tend to have more evenly distributed chro-
matin. By contrast, level-2 CC refer to the tumors – in
essence, to theaverage values of karyometric features
across each tumor. Thus, CC of 0.357 at level-2 indi-
cates that tumors with larger nuclei (i.e., with larger
mean nuclear size) have usually a higher proportion of
nuclei with coarser chromatin. This by no means im-
plies, however, that these arethe same nuclei that both
are larger and have coarser chromatin, because these
CC does not refer to cells; the cell-level CC indicates
just the opposite tendency.

For comparison, we computed also CC using two
“single-level” approaches: summary statistics method
(taking average values of karyometric features within
each tumor), and “pooling” method (pooling all cells
together and ignore patients as units of analysis). CC in
the summary statistics method (not shown) were per-
fectly the same as the level-2 CC produced by MMM.
As for the “pooling” method, CC in this approach were
always somewhere in between the separate-level CC
(see Table 1). This is explained by the fact that the
“pooled” CC are computed on the basis of a “mixture”
of variances from both levels. It should be stressed that
neither of the “single-level” approaches allowed ob-
taining correct CC for thecell level. This is only pos-
sible by means of MMM.

As mentioned above, separate CC can be computed
for adenomas and carcinomas. For this, the model
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Fig. 1. Horizontal dendrogram representing steps in hierarchical clustering (centroid method) of karyometric variables: A – using level-1 CC
obtained in MMM; B – using level-2 CC obtained in MMM (or, equally, using summary statistics method); C – using “pooling” method.

should include DIAGNOSIS as a covariate withran-
dom coefficient at both levels.1 In addition, all redun-
dant covariance parameters must be set to 0, so that, fi-
nally, only 3 of them remain: covariance between con-
stant term and DIAGNOSIS coefficient for each of the
nuclear features, and covariance between the features
themselves (i.e., between constant terms). CC for ade-
nomas computed from such covariance matrix is dis-
played directly in the “Estimates” window of MLwiN.
For carcinomas, however, manual imputation of CC is
necessary (for details, see [4,7,9]). In our study, CC for
carcinomas were generally somewhat lower than for
adenomas, which might be due to higher nuclear atypia
in malignant tumors. However, these differences were
mostly minor and non-significant (data not shown).

1If the coefficient for DIAGNOSIS is specified as afixed, the
variances of both dependent variables decrease, but no additional
variance–covariance terms appear in the model equation, and the cor-
relation between the variables remains exactly the same.

3.3. Cluster analysis

Figure 1 shows hierarchical grouping of variables
repeated for each set of CC given in Table 1. Figure 1A
suggests the presence of 2 pairs of correlated vari-
ables, having similar biological interpretation: MGV
and SkewGV, as well as SDGV and SAD. Taking into
account the calculation methods of these features [2],
the first pair reflects the amount of lightly stained areas
within a nucleus. The second pair describes the hetero-
geneity, roughness of the chromatin, the contrast be-
tween lightly and intensively stained areas in a nucleus
[2]. By contrast, Fig. 1B implies the following group-
ing of variables: MGV and SkewGV; NC and KurtGV;
NA and SAD. While the first pair of variables is the
same as in Fig. 1A, the other two are completely differ-
ent and difficult to explain. In any case, such an expla-
nation should refer to tumors, not to cells, since the un-
derlying CC are from the level-2. Finally, Fig. 1C sug-
gests also 3 groups: MGV and SkewGV; NA and NC;
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KurtGV and SAD. Again, the last two pairs of vari-
ables are different from those in Fig. 1A – certainly be-
cause the underlying CC are not cell-related, but rather
both cell- and tumor-related, as discussed above. Thus,
if a true cell-related classification of variables or di-
mensionality reduction is required, both “single-level”
methods are inappropriate.

4. Discussion

The most specific feature of studying correlations in
a multilevel design is that separate CC are generated
for each of the levels. This may appear very confusing.
What CC should be used to explore interrelations be-
tween karyometric features? First, it should be noted
that there are no “right” or “wrong” CC generated in
MMM. CC from different levels reflect essentially dif-
ferent aspects of association between variables and are
complementary to each other. One example of inter-
pretation was given in the previous section. As another
example, consider CC between nuclear size (NA) and
nuclear form factor (NC). The positive cell-level CC
(0.209, see Table 1) indicates thatwithin a single given
tumor, smaller cells tend to be rounder, whereas larger
cells are more irregular in shape; however, this asso-
ciation is weak. It is this CC that we would expect to
obtain having measured a cell sample within a given
tumor. By contrast, the tumor-level CC is much higher
(0.737, see Table 1), and its meaning is distinct: it says
that tumors composed of cells with smaller nuclei con-
tain also more cells with round-shaped nuclei, and vice
versa. It does not tell, however, that these are thesame
cells that are both large and irregularly shaped; this
might well be different cell populations within each tu-
mor.

It is clear from the reasoning above that cell-level
CC usually are more interesting for the morphomet-
ric research than tumor-level CC. An even more seri-
ous argument in favor of estimating cell-level CC is a
dimensionality reduction (e.g., by means of factor or
cluster analysis). Modern programs for image analysis
usually have tens of measurable parameters [1], and the
maximum number of karyometric features (including
textural) makes up to several hundreds to date [2,3].
Since it is often impossible to take correspondingly
larger samples of patients, a low sample–feature ratio
ensues. It is very hazardous to develop any classifica-
tory models or search for a “best feature subset” on
such data sets [8]. However, many nuclear features are
closely correlated with others in the set [2]. It is thus

Fig. 2. Time required by MMM to complete one full iteration, in de-
pendence on the number of correlated variables included. Calcula-
tions were performed by a PC equipped with AMD Athlon processor
700 MHz and 128 MB memory on a data set containing 15378 cells
nested within 78 tumors.

reasonable to perform a reduction of dimensions prior
to any other statistical tests and procedures, in order to
improve the sample-feature ratio [5]. Note that if the
goal is, e.g., to develop a “cell classifier” and a dimen-
sionality reduction is necessary, cell-level CC arethe
only CC suited for this purpose, because reduction of
dimensions is performed on the level of cells. And, as
noted above, MMM represent the only way to compute
correct cell-level CC. Summary statistics method pro-
duces level-2 CC only, and the “pooling” method pro-
duces incorrect CC at all. Even the recent extension of
ANOVA, namely mixed-effect general linear model, is
of no use here, because it cannot handle multivariate
data [6].

On the other hand, we must again discuss some
technical problems related to MMM. As mentioned
in Part 1, multivariate models are rather computation-
ally extensive. In MMM, this becomes an extreme
problem as the number of dependent variables in-
creases, especially taking into account that the number
of level-1 units in the morphometry is commonly also
very large. Regarding our data, the length of a full iter-
ation increased with inclusion of each additional vari-
able nearly-exponentially, for 7 variables being about
3 min 24 sec (Fig. 2). In addition, the number of it-
erations for model to converge increased from 2 (with
only 2 variables included) to 44 (with all 7 variables
included).2 Moreover, MMM fail to converge under
certain circumstances. This is usually due to the pres-
ence of either highly correlated variables (in our expe-
rience, when CC at both levels are 0.98 and higher) or

2A model containing 10 variables did not converge after 4 days of
uninterrupted calculations (47 iterations).
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some non-significant parameters with very high (rel-
ative) standard errors, which, again, is especially fre-
quent with a large number of variables. Fortunately,
the problem can be solved by splitting the whole set of
variables into a number of small subsets and comput-
ing CC within each subset. We have been convinced
of MLwiN generating the same CC regardless of the
subset size, down to pairwise (data not shown).

To sum up, multilevel models are superior over con-
ventional, “single level” statistics when applied to mor-
phometric data, in that they produce correct cell-level
CC. These CC are the most interesting with regard
to their biological interpretation. Moreover, they (and
only they) can be used for dimensionality reduction, if
required by subsequent statistical procedures involving
the level of cells.
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