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Simulation of Long-term Yield and 
Soil Water Consumption in Apple 
Orchards on the Loess Plateau, 
China, in Response to Fertilization
Xingxing Peng1, Zheng Guo2, Yujiao Zhang1 & Jun Li1

The Loess Plateau, China, is the world’s largest apple-producing region, and over 80% of the orchards 
are in rainfed (dryland) areas. Desiccation of the deep soil layer under dryland apple orchards is the main 
stressor of apple production in this region. Fertilization is a factor that causes soil desiccation in dryland 
apple orchards. Given its applicability and precision validations, the Environmental Policy Integrated 
Climate (EPIC) model was used to simulate the dynamics of fruit yield and deep soil desiccation in 
apple orchards under six fertilization treatments. During the 45 years of study, the annual fruit yield 
under the fertilization treatments initially increased and then decreased in a fluctuating manner, 
and the average fruit yields were 24.42, 27.27, 28.69, 29.63, 30.49 and 29.43 t/ha in these respective 
fertilization treatments. As fertilization increased, yield of the apple orchards increased first and then 
declined,desiccation of the soil layers occurred earlier and extended deeper, and the average annual 
water consumption, over-consumption and water use efficiency increased as fertilization increased. 
In terms of apple yields, sustainable soil water use, and economic benefits, the most appropriate 
fertilization rate for drylands in Luochuan is 360–480 kg/ha N and 180–240 kg/ha P.

Apples, which are widely planted on the Loess Plateau, are the main income-generating fruit tree, and apple 
orchards cover a planted area of more than 1.2 million ha across the Weibei Dryland Highlands of Shaanxi1. 
A total of 80% of these apple orchards are rainfed (dryland), and their intense water consumption due to apple 
transpiration has caused excessive soil water depletion and consequent deep soil desiccation. Furthermore, the 
excessive and widespread applications of nitrogen and phosphorus in apple orchards improve apple yield and 
quality but intensify deep soil desiccation and restrict the stable and healthy development of the apple industry 
in semi-humid regions2–4. Excess applications of nitrogen and phosphorus was observed in 74% and 54% of the 
apple orchards, respectively, in the Weibei Dryland Highland5. Management of N and P fertilization is pivotal for 
sustainable fruit production in North China6. Wang et al.7 found that in the semi-arid region of the Loess Plateau, 
excessive application of P could result in high P-fixation capacity and consequently, severely damaged environ-
ments. In terms of economic returns, Qinguan apples have a P-use efficiency that is 50% higher than that of corn8. 
Researchers in Zagora Pelion (Central Greece) found that in apple orchards, the N inputs were five times higher 
than the nitrogen outputs; thus, reductions in N fertilization were considered9.

Some researchers have carried out short-term field experiments to determine the effects of different fertili-
zation treatments on fruit yield and the quality of apple. However, few long-term experiments have investigated 
apple yield, soil water use and soil desiccation under different fertilization treatments4, 10, 11. Several models have 
been proposed to monitor apple tree growth12–14, e.g., models for root water uptake and soil water recovery after 
apple tree harvesting. The Environmental Policy Integrated Climate (EPIC) model has been used as a simulation 
model of crop productivity systems for many crops and is a universal model for water and soil management as 
well as crop productivity evaluation15–17. Ko et al.18 found EPIC to be a useful method for managing irrigated 
cotton and maize. Michele19 used EPIC to simulate irrigation scheduling in sunflower and found that the model 
effectively compared management strategies. The soil water and yield dynamics of grain crop rotation systems in 
the semi-humid region of the Loess Plateau have been well described using the EPIC20 model. Previous model 
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applications involving soil water and yield of apple orchards on the Loess Plateau of China indicate that the EPIC 
model accurately simulates apple production21. However, further studies are needed to simulate soil water and 
crop productivity in response to different fertilization regimes applied to apple orchards on the Loess Plateau.

Using the EPIC model, this study sought to quantitatively simulate yield fluctuations and soil desiccation 
under different fertilization treatments applied to apple orchards over a long period of time (45 years). The effects 
of fertilization on apple yield and deep soil desiccation were analyzed to determine the best fertilization regime 
relative to local precipitation and to promote sustainable soil water utilization. Hence, the main objective of this 
study was to guide fertilization management decisions for sustainable apple production in the Weibei Dryland 
Highland on the Loess Plateau and in similar regions of the world.

Results
Simulated yields in dryland apple orchards.  The annual precipitation in Luochuan between 1965 and 
2009 ranged from 343.50 mm to 899.60 mm and averaged 596.64 mm, with a standard error of 117.17 mm and a 
coefficient of variation of 19.64%. The precipitation decreased in a fluctuating manner and was 44.53 mm lower 
in the last 15 years compared to the first 15 years.

During the fruit-bearing stage of the apple trees (apple trees start to bear fruit at 4 years old, as simulated), 
the yields of 4- to 45-year-old rainfed apple orchards in the F0-F5 treatments tended to first increase to their 
maxima and then decrease in a fluctuating manner from 1968 to 2009 (Fig. 1). The yield curves of the different 
fertilization treatments generally peaked in the initial simulated years and in the rainy years and then exhibited 
a trough during the latter simulated years and in the dry years. The yields of orchards subjected to the respective 
F0-F5 treatments averaged 24.42, 27.27, 28.69, 29.63, 30.49 and 29.43 t/ha, with standard deviations of 6.14, 6.11, 
6.83, 7.68, 8.12 and 8.36 t/ha. Compared to yields under F0, the yields under F1-F5 increased by 11.70%, 17.49%, 
21.35%, 24.85% and 20.54%, respectively, which indicated that F3 and F4 performed the best. After 42 fruiting 
years, the yields decreased considerably under all fertilization treatments. The greatest decrease occurred under 
F0, and greater decreases occurred under higher compared with lower fertilization applications. The lowest yields 
occurred under the 6 fertilization treatments in 1995 when the precipitation was only 343.5 mm, and the highest 
yields under F0 and F1 occurred in 1971; under the other fertilization treatments, the highest yields occurred in 
1975 when the precipitation reached 899.6 mm.

Simulated drought stresses in rainfed apple orchards.  Drought stress is referred to as a restriction of 
crop growth due to water deficit, and in EPIC, its duration indicate its severity during the growing season. Over 
the 45 study years, the number of drought stress days under the respective F0-F5 treatments ranged from 0 to 
57, 0 to 67, 0 to 69, 0 to 72, 0 to 78 and 0 to 83 days and averaged 16.71, 20.95, 24.01, 27.41, 33.06 and 35.12 days 
annually, with standard deviations of 14.84, 16.92, 17.41 18.24, 19.45 and 20.62 days. The number of drought 
stress days increased as the fertilization amount increased, and drought stress occurred earlier under higher ferti-
lization. In the apple orchards, the earliest year of drought stress arising under the 6 respective fertilization treat-
ments occurred in 1977 (in the 13-year-old orchards), 1974 (in the 10-year-old orchards), 1972 (in the 8-year-old 
orchards), 1972 (in the 8-year-old orchards), 1971 (in the 7-year-old orchards) and 1971 (in the 8-year-old 

Figure 1.  Simulated annual fruit yields under different fertilization treatments and precipitation in the apple 
orchards of Luochuan.
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orchards). The number of drought stress days under the different fertilization treatments tended to fluctuate in a 
basically identical manner, opposite from the manner in which the local precipitation varied. The peak number of 
drought stress days appeared in the dry years of 1986, 1995, 1997 and 2004. The number of drought stress days in 
the six different fertilization treatments peaked in 1995, reaching 56.39, 66.50, 68.83, 72.42, 78.40 and 83.14 days, 
in the F0, F1, F2, F3, F4 and F5, respectively, because precipitation in 1995 was only 343.5 mm (Fig. 2).

Simulated monthly available soil moisture in the 0–15 m soil layer in the apple orchards.  From 
1965 to 2009, the simulated monthly available soil moisture in the 0–15 m soil layer in the respective F0-F5 
treatments ranged from 723.22 to 2573.23, 699.88 to 2557.88, 681.28 to 2533.53, 669.60 to 2508.09, 663.72 to 
2486.96 and 661.60 to 2479.27 mm and averaged 1267.40, 1223.44, 1191.33, 1153.71, 1116.45 and 1102.67 mm, 
with standard deviations of 556.9, 563.1, 555.2, 544.7, 525.3 and 521.1 mm and coefficients of variation of 43.9%, 
46.0%, 46.6%, 47.2%, 47.0% and 47.2%. No obvious differences existed in available soil moisture between the high 
fertilization treatments (i.e., F4 and F5), but significant differences in available soil moisture occurred in the other 
treatments. As fertilization increased, the available soil moisture decreased and presented annual increases and 
seasonal fluctuations.

During the 45 simulated years, the monthly available soil moisture in the 0–15 m soil layer under the different 
fertilization treatments tended to vary similarly (Fig. 3). In the early stage of the 45-year simulation, the simulated 
monthly available soil moisture in the respective F0-F5 treatments tended to decrease clearly in a fluctuating man-
ner before 1990, 1985, 1984, 1982, 1980 and 1980, with decreases at 1282, 1130, 1315, 1283, 1315 and 1345 mm 
and soil desiccation rates of 51.68, 58.57, 65.75, 75.47, 87.67 and 89.67 mm/a. Later, the monthly available soil 
moisture in the 0–15 m soil layer in the F0-F5 treatments varied at a lower level with seasonal precipitation. No 
obvious difference occurred in the soil desiccation rate between F4 and F5. In the Weibei Dryland Highlands, it 
frequently rains from July to September, resulting in a recovery of available soil moisture in most years.

Simulated soil moisture distribution in the 0–15 m soil layer in apple orchards.  The soil mois-
ture distributions in apple orchards during the initial (1965–1971), middle (1980–1986) and final (2003–2009) 
simulated years are shown in Fig. 4. The figure shows that there were approximately the same simulated annual 
soil moisture distributions in the 0–15 m soil layer under F0-F5. Compared with the soil moisture in the apple 
rhizospheres when the simulation began, in 1965, the soil moisture in the apple rhizospheres decreased yearly 
as the apple trees grew and as the dry soil layers appeared and then deepened and thickened each year until they 
stabilized. The dry soil layers in the respective F0-F5 treatments occurred in 1976, 1974, 1973, 1973, 1972 and 
1972 and took 25, 23, 21, 18, 15 and 15 years to reach a depth of 11 m. As fertilization increased, the dry soil layers 
occurred earlier, accompanied by accelerated formation, and the depth of 11 m was reached earlier. Soon after the 
dry soil layers became stable, the effects of fertilization on the soil moisture in the apple orchards disappeared; 
the soil water at maximum soil depth was utilized by the apple trees; therefore, the field water consumption of the 
apple trees mainly relied on seasonal precipitation. There was considerable variation in soil moisture in the 0–2 m 
soil layer, which resulted from the influence of rainfall infiltration.

Simulated water consumption in apple orchards.  During the period from 1965 to 2009, the simulated 
average annual water consumption in the respective F0-F5 treatments in the dryland apple orchards in Luochuan 
ranged from 335.8 to 831.0, 334.8 to 846.1, 332.6 to 864.7, 332.7 to 876.3, 332.9 to 899.3 and 332.9 to 900.0 mm 
and averaged 623.2, 625.6, 627.8, 628.0, 628.5 and 629.7 mm, with standard deviations of 110.4, 115.3, 118.5, 
120.0, 122.5 and 123.4 mm. In apple orchards with 45-year-old trees, the total increased water consumption in the 
respective F1-F5 treatments was approximately 108, 207, 216, 239 and 293 mm, i.e., annual increases of 2.4, 4.6, 
4.8, 5.3 and 6.5 mm compared with the average water consumption under F0. The average annual water consump-
tion in the orchards increased as fertilization increased.

The water consumption differed significantly among the different fertilization treatments before the apple 
trees were 25 years old and was almost identical after the age of 26, although the values fluctuated with precip-
itation (Fig. 5). During the 45 years, the water use efficiencies in the F0-F5 treatments in the apple orchards of 

Figure 2.  Simulated number of water stress days under different fertilization treatments in the apple orchards 
of Luochuan.
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Luochuan were 39.19, 43.59, 45.70, 47.18, 48.51 and 46.74 t/(mm·hm2), respectively. These results indicate lower 
water use efficiency under F0 compared with the other treatments.

In the orchards, the annual soil water over-consumption was the difference between the annual water con-
sumption and precipitation, a measurement of the soil water balance between soil water consumption intensity 
and soil water replenishment capacity from seasonal rainfall. The soil water over-consumption fluctuated around 
approximately 0 in the later stage of the 45-year simulation (Fig. 6). The soil water over-consumption in F1-F5 was 
2.5, 4.6, 4.8, 5.3 and 6.5 mm higher, respectively, than that in F0. It follows from the standpoint of sustainable soil 
water utilization that F2 and F3 are the best choices, although under F4 and F5, the yields and water use efficien-
cies were higher, but soil desiccation occurred faster and more severely.

Economic returns from apple orchards.  Depending on the simulated yields and corresponding fertilizer 
rates under the different fertilization treatments, a regression equation was established between the yields and 
fertilizer rates as follows:

= − − + . + . = .E x x Ry 2 05 0 0218 24 692 0 98 (1)2 2

In this equation, x is the application rate of N, and y is the yield of the apple orchard in question. The prices of 
nitrogen, phosphorus and apples were calculated depending on the prices and composition of the fertilizers. 
Because other management practices that accompanied fertilization were the same, their input costs were not 
taken into account, such that the overall economic returns of one apple orchard were calculated using the follow-
ing equation:

= − . − .Y y X X4 4 5 7 5 (2)N P

In this equation, Y is the total economic return from the apple orchard, y is the yield of the apple orchard, XN is 
the application rate of nitrogen, and XP is the application rate of phosphorus. The overall economic returns from 
the apple orchard under the different fertilization treatments were calculated using this equation (Table 1). For 
comparison, we obtained the maximum economic returns and corresponding fertilization for the apple orchards. 
In Luochuan, the maximum economic returns were 117,985 yuan/hm2 orchard, and the corresponding orchard 
yield and nitrogen and phosphorus application rates were 30.49 t/hm2, 480 kg/hm2 and P 240 kg/hm2, respectively 
(Table 1).

Figure 3.  Simulated monthly available soil moisture in the 0–15 m soil level under different fertilization 
treatments in the apple orchards of Luochuan.
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A suitable fertilization rate based on different statistical indicators of dryland apple orchards in Luochuan can 
be sourced from a comprehensive analysis of orchard yields, water use efficiency, soil water over-consumption 

Figure 4.  Simulated annual soil moisture profiles in the 0–15 m soil layer under different fertilization 
treatments in the apple orchards of Luochuan.

Figure 5.  Simulated annual water consumption in the 0–15 m soil layer under different fertilization treatments 
in the apple orchards of Luochuan.
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and economic benefits (Table 2). In terms of orchard yield increases, sustainable soil water utilization and eco-
nomic returns, the most suitable fertilization rates in dryland apple orchards in Luochuan were observed under 
F3 and F4, i.e., N 360–480 kg/ha and P 180–240 kg/ha.

Discussion
Dryland apple orchard yield and soil desiccation.  The Weibei Dryland Highlands, a primary 
apple-growing region, has various meteorological conditions that are advantageous for apple growth and produc-
tion. In this region, more than 80% of the orchards are rainfed—these orchards are not irrigated and are subjected 
to severe soil water over-consumption, marked by deep soil desiccation, soil impoverishment and low fertility. As 
a result, proper fertilization is very important for soil fertility maintenance, yield increases and sustainable soil 
water utilization22. Holb et al.23 reported that better mobility of artificial fertilizers gives rise to higher macronu-
trient uptake in apple orchards compared to organic orchards in Debrecen-Pallag, Hungary. Jun et al.24 found that 
nitrogen and phosphorus applied at rates of 250–300 kg/ha and 150–200 kg/ha, respectively, achieved an orchard 
target yield of 25–30 t/ha. In the current study, the best fertilization treatments were N 360–480 kg/ha and P 
180–240 kg/ha, i.e., the nitrogen rate is at a level between its optimum and a practical level, and the phosphorus 
rate is equal to the optimum. This result likely occurred because in this study, the orchards were dryland orchards 
that were not irrigated and thus had low fertilizer utilization. Another reason for the large amounts of applied 
nitrogen was that no apple orchards were ever measured. Nitrogen can increase apple yields, but its excessive 
application will result in a series of adverse results, such as a deterioration in apple quality, extensive growth of 
tree components, decreased soil pH, soil nitrate accumulation and groundwater pollution25, 26.

Our results add to previous findings, i.e., that water and nutrients are the most important factors that influence 
the yields of dryland orchards, and fertilization can effectively improve water use efficiency and yields of dryland 
orchards but can easily increase water consumption through transpiration, resulting in increased yields accom-
panied by aggravated soil water consumption27. In our study, under high fertilization levels, the available soil 
moisture stabilized earlier and soil desiccation occurred faster; furthermore, no obvious difference in the soil des-
iccation rate was observed between F4 and F5. The available soil moisture markedly decreased in the middle stage 
of the 45-year simulation, and the dry years somewhat recovered and increased during years with high precipita-
tion. In Luochuan, the soil water storage obviously decreased. The precipitation led to fluctuating decreases in the 

Figure 6.  Simulated water over-consumption in the 0–15 m soil layer under different fertilization treatments in 
the apple orchards of Luochuan.

Fertilization F0 F1 F2 F3 F4 F5

N kg/hm2 0 120 240 360 480 600

P kg/hm2 0 60 120 180 240 300

Yield 24.42 27.27 28.7 29.63 30.49 29.43

Economic Return 97672 108109 112776 11555 117985 112786

Table 1.  Economic returns from apple orchards under different fertilization treatments in Luochuan.

Indicators Fertilization

Yield F3-F5

Water use efficiency F3-F4

Water over-consumption F2-F3

Economic return F4

Table 2.  Recommended fertilizer amount for apple orchards in Luochuan based on different statistical 
indictors.
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average annual water consumption because of the decreases and fluctuations in annual precipitation, in addition 
to the influence of increasing soil desiccation; and this was one of the main reasons for the fluctuating decrease in 
the apple yields. We found that fertilization increases can increase water use efficiency but may result in soil des-
iccation and soil water over-consumption in deep soil layers. Proper fertilization can improve fruit quality, reduce 
production costs, maintain soil fertility, eliminate nutrient deficiencies, and maintain tree vigor28. In addition to 
fertilization, the growth and yield of “Cortland” apples also depended on the weather conditions and tree age29.

This study demonstrated that the yields under F1-F5 increased by 11.70%, 17.49%, 21.35%, 24.85% and 
20.54%, respectively, compared with the average yield under F0 in the 45 years of study. The yields increased 
obviously as fertilization increased, but F5, which had excessive fertilization, resulted in the wasting of resources 
and had an adverse influence on apple yield. Furthermore, soil desiccation occurred faster, and soil drought 
stress occurred earlier and was more severe with higher levels of fertilization. The thickness of the dry soil layers 
differed obviously among the different fertilization treatments before the apple trees reached 23 years of age. The 
dry soil exceeded a depth of 11 m in all treatments except the control, and soil moisture was close to the wilting 
point over a long-term period. In the apple orchards, the dry soil layers formed earlier and deepened faster with 
high fertilization compared to low fertilization. During the period of time when soil water decreased obviously, 
the soil desiccation rates in the fertilization treatments of F0, F1, F2, F3, F4 and F5 were 51.68, 58.57, 65.75, 75.47, 
87.67 and 89.67 mm/a. Higher fertilization readily resulted in deep soil desiccation, which led to a fluctuation in 
soil water storage under lower level precipitation over a long-term period.

EPIC simulation in this study.  Recently, Li et al. developed a simulation verification and application of 
EPIC for the Loess Plateau, revealing dynamic water productivities of artificial forestlands and grain crops in dry-
land regions, providing new ideas for studying water productivity as well as the effects of soil water and fertilizer 
in apple orchards30, 31. Research on water productivity and soil water has mainly concentrated on short-term field 
experiments. Consequently, there is a lack of experiments that are continuously monitored over a long period of 
time. By combining a short-term field experiment with quantitative and dynamic simulations over a long-term 
period using WinEPIC, this study generated continuous dynamic data that could not be obtained using conven-
tional research methods. In addition, the evolution of annual water productivities and deep soil water dynam-
ics under different fertilization treatments in apple orchards was examined, thus providing a scientific basis for 
determining suitable fertilization treatments and growth years relative to local precipitation. This was a simple 
and effective quantitative research method. However, simulation differences occurred depending on the factors 
in different planting areas, the density of the apple trees, and the fertilization treatment. There were some differ-
ences between the simulated and practical growth conditions, which resulted from the omission of the effects 
of different site conditions, e.g., slope and aspect, in the simulation. In addition, we were unable to simulate the 
effects of orchard management measures on apple yields and soil water conservation, flower and fruit thinning, 
tree pruning and thinning, orchard grass planting and film mulching, etc. These defects might lead to differences 
between the simulated and measured results, although the simulation may still reflect water productivity and soil 
water variations under different fertilization treatments and may provide a scientific basis for soil water manage-
ment and suitable fertilization. The simulation parameters must be further modified to more accurately simulate 
water productivity and the effects of deep soil desiccation.

Conclusions
During the simulated period from 1965 to 2009, the apple yields under F0-F5 tended to first increase and then 
decrease in a fluctuating manner; as the fertilization level increased, drought stress occurred earlier and was 
more intensive. The monthly available soil moisture in all of the fertilization treatments presented an obvious 
fluctuating decrease and then varied at a lower level with seasonal precipitation. As fertilization increased, drying 
of the soil layers occurred earlier and deepened more rapidly; and the the soil dry layers reached their maximum 
depths earlier, and the average annual water consumption, soil water over-consumption and water use efficien-
cies increased. In terms of yield increases, sustainable soil water utilization and orchard economic returns, F3 
and F4 were the best choices. Therefore, a suitable fertilization rate for dryland apple orchards in Luochuan is N 
360–480 kg/ha and P 180–240 kg/ha.

Materials and Methods
Study location.  The simulation study was conducted in apple orchards in Luochuan, a county in Shaanxi, 
which is located in the central area of the apple production region on the Loess Plateau and in the northeastern 
part of the Weibei Dryland Highland (109°13′14″—109°45′47″E, 35°26′29″—36°04′12″N). With a warm tem-
perate and semi-humid continental monsoon climate, the county has an average altitude of 1072 m, an average 
annual precipitation of 600 mm, an average annual temperature of 9.2 °C, and an average frost-free period of 167 
d; the rainy season coincides with high temperatures. Luochuan has a broken topography typical of the high plain 
and gully loess regions of the Loess Plateau, which is characterized by uniformly textured Heilou clay soil and 
very thick loessial soil that can exceed a depth of 100 m. In Luochuan, most apple orchards are rainfed, i.e., they 
are not irrigated.

WinEPIC Profile.  The Environmental Policy Integrated Climate (EPIC) model includes weather simulation, 
hydrology, eroded sediments, nutrient cycling, pesticide rate, crop growth, soil temperature, soil tillage, eco-
nomic benefit and crop environmental control. Based on integrated growth parameters of more than 120 types 
of field crops, pastures, and forests, as well as apple trees, the EPIC model can be employed to simulate long-term 
dynamic changes in soil water and nutrient utilization as well as crop productivity on a daily basis. Furthermore, 
EPIC has been used to evaluate agro-ecological system management and its effect on soil and water resources32, 33.  
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WinEPIC v. 3060, which was adopted in this study, is a new EPIC model that can be run on Windows with a 
user-friendly interface. Using WinEPIC, soil water dynamics can be described in more detail; the daily soil mois-
ture that is thus obtained for different soil layers can be used to study crop production systems and, in particular, 
can be used to simulate ecological environmental effects related to soil moisture in drylands34. Our research team 
has simulated the biomass and soil desiccation effects of artificial Robinia pseudoacacia and Chinese pine forest-
lands on the Loess Plateau and has preliminarily investigated the yield and soil water dynamics in apple orchards 
on the Weibei Dryland Highlands35–37. The details of mathematical methods used for crop productivity as well as 
soil water and fertilizer movement have been reviewed in related literature38–42.

Dataset construction for WinEPIC.  WinEPIC was run with datasets comprised of local daily weather 
variables, soil physical and chemical properties, crop growth parameters and the management measures of apple 
orchards. Adapted from real-time weather data observations (1965~2009) from the Luochuan weather station, 
the daily weather variables mainly included daily solar radiation (MJ/m2), maximum temperature (°C), minimum 
temperature (°C), precipitation (mm), relative humidity (%), and wind speed (m/s). These daily weather data were 
input into WinEPIC in the EPIC format; then, a daily weather database for Luochuan was constructed43. The soil 
physical and chemical properties, which consisted of more than 40 terms relating to 0–15 m deep Heilu clay soil in 
Luochuan (Table 3), were adapted from soil census data such as those contained in the Records of the Chinese Soil 
Survey, the Soil of Shaanxi44, 45. These data were transformed into a typical soil parameter database of the research 
region in EPIC. On the Loess Plateau, soil water more than 10 m deep is typically used by rainfed orchards, and in 
some rainfed orchards, water that is nearly 15 m deep can be used. The maximum soil depth in this study was set 
to 15 m to examine the deep soil water utilization of the apple trees in the orchards. There was a relatively uniform 
soil texture at a depth of 0 to 15 m, unlike the other soil layers. To facilitate the analysis of soil moisture dynamics, 
the soil profile in question was divided into 17 soil layers: 0–0.01 m, 0.01–0.5, 0.5–1 m and 1-m-thick layers that 
were distributed between 1 m and 15 m deep. Some important physiological and ecological parameters of apples 
were modified in EPIC (Table 4) in reference to related research and observed data from the Loess Plateau46.

Simulation methods.  In this study, 6 different fertilization treatments were applied to the local apple 
orchards on the same dates: F0 (N 0 kg/ha, P 0 kg/ha), F1 (N 120 kg/ha, P 60 kg/ha), F2 (N 240 kg/ha, P 120 kg/
ha), F3 (N 360 kg/ha, P 180 kg/ha), F4 (N 480 kg/ha, P 240 kg/ha) and F5 (N 600 kg/ha, P 300 kg/ha). The soil 
water simulations commenced in the years when the apple trees were transplanted. In this simulation, the fer-
tilizers were applied each year at a given time according to the fertilization treatment protocol. After the soil 
water parameters were entered in the model, the initial soil water condition was automatically set at 75% of the 
field water-holding capacity. Using WinEPIC, the daily dynamics of growth, soil water and fertilizer utilization 
from 1965 to 2009 were quantitatively simulated, and the daily biomass growth and soil water and nutrient bal-
ances were obtained. To fully reflect soil water consumption and the soil water balance conditions resulting from 
precipitation, the following was done: within the daily data sequence of simulated soil moisture in the 0–15 m 
layer, the data from the 15th of each month were considered as characteristic of the available soil moisture for the 

Soil layer 
code

Soil depth 
(m)

Bulk density 
(g/cm3)

Wilting 
moisture (m/m)

Field water-holding 
capacity (m/m)

Organic nitrogen 
(mg/kg) pH

Organic 
matter (%)

Calcium carbonate 
(mg/kg)

Phosphorus 
(mg/kg)

1 0.01 1.18 0.10 0.31 350 8.1 0.75 4.4 3

2 0.5 1.23 0.10 0.29 380 8.1 0.90 1.5 3

3 1 1.33 0.10 0.30 360 8.1 0.91 1.4 3.2

4 2 1.35 0.10 0.30 370 8.2 0.85 1.03 3.2

5 3 1.34 0.11 0.32 380 8.2 0.83 11.3 3

Table 3.  Some important physical and chemical properties of Heilu clay soil in Luochuan.

Parameter Definition Value

  CPNM Crop name APPLE

     WA Energy to biomass conversion factor (t/hm2.MJ1) 45.0

     HI Harvest index (crop yield/aboveground biomass usually valued at 0.01–0.95) 0.5

     TG Optimal temperature for plant growth (°C) 22.0

     TB Minimum temperature for plant growth (°C) 5.0

     DMLA Maximum potential leaf area index 3.5

     DLAI Fraction of growing season when the leaf area index starts to decline (usually valued at 0.4–0.99) 0.99

     RLAD Leaf area index decline rate parameter (usually valued at 0–10) 1.0

     RBMD Biomass-energy ratio decline rate parameter (usually valued at 0–10) 1.0

     HMX Maximum crop height (m) 4.0

     RDMX Maximum rooting depth (m) 10.0

Table 4.  Some important modified parameters of apple growth used in WinEPIC.
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month, and the soil moisture profile distribution data from the 1st of November of each year were considered as 
characteristic for the year.

WinEPIC model verification.  To verify the EPIC performance in simulating the yield and soil moisture of 
the dryland apple orchards, these values were simulated for apple orchards in Luochuan from 1980 to 2009. The 
differences between the simulated and measured yield and soil moisture (2–10 m) were compared to verify the 
performance of the EPIC model. The measured yields were adapted from orchard surveys conducted at different 
ages by the experimental station in Luochuan. A significant correlation was observed between the simulated and 
measured fruit yield in the apple orchards of Luochuan, with a relative deviation of 0.76%, an RMSE of 1.09 t/ha, 
and a correlation index of 0.94. With respect to soil water, the relative error was 13.1%, the RMSE was 0.019 m/m, 
and the correlation index was 0.97 (Table 5). In addition, the slope of the linear regression between the simulated 
and observed yield and soil water was close to 1, with an R2 value that showed a significant correlation (Fig. 7). 
EPIC revised with these parameters could be used to accurately simulate the yield response and soil moisture 
characteristics of dryland apple orchards in Weibei.

References
	 1.	 Wang, J., Wu, F. Q. & Meng, Q. L. Analysis on soil moisture character of dry orchard on hilly and gully regions on the Loess Plateau. 

J. Northwest For. Univ. 21, 65–68 (2006).
	 2.	 Gong, W., Yan, X. Y. & Wang, J. Y. Effect of long-term fertilization on soil fertility. Soils. 43, 336–342 (2011).
	 3.	 Liu, H. J., Ju, X. T., Tong, Y. A., Zhang, F. S. & Lv, J. L. The status and problems of fertilization of main fruit trees in Shaanxi Province. 

Agric. Res. Arid Areas. 20, 38–44 (2002).
	 4.	 Zhao, Z. P., Tong, Y. A., Gao, Y. M. & Fu, M. M. Effect of different fertilization on yield and quality of Fuji apple. Plant Nutr. Fert. Sci. 

15, 1130–1135 (2009).
	 5.	 Wang, X. Y., Tong, Y. A., Liu, F. & Zhao, Z. P. Evaluation of the situation of fertilization in apple fields in Shaanxi province. Plant Nutr. 

Fert. Sci. 19, 206–213 (2013).
	 6.	 Lu, S. C., Yan, Z. J., Chen, Q. & Zhang, F. S. Evaluation of conventional nitrogen and phosphorus fertilization and potential 

environmental risk in intensive orchards of North China. J. Plant Nutr. 35, 1509–1525 (2012).
	 7.	 Wang, R. et al. Phosphorus Accumulation and Sorption in Calcareous Soil under Long-Term Fertilization. Plos one 10, e0135160 

(2015).
	 8.	 Wu, F. Q., Liu, H. B., Sun, B. S., Wang, J. & Gale, W. J. Net primary production and nutrient cycling in an apple orchard–annual crop 

system in the Loess Plateau, China: a comparison of Qinguan apple, Fuji apple, corn and millet production subsystems. Nutr. Cyc. 
Agroecosyst. 81, 95–105 (2008).

	 9.	 Strapatsa, A. V., Nanos, G. D. & Tsatsarelis, C. A. Energy flow for integrated apple production in Greece. Agr. Ecosyst. Environ. 116, 
176–180 (2006).

Fruit yield (t/hm2) Soil moisture (m/m)

Measured Simulated Measured Simulated

Average 27.57 27.80 0.147 0.128

 RE (%) 0.76 13.096

Correlation coefficient 0.940** 0.937**

 RMSE 1.090 0.019

Regression equation y = 0.9893x y = 0.8534x + 0.0378

 R2 0.825 0.877

Table 5.  Simulated and measured yield and soil moisture of apple orchards in Luochun.

Figure 7.  Simulated and measured yield (a) and soil moisture (b) in the rainfed apple orchards of Luochuan.



www.nature.com/scientificreports/

1 0Scientific Reports | 7: 5444  | DOI:10.1038/s41598-017-05914-9

	10.	 Liu, X. Z., Wang, Q. & Yi, H. P. Effects of Deep-ditch Fertilization Pattern on Soil Physical and Chemical Properties in an Apple 
Orchard. Chin. J. Soil Sci. 37, 404–407 (2006).

	11.	 Peng, F. T. & Jiang, Y. M. Characteristics of N, P, and K nutrition in different yield level apple orchards. Sci. Agr. Sin. 39, 361–367 
(2006).

	12.	 Dilini, D., Syed, K. S., Hector, M. & Malka, N. H. Root zone soil moisture prediction models based on system identification: 
Formulation of the theory and validation using field and AQUACROP data. Agric. Water Manage. 163, 344–353 (2015).

	13.	 Gong, D. Z., Kang, S. Z., Zhang, L., Du, T. S. & Yao, L. M. A two-dimensional model of root water uptake for single apple trees and 
its verification with sap flow and soil water content measurements. Agric. Water Manage. 83, 119–129 (2006).

	14.	 Huang, M. B. & Gallichand, J. Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess 
Plateau, China. Agric. Water Manage. 85, 67–76 (2006).

	15.	 Gaiser, T., de Barros, I., Sereke, F. & Lange, F. M. Validation and reliability of EPIC model to simulate maize production in small-
holder farming systems in tropical sub-humid West Africa and semi-arid Brazil. Agric. Ecosyst. Environ. 135, 318–327 (2010).

	16.	 Jones, C. A. et al. EPIC: an operational model for evaluation of agricultural sustainability. Agric.Syst. 37, 341–350 (1991).
	17.	 Williams, J. R., Jones, C. A., Kiniry, J. R. & Spanel, D. A. The EPIC crop growth model. Trans.ASAE 32, 497–511 (1989).
	18.	 Ko, J., Piccinni, G. & Steglich, E. Using EPIC model to manage irrigated cotton and maize. Agric. Water Manage. 96, 1323–1331 

(2009).
	19.	 Michele, R. Application of EPIC model for irrigation scheduling of sunflower in Southern Italy. Agric. Water Manage. 49, 185–196 

(2001).
	20.	 Wang, X. C., Li, J., Tahir, M. N. & Fang, X. Y. Validation of the EPIC model and its utilization to research the sustainable recovery of 

soil desiccation after alfalfa (Medicago sativa L.) by grain crop rotation system in the semi-humid region of the Loess Plateau. Agric. 
Ecosyst. Environ. 161, 152–160 (2012).

	21.	 Guo, Z. et al. Simulation of water productivity and soil water use of different planting density apple orchard. Northern Horticul. 16, 
27–33 (2015).

	22.	 Shan, L. Development Trend of dryland farming technologies. Sci. Agr. Sin. 35, 848–855 (2002).
	23.	 Holb, I., Gonda, I., Vago, I. & Nagy, P. Seasonal dynamics of nitrogen, phosphorus, and potassium contents of leaf and soil in 

environmental friendly apple orchards. Communications in soil science and plant analysis. 40, 694–705 (2009).
	24.	 Jun, G. B., Cha, Y. L., Cao, Q. H. & Cheng, S. M. The status and recommendations of fertilization of Fuji orchards in Changwu 

County. Shanxi Fruits. 6, 33–34 (2009).
	25.	 Cai, Z. et al. Effects of long-term fertilization on pH of red soil, crop yields and uptakes of nitrogen, phosphorous and potassium. 

Plant Nutr. Fert. Sci. 17, 71–78 (2011).
	26.	 Fan, J., Shao, M., Hao, M. & Wang, Q. Desiccation and nitrate accumulation of apple orchard soil on the Weibei dryland. Chin. J. 

Appl. Ecol. 15, 1213–1216 (2004).
	27.	 Wang, B. et al. Distribution features of soil water content in the profile of rainfed cropland with long-term fertilization. Plant Nutr. 

Fert. Sci. 13, 411–416 (2007).
	28.	 Tagliavini, M. & Marangoni, B. Major nutritional issues in deciduous fruit orchards of Northern Italy. HortTechno. 12, 26–31 (2002).
	29.	 Pacholak, E. Effect of 25 years of differentiated fertilization with NPK and magnesium on growth and fruit yield of apple ‘Cortland’ 

and on the content of minerals in soil and leaves. J. Fruit Ornam. Plant Res. 16, 201–214 (2008).
	30.	 Wang, X. C., Li, J. & Fan, T. L. Modeling the effects of winter wheat and spring maize rotation under different fertilization treatments 

on yield and soil water in rain-fed highland of Loess Plateau. Plant Nutr. Fert. Sci. 14, 242–251 (2008).
	31.	 Wang, X. C., Li, J. & Hao, M. D. Simulation of fertilization effect on winter wheat yield in Changwu dry highland. Trans. Chin. Soc. 

Agric. Eng. 24, 45–50 (2008).
	32.	 Williams, J. R. The erosion productivity impact calculator (EPIC) model: a case history. Phil. Trans. Roy. Soc. Lond. B 329, 421–428 

(1990).
	33.	 Williams, J. R. The EPIC model. In: Singh, V. P. (Ed.), Computer Models of Watershed Hydrology. 909–1000 (Water Resources 

Publisher, Colorado, 1995).
	34.	 Li, J., Shao, M. A. & Zhang, X. C. Simulation equations for soil water transfer and use in the EPIC model. Agric. Res. Arid Areas. 22, 

72–75 (2004).
	35.	 Li, J., Wang, X. C., Shao, M. A., Zhao, Y. J. & Li, X. F. Simulation of water productivity and soil desiccation effects of different planting 

density black locust forestlands on the Loess Plateau. Acta Ecol. Sin. 28, 3125–3142 (2008).
	36.	 Li, J., Wang, X. C., Shao, M. A., Zhao, Y. J. & Li, X. F. Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands 

on semi-arid and semi-humid regions of China’s Loess Plateau. J. Plant Eco. 34, 330–339 (2010).
	37.	 Zhang, S. H., Li, J., Wang, X. C. & Wang, Y. L. Modeling the changes of yield and deep soil water in apple orchards in Weibei rainfed 

highland. Acta Ecol. Sin. 31, 3767–3777 (2011).
	38.	 Baier, W. & Robertson, G. W. Estimation of latent evaporation from simple weather observation. Can. J. Plant Sci. 45, 276–284 

(1965).
	39.	 Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1, 96–99 (1985).
	40.	 Monteith, J. L. Evaporation and the environment. In: The State and Movement of Water in Living organisms Xixth Symposium. Soc. 

for Exp.Biol. 19, 205–234 (Cambridge University Press, Swansea, 1965).
	41.	 Penman, H. L. Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. Lond. A 193, 120–146 (1948).
	42.	 Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather 

Rev. 100, 81–92 (1972).
	43.	 Li, J., Shao, M. A. & Zhang, X. C. Database construction for the EPIC model on the Loess Plateau region. J. Northwest Sci-Tech Univ. 

Agr. For. 32, 21–26 (2004).
	44.	 The national soil survey and investigation office. Records of Chinese soil survey, Vol. 5, 244–254 (Chinese Agriculture Press, Beijing, 

1995).
	45.	 Shaanxi province soil survey and investigation office. Soils of Shaanxi province. (Science Press, Beijing, 1992).
	46.	 Lu, Q. N. & Jia, D. X. Chinese fruit trees, apple. (Chinese forestry Press, Beijing, 1999).

Acknowledgements
This study was sponsored by the Program for Agricultural Science and Technology & Key Issues (No. 2015NY134) 
and the Chinese National Nature and Science Foundation (No. 31071374).

Author Contributions
X.X.P., Z.G., J.Y.Z. and J.L. performed the experiments. Z.G. carried out the data analysis. X.X.P., Z.G. and J.L. 
wrote the manuscript. All authors reviewed the final manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.



www.nature.com/scientificreports/

1 1Scientific Reports | 7: 5444  | DOI:10.1038/s41598-017-05914-9

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Simulation of Long-term Yield and Soil Water Consumption in Apple Orchards on the Loess Plateau, China, in Response to Fert ...
	Results

	Simulated yields in dryland apple orchards. 
	Simulated drought stresses in rainfed apple orchards. 
	Simulated monthly available soil moisture in the 0–15 m soil layer in the apple orchards. 
	Simulated soil moisture distribution in the 0–15 m soil layer in apple orchards. 
	Simulated water consumption in apple orchards. 
	Economic returns from apple orchards. 

	Discussion

	Dryland apple orchard yield and soil desiccation. 
	EPIC simulation in this study. 

	Conclusions

	Materials and Methods

	Study location. 
	WinEPIC Profile. 
	Dataset construction for WinEPIC. 
	Simulation methods. 
	WinEPIC model verification. 

	Acknowledgements

	Figure 1 Simulated annual fruit yields under different fertilization treatments and precipitation in the apple orchards of Luochuan.
	Figure 2 Simulated number of water stress days under different fertilization treatments in the apple orchards of Luochuan.
	Figure 3 Simulated monthly available soil moisture in the 0–15 m soil level under different fertilization treatments in the apple orchards of Luochuan.
	Figure 4 Simulated annual soil moisture profiles in the 0–15 m soil layer under different fertilization treatments in the apple orchards of Luochuan.
	Figure 5 Simulated annual water consumption in the 0–15 m soil layer under different fertilization treatments in the apple orchards of Luochuan.
	Figure 6 Simulated water over-consumption in the 0–15 m soil layer under different fertilization treatments in the apple orchards of Luochuan.
	Figure 7 Simulated and measured yield (a) and soil moisture (b) in the rainfed apple orchards of Luochuan.
	Table 1 Economic returns from apple orchards under different fertilization treatments in Luochuan.
	Table 2 Recommended fertilizer amount for apple orchards in Luochuan based on different statistical indictors.
	Table 3 Some important physical and chemical properties of Heilu clay soil in Luochuan.
	Table 4 Some important modified parameters of apple growth used in WinEPIC.
	Table 5 Simulated and measured yield and soil moisture of apple orchards in Luochun.




