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Abstract

History matching is the process of modifying the uncertain attributes of a reservoir model to

reproduce the real reservoir performance. It is a classical reservoir engineering problem and

plays an important role in reservoir management since the resulting models are used to sup-

port decisions in other tasks such as economic analysis and production strategy. This work

introduces a dynamic decision-making optimization framework for history matching prob-

lems in which new models are generated based on, and guided by, the dynamic analysis of

the data of available solutions. The optimization framework follows a ‘learning-from-data’

approach, and includes two optimizer components that use machine learning techniques,

such as unsupervised learning and statistical analysis, to uncover patterns of input attributes

that lead to good output responses. These patterns are used to support the decision-making

process while generating new, and better, history matched solutions. The proposed frame-

work is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil.

Results show the potential the dynamic decision-making optimization framework has for

improving the quality of history matching solutions using a substantial smaller number of

simulations when compared with a previous work on the same benchmark.

1 Introduction

In the context of management of petroleum fields, numeric reservoir models aim at represent-

ing a real reservoir system and allow forecasting the reservoir performance in different pro-

duction stages and under different operating conditions.

The construction of a reservoir model is a multidisciplinary task and involves contributions

from different areas such as seismic, petrophysics, geology and field engineering. Due to the

complex nature of reservoir systems, the model characterization has to cope with many uncer-

tainties (for example, in the estimates of the reservoir rock and fluid properties). As a conse-

quence, the initial best estimate reservoir model is very likely inadequate to obtain an accurate

prediction of the real reservoir performance. Handling uncertain attributes so that an initial

reservoir model can be calibrated to reproduce real reservoir performance is the purpose of a

history matching process. The goal is to get better calibrated reservoir models, with simulation
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results closer to the observed data, so that future reservoir predictions based on these models

are more reliable and accurate. History matching plays an important role in reservoir manage-

ment since the resulting models are used to support the decision-making process in other

tasks such as economic analysis and production strategy. A walk-through example of the basic

concepts of the history matching problem can be found in S1 Appendix.

Formally speaking, history matching can be defined as the process of finding combinations

of the reservoir model uncertain attributes which minimize the difference between the simu-

lated data and the observed data. It is a typical inverse problem where the output is known (the

observed reservoir dynamic data) and one needs to find the input parameters (the values of the

reservoir model uncertain attributes) which leads to the observed data.

The complexity of the history matching process is directly related to the number of reser-

voir model uncertain attributes considered during the process and the output variables that

need to be matched. Also, the nature of the reservoir models is such that, frequently, there are

multiple equivalent solutions for a history matching problem.

The evaluation of each solution for a history matching problem normally requires a costly

simulation. For this reason, finding efficient strategies that reduce the number of simulations

required to achieve good solutions is a continuous challenge of the area.

The literature on computer-assisted history matching is extensive. A review on the recent

progress on the area can be found in [1].

Among the algorithmic approaches, stochastic optimization methods are the ones which

have mostly been used. Mohamed et al [2], for example, provided a comparison of three of

such methods, Hamiltonian Monte Carlo (HMC) algorithm, Particle Swarm Optimization

(PSO) algorithm, and the Neighborhood Algorithm (NA), when used to generate multiple his-

tory matched models. Hajizadeh et al. [3] applied an Ant Colony Optimization (ACO) algo-

rithm to find history matching solutions for two reservoir simulation cases. Maschio and

Schiozer [4] proposed a Bayesian history matching method using an iterative procedure that

combines Markov Chain Monte Carlo (MCMC) sampling with an artificial neural network

(ANN) proxy for the numerical simulator.

Geostatistical history matching is another approach which is being increasingly applied.

Caeiro et al. [5], for example, proposed a methodology that combines a global optimization

stage, over geological parameters, with a refining optimization stage based on individual well

production matches. A framework to perform history matching integrated with geostatistical

modeling was proposed by Maschio et al. [6], where a genetic algorithm was used to redefine

the bounds of geological parameters and reduce the search space during the optimization

process.

Efforts in the development of methodologies that combine history matching with uncer-

tainties reduction can also be identified. Maschio and Schiozer [7] recently presented a frame-

work to reduce uncertainties, where a genetic algorithm was used to search in a space formed

by the parameters of the probability distribution functions of the uncertain attributes. In addi-

tion, in their work, artificial neural networks were used, instead of the numerical simulator, to

model the curves of the output variables. Another example of history matching integrated with

uncertainties reduction can be found in the work of Mesquita et al. [8], which proposed indica-

tors to quantify the matching quality and to support the identification of input attributes

which may be source of high output deviations. The proposed indicators were also used to

define guidelines of possible actions aiming at reducing the uncertainties and to improve the

history matching.

The many and different approaches to solve history matching problems are justified

because, given specific characteristics of each reservoir systems, there is no strategy that is

proven effective for all cases. Stochastic methods, for example, are easy to implement.
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However, depending on the complexity of the history matching problem, the application of

such methods can be computationally prohibitive, since a high number of simulations may be

required to reach convergence. The use of proxy models to replace the flow simulator allows

fast evaluation of the history matching objective function, what facilitates the exploration of

the search space. The disadvantage of such approach is that generate accurate proxies is a hard

task in the context of non-linear problems, as is the case of history matching.

Also, considering that each history matching problem may have a different and complex

surface of objective function, it is worth mentioning the ‘No Free Lunch (NFL) Theorem’ from

Wolpert and Macready [9] which states that any pairs of different algorithms have identical

average performance across all possible problems. This means that, at least from a theoretical

perspective, it is impossible finding a general and efficient strategy for all history matching

problems. Paradoxically, this fact is exactly what promotes the continuous interest in the area

and makes valuable any work that proposes a different approach for solving history matching

problems, contributing to overcome some of the challenges of the area.

This paper presents a dynamic decision-making optimization framework for history match-

ing. The term ‘dynamic decision-making’ reflects the fact that, during the framework execu-

tion, the decision to generate a particular new solution is always guided and supported by the

results of a continuous and dynamic analysis of the data from available solutions.

The proposed framework is different from previous approaches reported in the literature in

the following aspects: it is not a stochastic method, since there is no randomness in its execu-

tion, nor it requires a large number of simulations to converge; it does not use a proxy model

to substitute the flow simulator, so the results obtained with the framework are accurate at any

moment of the execution; it is not a geostatistical process neither is primarily concerned with

uncertainty reduction of the reservoir attributes. Rather, it is an optimization framework

which follows a learning approach where the strategy is to dynamically analyze a set of obser-

vations (available solutions) to uncover input patterns (values of reservoir uncertain attributes)

that lead to desired responses (good history matching for one or more wells) in the available

solutions. The hypothesis of the proposed framework is that the input patterns identified dur-

ing this ´learning-from-data’ process can be used while generating new solutions. The goal is

not necessarily finding a set of perfect history-matched models, but verifying that the proposed

dynamic decision-making optimization framework can, indeed, continuously learn from the

data and, overtime, improve the history matching quality of an initial set of solutions. The

choice for a ‘learning-from-data’ approach has been done with the purpose of giving the

framework a potential to become an specialist on the structure of the history matching problem

it is solving what, according to Ho and Pepyne in [10], would definitely improve the chances

of it be considered superior when compared to other strategies for the same problem.

2 Dynamic decision-making optimization framework

The dynamic decision-making optimization framework proposed in this work is designed in

accordance with the generalized history matching methodology presented in Fig 1. This meth-

odology is an evolution of the history-matching methodology introduced by Avansi and Schio-

zer [11], and intends to cover history matching algorithmic approaches (as is the case of the

optimization framework proposed in this work) and approaches integrating history matching

with uncertainty reduction. The steps introduced during the generalization are indicated by

the dashed lines in Fig 1.

The proposed dynamic decision-making optimization framework encompasses the “Solu-

tion” and “Analysis” components of the generalized methodology. These are the components

that have steps suitable to be automated and, hence, with potential for being improved by

History matching through dynamic decision-making

PLOS ONE | https://doi.org/10.1371/journal.pone.0178507 June 5, 2017 3 / 32

https://doi.org/10.1371/journal.pone.0178507


machine learning based solutions. The other components of the generalized methodology

involve more specific knowledge from areas such as Reservoir Engineering and are not consid-

ered in this work.

Fig 2 depicts the high-level workflow of the proposed dynamic decision-making optimiza-

tion framework. The flow starts with the generation and simulation of an initial set of models

(which can be of any size, provided it contains a good variability and models representative of

the values of the uncertain attributes involved in the history matching). It then proceeds to a

two-stage optimization approach, where each stage corresponds to a dynamic decision-making

optimization component designed to handle different types of attributes. The first optimiza-

tion stage, the Petrophysical Properties Optimizer, is focused on improving the models´ his-

tory matching quality through changes on petrophysical properties, which are defined for the

reservoir grid blocks and may be changed locally in one or more reservoir regions. The second

stage, the Global Optimizer, aims at optimizing the history matching objective function by

changing the models´ global properties, which may impact the reservoir performance as

whole.

Although Fig 2 shows the Petrophysical Optimizer being executed before the Global Opti-

mizer, these two optimization stages are independent and the proposed framework is flexible

regarding the execution order of its optimization components. Both Petrophysical Optimizer

and Global Optimizer components work using the data of the current available models, so

Fig 1. Generalized history matching methodology. Grey boxes highlight the components encompassed by the

proposed dynamic decision-making optimization framework.

https://doi.org/10.1371/journal.pone.0178507.g001
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there is no restriction in the order they are executed. Of course, the solutions generated during

the process (and the final results) may differ if the Petrophysical Optimizer is executed before

the Global Optimizer, or vice-versa. The advantage of the proposed framework is that it is

straightforward to intertwine the optimization stages.

From an algorithmic perspective, the proposed dynamic decision-making optimization

framework follows a ‘learning-from-data’ paradigm which, according to Abu-Mostafa et al. in

[12], is suitable for problems (such as the history matching problem) where there is no analytic

solution, but there is a set of data that can be used to construct an empirical solution. Starting

from an initial set of solutions, the proposed framework continuously analyzes the data of

available solutions to identify patterns of input attributes that lead to good history matching

responses. Once identified, these patterns are used in the generation of new models. Note the

“Data analysis” step in Fig 2. It is present in both optimization stages and is the responsible for

the dynamic analysis of the data from available solutions. This step is executed in each iteration

of the framework optimizer components, and always precedes the step that generates the new

models, so the results of the dynamic analysis can support the generation of the new models.

Fig 2. High-level workflow of the proposed optimization framework, including the two dynamic

decision-making optimization components.

https://doi.org/10.1371/journal.pone.0178507.g002
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The ultimate goal of the proposed framework is to generate better history-matched models

based on the information (input patterns leading to good output response) that it can learn

from the available solutions.

2.1 Generalized history matching methodology

The generalized history matching methodology introduced here (Fig 1) is based on the history

matching methodology proposed by Avansi and Schiozer [11] and intends to provide a set of

basic steps that can systematically be followed by anybody needing to solve a history matching

problem. The goal is not defining a history matching solution method itself, but standardizing

and outlining the steps one such method should consider.

The main concept of the generalized methodology is inherited from Avansi and Schiozer

[11] and is the Normalized Quadratic Deviation with Sign (NQDS) quality indicator. The

NQDS indicator is calculated for each output variable considered in the history matching pro-

cess and for each model generated. It provides a measure of the misfit of the variable in the

model and, more importantly, allows defining levels of matching quality, which are used to

identify, and group, models with equivalent matching qualities for one or more variables.

The equations involved in the NQDS calculation are the following:

NQDSx ¼
QDSx
AQDx

ð1Þ

AQDx ¼
PNtimes

t¼1
ðTolx �Histxt þ CxÞ

2
ð2Þ

QDSx ¼
LDx

jLDxj

PNtimes
t¼1
ðSimxt � HistxtÞ

2
ð3Þ

LDx ¼
PNtimes

t¼1
ðSimxt � HistxtÞ ð4Þ

where:

NQDSx = normalized quadratic deviation with sign of variable x, representing the misfit com-

ponent associated with this variable;

QDSx = quadratic deviation with sign of variable x;

AQDx = acceptable quadratic deviation of variable x, used to normalize the QDSx;

Tolx = acceptable tolerance, in [0,1], for variable x be considered good with respect to historical

data;

Histxt = historical data of variable x in time t;

Cx = constant added to prevent AQDx of being too small or restrictive in the cases where the

data of a variable x is zero during a long time interval;

LDx = linear deviation of variable x;

Simxt = simulated data of variable x in time t.

Fig 3 depicts graphically some of the basic concepts involved in the NQDS calculation. For

each time t, the difference (Simxt −Histxt) represents the linear distance between the simulation

data and the history data. The linear deviation LDx is the sum, overtime, of each of these differ-

ences. Curves which are mainly above the history data, such as the one corresponding to

Model A in Fig 3, have a positive value of QDSx and hence of the NQDSx indicator. Similarly,
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curves mainly below the history data, such as the one from Model B, have negative values of

QDSx and NQDSx. A perfect matching for a variable x has LDx 0. Since this is very difficult to

achieve, especially when the history matching process calibrates many variables at the same

time, the Tolx defines an acceptable range (dashed lines in Fig 3) within which the matching

quality, although not perfect, is considered excellent. NQDSx values in [-1,+1] interval indicate

curves, such as the one from Model C in Fig 3, which are mainly or totally contained in the

Tolx defined acceptable range. As a general rule, for any simulation model Sim, the bigger

(smaller) the positive (negative) value of NQDSx, the further from the acceptable range is the

curve of x in Sim. The acceptable range is defined for each variable x involved in the history

matching process and may vary according to the confidence in the variable history data, the

variable importance, or the desired solution quality.

The generalized history matching methodology defines six quality levels (Table 1.) for the

NQDSx indicators. These levels reflect the quality of the matching, and have been defined

based on the authors experience with history matching problems. The ultimate goal of the

methodology is to find a set of solutions in which the NQDSx values are in the “Excellent” level

for all variables x considered in the history matching process.

The following subsections briefly describe the five main components of the generalized his-

tory matching methodology (Fig 1) and their encompassed steps. A detailed description about

the original methodology, on which the one presented here was based, can be found in [11].

2.1.1 Setup. The “Setup” component is responsible for the initial steps in the history

matching process:

Fig 3. Graphical example of the basic concepts involved in the NQDS calculation.

https://doi.org/10.1371/journal.pone.0178507.g003

Table 1. Quality levels for NQDSx.

| NQDSx | in [0,1] in] 1,2] in] 2,3] in] 3,5] in] 5,10] not in

[-10,10]

Quality level Excellent Very good Good Regular Bad Very bad

https://doi.org/10.1371/journal.pone.0178507.t001
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• Characterization under uncertainties

Step responsible for the definition of a reservoir model and the uncertain attributes that will

be considered during the history matching process. The corresponding range, levels and

probability distribution function of each uncertain attribute are also defined at this moment.

• Definition of tolerance and normalizationlimits

Step in which the Tolx and Cx values used in Eq (2) are defined to delimit the acceptable

range for each variable x. Once defined, these values are kept constant during all the history

matching process.

2.1.2 Solution. The “Solution” component is the core of the history matching process and

comprises the following steps:

• Strategy definition

Step which involves choosing the strategy for the history matching process. There are many

possibilities to find better adjusted models. Sampling techniques based on the probability

distribution function of the uncertain attributes, optimization methods whereby new models

are generated with the goal of minimizing a history matching objective function, and strate-

gies focused on the reduction of the attributes uncertainties are some of the most common

approaches adopted.

• Generation of models

This is the step where new simulation models are generated according to the strategy defined

in the previous step. In case of uncertainty reduction, for example, the new models can be

generated combining the values of the uncertain attributes through a sampling algorithm

such as the Discretized Latin Hypercube with Geostatistical Realizations (DLHG) method

from Schiozer et al. [13]. In the case of an optimization strategy, the models are generated

following the optimization goals. The dynamic decision-making optimization framework

proposed in this work generates better calibrated models using the patterns of attributes

present in good quality solutions identified among all available models.

2.1.3 Analysis. The main purpose of the “Analysis” component is to verify the quality of

the models generated by the “Solution” component. The steps of this component are:

• Numerical simulation

Step in which the new models are simulated.

• Diagnosis

Step responsible for the calculation of the NQDSx quality indicators for all the simulated

models.

• Analysis of results

Verification step in which the quality indicators previously calculated are analyzed. If there

are models with NQDSx indicators in acceptable levels for all variables x, the flow proceeds to

the “Usage” component; otherwise, it goes to the “Review” component.

2.1.4 Review. The “Review” component attempts to identify possible causes for the cur-

rent available models still not being considered good enough in terms of history matching

quality. The steps of this component are:

History matching through dynamic decision-making
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• Numeric model verification

Step that checks the consistence of the numeric aspects used in the simulation models. Veri-

fying the numeric aspects involve finding possible inconsistences in well dynamic data (his-

tory), well completion positions, among others, and if a problem is identified, the flow

proceeds to the “Analysis and changes” step.

• Analysis and changes

Step in which the numeric model is changed to fix consistence problems identified in the

previous step.

• Analysis of parameterization

When the numeric model is correct, unacceptable results in the “Analysis” component (Sec-

tion 2.1.3) may be related to problems in the initial model characterization. This step checks

if there is any problem with the current parameterization which may be preventing finding

good history matched solutions.

• Characterization review

This step fixes parameterization problems identified in the previous step. The model charac-

terization is reviewed and a new uncertain attribute may be inserted in the model, or the var-

iation range and/or the levels of the existent attributes may be modified.

2.1.5 Usage. The “Usage” component is the final component of the generalized history

matching methodology (Fig 1). At this stage, the best history matched models are selected and

used to predict future reservoir performance, supporting the decision-making process on

other reservoir engineering tasks. The steps of this component are:

• Filter

Step that selects the models for which the NQDSx quality indicators, for all variables x, are in

an acceptable (ideally “Excellent”) level.

• Application

The models selected in the previous step are used to predict the real reservoir performance

and to support decisions on tasks such as economic analysis and production strategy.

The dynamic decision-making optimization framework proposed in this work (Fig 2) cov-

ers the steps in the “Solution” and “Analysis” components of the generalized history matching

methodology described in this section. The optimization strategy adopted involves the mini-

mization of an objective function which is detailed in Section 2.2. The new models are gener-

ated using attributes patterns extracted from good-quality solutions identified during the

“Data Analysis” step described in Section 2.3. The optimization is carried out by the two opti-

mization components, described, respectively, in Section 2.4 (Petrophysical Properties Opti-

mizer) and in Section 2.5 (Global Properties Optimizer).

2.2 Objective function

Optimization approaches, such as the optimization framework proposed in this work, need a

formal way to evaluate the quality of the solutions found during the optimization process.

The generalized history matching methodology described in Section 2.1 prescribes that an

acceptable solution is one where the NQDSx indicators are in an acceptable level for all vari-

ables x involved in the history matching process. From an optimization perspective, each vari-

able to be matched may be seen as a different objective-function, and these multiple functions

can be optimized simultaneously by a multi-objective optimization approach. The framework
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proposed in this work, however, is a single-objective optimization strategy where the multiple

variables to be matched are considered together during the optimization process and the qual-

ity of a given solution (model) is measured through a single misfit value which expresses the

proximity of the simulated data when compared with the historical data: the lower the misfit

value the better the solution. The goal of the single-objective history matching optimization

process is finding solutions that minimize the misfit value, also referenced as the history

matching objective function.

In this work, the misfit value M to be minimized by the optimization framework is defined

as the Euclidean norm of the vector containing the misfit components of each well variable

(well rates and pressure) and is calculated using the NQDSx indicators (Section 2.1) through

the following equation:

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNvar

x¼1
ðNQDSxÞ

2

q

ð5Þ

where:

M = misfit value to be minimized;

Nvar = total number of well variables (number of variable per well multiplied by the number of

wells) considered in the history matching procedure;

2.3 Data Analysis step

The “Data Analysis” step is a core step in the proposed dynamic decision-making optimization

framework (Fig 2) and it is present in both the Petrophysical Properties Optimizer and the

Global Properties Optimizer components. It has two responsibilities: (i) to evaluate the history

matching quality of the available models, calculating, for each of them, the misfit value defined

in Section 2.2; (ii) to identify among the available models, attribute patterns present in good-

quality solutions. In order to achieve this objective, once the misfit value has been calculated

for each model, the models are sorted using different criteria so that, in the “Data Analysis”

step output, the following types of solutions can be identified:

• the best available model: the one with the lowest misfit value;

• the best model for each particular well: the one with the lowest Euclidean norm of the vector

containing only the misfit component values (NQDSx indicators) associated with the vari-

ables of the given well;

• the best model regarding each particular series (well rate or pressure): the one with the low-

est Euclidean norm of the vector containing only the misfit component values (NQDSx indi-

cators) associated with the variables of the given series.

The above three types of “best” solutions and the patterns of attributes they contain are

used to support the decision-making of the optimizer components when they generate new

simulation models.

2.4 Petrophysical properties optimizer

The petrophysical properties optimizer component is the first optimizer component of the

proposed dynamic decision-making framework (Fig 2). It aims at finding better history

matched models focusing on changes on the values of uncertain attributes associated with pet-

rophysical properties.
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In a reservoir model, petrophysical properties such as porosity and horizontal and vertical

permeabilities are usually correlated. For this reason, they are frequently defined together in

what is called petrophysical realization or petrophysical image: a set of values defining the pet-

rophysical properties for each reservoir grid block.

The petrophysical properties optimizer proposed in this work uses the data from the petro-

physical realizations associated with the best global model and the best model for each well,

identified during the Data Analysis step, to generate new petrophysical realizations and the

corresponding models associated with each one of them.

The process of generating the new petrophysical images uses unsupervised learning to par-

tition the reservoir grid into a set of disjoint regions (grid segments), each of which containing

one and exactly one well. This partitioning is done by the “Region Definition” step (Section

2.4.1) and it is a critical part of the petrophysical properties optimizer component. It depends

on the petrophysical realization of the best available solution (Section 2.3) and, since it is called

at each optimizer iteration, as far as the petrophysical realization of the best solution changes

from one iteration to another, the set of reservoir regions also changes dynamically from one

iteration to another.

The new petrophysical images are generated using the petrophysical realization of the best

available solution (Section 2.3) and replacing the data of its regions, one region at a time or all

at once, by the corresponding region data extracted from the petrophysical realization of the

best available solution for the particular well contained in the region. In this way, in each itera-

tion of the petrophysical optimizer, the number of new images generated is potentially equal

to the number of wells plus one.

The new models, using the generated petrophysical images, are simulated and the process

continues until a stop criterion (max number of iterations or no new image generated) is

reached.

It is worth mentioning here that, although geological realism has not been a primary con-

cern of the proposed optimization framework, the way the new petrophysical images are gen-

erated by the Petrophysical Optimizer is based on two aspects that aim at adhering to the

geological consistence of the models. The first aspect is that the images are generated using

patches collected from geological consistent realizations generated previously (the ones from

the best global solution and from the best available solution for each well). The second aspect

is that the shape of the patches is the shape of the regions defined by the ‘Regions Definition’

step (Section 2.4.1), which intentionally groups reservoir grid blocks spatially close to each

other and with similar values of petrophysical properties, maintaining the consistence of spa-

tial correlation.

2.4.1 Regions Definition step. The “Regions Definition” step is a clustering algorithm

based on the spatial coordinates and petrophysical properties of the reservoir model grid

blocks. Its goal is to partition the reservoir grid into a set of disjoint regions, such that each

region contains exactly one well, and the union of the regions corresponds to the entire

reservoir.

Dividing the reservoir into regions is a common task during history matching. One fre-

quently used approach is to define the regions using Voronoi polygons around the wells

(Caeiro et al., 2015). In this case, each reservoir grid block is assigned to the region containing

the well which is closest to the block. The distance calculation involves only the well and the

block coordinates.

This work proposes a different approach for partitioning the reservoir into regions. Instead

of using only the wells and blocks coordinates to decide if a block shall belong to a particular

region, the idea here is to also consider the values of the petrophysical properties of the grid

blocks. The resulting region containing a particular well will not only be formed by grid blocks
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near to the well, but will also contain the blocks whose petrophysical properties are closest to

the properties of the well block.

The proposed partitioning strategy can be done using petrophysical values extracted from

any available petrophysical realization. Nevertheless, in this work, the petrophysical values

used in the “Regions Definition” step are always the ones present in the best available solution.

The algorithm of the Regions Definition step works on a space S in Rn, containing the set of

vectors v = (v1, v2, . . ., vn) constructed as follow:

1. There is a vector v for each reservoir grid block;

2. v1, v2, v3 are the x, y, z coordinates of the grid block;

3. v4, . . ., vn are the normalized values of the petrophysical properties of the grid block.

The pseudo-code of the proposed algorithm is presented in Fig 4. Steps 1 to 3 are essentially

the traditional k-means algorithm [14] and partitions the space S into k (number of wells) sets,

S = {S1, S2, . . ., Sk}, such that the sum of the intra-set distances (Eq 6) is minimized.

Pk
i¼1

P
v2Si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv1 � ci1Þ
2
þ . . .þ ðvn � cinÞ

2

q

ð6Þ

Steps 4 and 5 are post-processing steps to ensure that each set in the final partition contains

one and exactly one well.

Fig 5 illustrates the difference between the traditional Voronoi strategy and the Region Def-

inition strategy proposed in this work for partitioning the reservoir into regions. The example

shows how a particular grid block is indeed assigned to different regions depending on the

strategy used. Fig 5(A) shows a reservoir with two wells, P1 and P2, and ten grid blocks, and

highlights the moment when one needs to decide if the “?” block shall be assigned to the region

Fig 4. The Regions Definition algorithm.

https://doi.org/10.1371/journal.pone.0178507.g004
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of P1 well or to the region of P2 well. For simplicity, the example uses only the x,y coordinates

of the grid blocks and two petrophysical properties (PERMI and PERMJ). Fig 5(B) shows that,

using the Voronoi strategy that considers the distances calculated using only the block coordi-

nates, the “?” block is assigned to the region of P1 well. On the other hand, Fig 5(C) shows

that, using the Region Definition strategy proposed in this work, that considers the distances

calculated using the block coordinates and petrophysical properties similarity, the “?” grid

block is assigned to the region of P2 well.

2.5 Global properties optimizer

The global properties optimizer component is responsible for iteratively changing the values of

the uncertain global attributes of the best available solution (Section 2.3), with the purpose of

improving its history matching quality.

The process of changing the global attribute values follows an expectation-maximization

approach where, at every iteration, the promising levels of the attributes are evaluated (expec-

tation) and, eventually, the best global solution is changed based on the gathered information

(maximization).

The identification of the global attributes promising levels is based on the analysis of the

impact these levels may have on the misfit components of the history matching solution. This

analysis is dynamically performed in each iteration by the “NQDS Mean Evaluation” step and

it is the core of the dynamic decision making of the proposed optimizer component.

Let yij represent the jth level of an uncertain global attribute yi. For each well variable x, and

global attribute level yij, the “NQDS Mean Evaluation” step calculates the NQDSxyij
value as the

mean of the misfit components NQDSx (Section 2) considering all models that have the attri-

bute yi in level j.
The NQDSxyij

value can be understood as an indicator of the average contribution to the

objective function of the misfit component associated with well variable x, in models which

have attribute yi in level j. High absolute values of NQDSxyij
may indicate that, on average, hav-

ing attribute yi in level j leads to a high misfit of well variable x in a solution.

The proposed global optimizer component uses the NQDSxyij
values to decide if a change in

the value of a global attribute is promising to generate better quality solutions. In each itera-

tion, the new models are generated using the following strategy:

1. Let yil represent the level of the uncertain global attribute yi in the best available solution

(Section 2.3), and let yi(l-1) and yi(l+1) be, respectively, the previous and next levels of yil.

2. If jNQDSxyiðl� 1Þ
j < jNQDSxyil j, for at least one well variable x, generate a new model chang-

ing the value of attribute yi to its value on level yi(l-1);

3. If jNQDSxyiðlþ1Þ
j < jNQDSxyil j, for at least one well variable x, generate a new model chang-

ing the value of attribute yi to its value on level yi(l+1).

In order to illustrate the strategy of the Global Optimizer, consider the situation where it is

being executed with a scenario that has only two global uncertain attributes (A and B), which

have been discretized into 3 and 5 levels, respectively, as shown in Table 2 and Table 3 below.

Consider now that in the current best solution, the levels of attributes A and B are: A 1 and

B 3. The Global Optimizer will attempt to generate new models changing the levels of A and B

to their neighbor levels. The potential new models are: A 0 B 3, A 2 B 3, A 1 B 2 and A 1 B 4.

Note that only one global attribute is changed to generate a new model. The intelligence of the

Global Optimizer is that these potential new models will only effectively be generated if and
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only if the neighbor level, on average, improves the NQDSx indicator of at least one of the vari-

ables involved in the process. For the particular potential new models of this example, A 0 B 3

Fig 5. Illustration of differences between Voronoi and Region Definition strategies for partitioning the

reservoir grid into regions. (a) moment when block “?” needs to be assigned to the region containing P1 well

or to the region containing P2 well; (b) assignment of “?” block to the region containing P1 well using Voronoi

strategy; (c) assignment of “?” block to the region containing P2 well using the Region Definition strategy.

https://doi.org/10.1371/journal.pone.0178507.g005
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will only be generated if, considering all the available models having A in level 0, the average of

the indicator NQDSx is better than the corresponding value in the current best solution, for at

least one variable x. Similarly, the model A 2 B 3 will only be generated if, considering all avail-

able models having A in level 2, the average of the NQDSx indicator is better than the corre-

sponding value in the current best solution, for at least one variable x. The same reasoning

applies to models A 1 B 2 and A 1 B 4.

The number of new models generated by the global optimizer in each iteration can be twice

the number of global attributes present in the best available solution. Nevertheless, the reason-

ing behind the presented strategy is that a new model is generated if, and only if, the change on

the uncertain global attribute value, on average, intends to improve the misfit component asso-

ciated with at least one of the well variables. This allows, on one side, setting the focus of the

global optimizer component on the generation of promising solutions, and on the other side,

potentially reducing the number of new simulations, as non-promising changes are not con-

sidered. It is also worth mentioning that, since the analysis to identify promising levels is per-

formed dynamically, in each iteration, and considers the current available models, the fact that

a level of an uncertain attribute is rejected at one moment does not mean that it cannot be

reconsidered and accepted in a further moment.

Finally, in each iteration of the Global Properties Optimizer, the new generated models are

simulated and the process continues until a stop criterion (max number of iterations or local

minimum found) is reached.

3 Experiments and results

This section describes the experiments carried out to validate the use of the proposed dynamic

decision-making optimization framework to improve the quality of history matching

solutions.

The experiments were organized in three rounds:

• Preliminary experiments, with the purpose of configuring the execution order of the frame-

work optimizer components, and performing basic validation on the regions delimited by

the “RegionDefinition” strategy (Section 2.4.1), and on the petrophysical images generated

by the Petrophysical Optimizer (Section 2.4).

• Experiments with the complete optimization framework, with the purpose of showing the

performance of the implemented framework on datasets from a benchmark reservoir model,

and comparing the results obtained with the framework against the ones from a recent litera-

ture history matching approach on the same benchmark.

• Experiments with the petrophysical properties optimizer, focused on comparing the

improvements on history matching solutions obtained with the proposed “Region

Table 2. Discrete levels of global uncertain attribute A.

Level 0 1 2

Value 1.0 3.0 5.0

https://doi.org/10.1371/journal.pone.0178507.t002

Table 3. Discrete levels of global uncertain attribute B.

Level 0 1 2 3 4

Value 3170 3172 3174 3176 3178

https://doi.org/10.1371/journal.pone.0178507.t003
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Definition” strategy (Section 2.4.1) for partitioning the reservoir into regions, versus the

improvements obtained when using the traditional Voronoi partitioning approach.

The dynamic decision-making optimization framework was implemented in JAVA

(1.7.0_40) and coupled to MERO program which is being developed by UNISIM group

(http://www.unisim.cepetro.unicamp.br/). MERO is a set of tools that enables the creation of

workflows to support the development and management of petroleum reservoirs. The pro-

vided tools aim to automate tasks that use numerical reservoir simulation and are common

process in areas such as history matching, production strategy and uncertainty and risk analy-

sis. MERO supports many simulators and in this work was configured to use IMEX simulator

(2012.10) from Computer Modelling Group (http://www.cmgl.ca/).

All the experiments were conducted using datasets based on the UNISIM-I-H benchmark

case.

3.1 UNISIM-I-H benchmark

UNISIM-I-H is a benchmark case for history matching. It is described in [11] and is a syn-

thetic model based on real data from Namorado Field, located in Campos Basin, Brazil.

The model has 25 wells, 14 producers and 11 injectors. Fig 6 shows the well distribution in

the reservoir grid top.

The reservoir has two regions, isolated from each other through a sealing fault (black line in

Fig 6). Region 1 is the one located in the west of the sealing fault, and region 2 is the smallest

one located in the east.

The model grid has 81 x 28 x 50 blocks, each measuring 100 x 100 x 8 m.

The uncertain properties of UNISIM-I-H model are summarized in Table 4. The “# Levels”

column shows the number of levels considered for each property in this work. For the first

three properties, the uncertain levels come directly from the UNISIM-I-H model characteriza-

tion (http://www.unisim.cepetro.unicamp.br/benchmarks/br/unisim-i/unisim-i-h): there is

one file for each uncertain level of these properties For the last three properties, which are

Fig 6. UNISIM-I-H well distribution in reservoir grid top.

https://doi.org/10.1371/journal.pone.0178507.g006
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continuous properties, the levels are the result of a discretization, made from the property

probability distribution functions defined in Table 5.

The Petro properties are the ones manipulated by the Petrophysical Optimizer. The other 5

properties (Krw, PVTR2
, WOCR2

, CPOR, Kz_c) are the global attributes considered during the

Global Optimizer execution.

The available history data covers a period of 11 years of reservoir production and the well

variables to be matched during the history matching procedure are:

• oil production rate (QO), water production rate (QW) and gas production rate (QG) for

producer wells;

• water injection rate (QWI) for injector wells;

• bottom hole pressure (BHP) for all wells.

Considering that the UNISIM-I-H model has 14 producer wells and 11 injector wells, this

leads to a total of 78 misfit variables in the objective function (Eq (5), Section 2.2) to be mini-

mized during the history matching process.

In the generalized history matching methodology (Section 2.1), the acceptable range within

which the matching quality is considered “Excellent” can be defined individually for each vari-

able x, through the use of different values for the Tolx and Cx constants (Eq (2), Section 2.1).

In this work, however, the acceptable ranges were considered the same for all variables of a

particular series (e.g., the acceptable range for the oil rate (QO) variables for all producers was

defined using Tol = 0.1 and C = 0). Table 6 summarizes the Tol and C values adopted for each

series during the experiments.

Table 4. Uncertain properties considered in the history matching of UNISIM-I-H model.

Nomenclature Description # Levels

Petro Petrophysical properties (porosity, horizontal and vertical permeabilities, and

net to gross ratio)

500

Krw Water relative permeability 5

PVTR2
Region 2 PVT data 3

WOCR2
Region 2 oil-water contact 5

CPOR Rock compressibility 5

Kz_c Vertical permeability multiplier 5

https://doi.org/10.1371/journal.pone.0178507.t004

Table 5. Uncertainty ranges of continuous properties.

Property (unity) PDF

WOCR2
(m) 0, x < 3169

x� 3169

25
, 3169� x < 3174

3179� x
25

, 3174� x� 3179

0, x > 3179

CPOR * 10−6(cm2/kgf) 0, x < 10

x� 10

1849
, 10� x < 53

96� x
1849

, 53� x� 96

0, x > 96

Kz_c (-) 0, x < 0

2x
4:5

, 0� x < 1.5

6� 2x
4:5

, 1.5� x� 3

0, x > 3

https://doi.org/10.1371/journal.pone.0178507.t005
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3.2 Datasets

With the purpose of grouping the scenarios used in the validation of the proposed framework

and facilitating the presentation of the experimental results, two datasets (UNISIM-I-H-A and

UNISIM-I-H-B) were created based on the UNISIM-I-H benchmark case.

The datasets are similar in the sense that each one has five scenarios and each scenario ini-

tially comprises a set of 100 solutions for the history matching problem of UNISIM-I-H case.

The datasets will be public upon publication of this paper, what may facilitate the compari-

son between the results presented in this paper with the ones obtained with different history

matching strategies in future works.

3.2.1 UNISIM-I-H-A. This dataset contains five scenarios, each of which containing 100

models. The models in each scenario were generated using the Discretized Latin Hypercube

with Geostatistics (DLHG) method [13] to sample the uncertainties described in Table 4. The

number of distinct petrophysical images in each scenario was set to 100 (smaller than the 500

originally defined in Table 4) based on the work of Schiozer et al. [13], which mentions that

100 to 200 petrophysical realizations are often sufficient to represent the petrophysical proper-

ties’ uncertainties in a risk analysis process applied to the UNISIM-I-H model.

Table 7 presents the UNISIM-I-H-A scenarios with their corresponding petrophysical

properties levels. The levels of the non-petrophysical properties and their discrete probabilities

are the same for all scenarios and are summarized in Table 8.

3.2.2 UNISIM-I-H-B. The UNISIM-I-H-B dataset is similar to the UNISIM-I-H-A data-

set. It also contains five scenarios, S6 to S10, each of which containing 100 models generated in

the same way used for the models in UNISIM-I-H-A: Discretized Latin Hypercube with Geos-

tatistics (DLHG) method [13] to sample the uncertainties, non-petrophysical properties as

defined in Table 8 and 100 distinct petrophysical images in each scenario. The difference here

is that, instead of having the images in each scenario pre-defined as was the case in UNISI-

M-I-H-A (Table 7), in the scenarios of UNISIM-I-H-B, the 100 images of each scenario were

randomly selected from the 500 ones available from the UNISIM-I-H model characterization.

3.3 Evaluation metrics

In order to evaluate the performance of the dynamic decision-making framework, the follow-

ing two metrics were considered:

Table 6. Tol and C values (by series) used to calculate the acceptable quadratic deviations in Eq (2).

Series

QO QW QG QWI BHP

Tol 10% 10% 10% 5% 10%

C 0 20 0 0 0

https://doi.org/10.1371/journal.pone.0178507.t006

Table 7. UNISIM-I-H-A scenarios and their levels of petrophysical properties.

Scenario Petrophysical Properties Levels

(100 equiprobable images)

S1 im0 . . . im99

S2 im100 . . . im199

S3 im200 . . . im299

S4 im300 . . . im399

S5 im400 . . . im499

https://doi.org/10.1371/journal.pone.0178507.t007
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• Misfit value (Eq (5), Section 2.2) of the best available solution

• Number of models by max |NQDSx| for the 100 best models

For each scenario, the metrics were measured in three different points:

1. after the simulation of the initial set of models, just before the execution of the petrophysical

properties optimizer and global properties optimizer components;

2. after the execution of the petrophysical properties optimizer component;

3. after the execution of the global properties optimizer component.

3.4 Preliminary experiments

In the first experiment, the optimization framework was executed with two possible configura-

tions of its optimizer components: Global Optimizer before Petrophysical Optimizer, and Pet-

rophysical Optimizer before Global Optimizer. Fig 7 shows the convergence plots of the misfit

of the best available solution in the UNISIM-I-H-A S1 scenario in the two configurations. The

plots for the other scenarios are similar to this one presented here.

The first important thing to note in Fig 7 is that the steepest decrease in the misfit value, in

both configurations, was obtained during the execution of the Petrophysical Optimizer: itera-

tion 1, when the Petro Optimizer was executed before the Global Optimizer; and iteration 5

when the Global Optimizer was executed first. Also, despite the final misfit of the best available

solution obtained with each configuration being very similar, in this particular experiment,

executing the Petrophysical Optimizer first (blue curve) led to a slightly better result. For this

reason, although doing global optimization before local optimization is more intuitive, in all

the remaining experiments, the proposed optimization framework has been configured in the

other way around, running the Petrophysical Optimizer before the Global Optimizer.

The second preliminary experiment intended to verify the shape of the reservoir regions

identified by the “Regions Definition” strategy (Section 2.4.1). Fig 8 shows an example of the

regions obtained during the execution of the optimization framework with the UNISIM-I-H-A

S1 scenario. The proposed clustering strategy does not necessarily ensure that blocks in the

same spatial pattern of geological structure will be grouped in the same region—what may not

even be feasible given the requirement of having one single well per region. However, looking

at Fig 8, it can clearly be seen that the resulting regions respect almost perfectly the geological

structure of the reservoir sealing fault represented by the black line. This is an indicative that

Table 8. Levels and discrete probabilities for non-petrophysical properties.

Property Levels

(Probability)

Krw krw0 krw1 krw2 krw3 krw4

(0.20) (0.20) (0.20) (0.20) (0.20)

PVTR2
pvt0 pvt0 pvt1 - -

(0.33) (0.34) (0.33) - -

WOCR2
woc0 woc1 woc2 woc3 woc4

(0.10) (0.20) (0.40) (0.20) (0.10)

CPOR cpor0 cpor1 cpor2 cpor3 cpor4

(0.10) (0.20) (0.40) (0.20) (0.10)

Kz_c kzc0 kzc1 kzc2 kzc3 kzc4

(0.10) (0.20) (0.40) (0.20) (0.10)

https://doi.org/10.1371/journal.pone.0178507.t008
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the proposed “Regions Definition” strategy is really an interesting approach to partition the

reservoir grid into regions: it allows grouping blocks spatially closed to each other but also

with similar values of petrophysical properties, and very likely within the same spatial pattern

of geological structure.

The final preliminary experiment was made with the purpose of verifying the petrophysical

images generated by the Petrophysical Optimizer (Section 2.4). Maintaining the geological

consistency, respecting the spatial correlation of petrophysical properties, is indeed an impor-

tant aspect to be considered in a history matching strategy. Fig 9, Fig 10 and Fig 11 depict, for

the UNISIM-I-H-A S1 scenario, the images of three petrophysical properties (Porosity, Net to

Gross Ratio and Permeability I, respectively) in the initial best solution and in the final best

solution obtained at the end of the execution of the proposed optimization framework. These

images show that, although geological realism has not been a primary concern of the optimiza-

tion framework, the strategy of the Petrophysical Optimizer generates petrophysical images

that are definitely not anomalies from a geological point of view. The initial images are all

Fig 7. Convergence plots of the misfit of best available solution in UNISIM-I-H-A S1 scenario.

https://doi.org/10.1371/journal.pone.0178507.g007

Fig 8. Example of the regions obtained with the Regions Definition algorithm during the execution of

the optimization framework with UNISIM-I-H-A S1 scenario.

https://doi.org/10.1371/journal.pone.0178507.g008
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geological consistent (since they came from the UNISIM-I-H characterization), and, as can be

clearly seen in Fig 9, Fig 10 and Fig 11, the images generated by the Petrophysical Optimizer

have a very similar geological structure.

3.5 Experiment with the complete optimization framework on

UNISIM-I-H-A dataset

In this experiment, the performance of the implemented dynamic decision-making framework

was evaluated on dataset UNISIM-I-H-A (Section 3.2.1). Fig 12 shows the evolution of the

Fig 9. Porosity on initial best solution (a) and on final best solution (b), scenario UNISIM-I-H-A S1.

https://doi.org/10.1371/journal.pone.0178507.g009

Fig 10. Net to Gross Ratio on initial best solution (a) and on final best solution (b), scenario UNISIM-I-H-A S1.

https://doi.org/10.1371/journal.pone.0178507.g010
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misfit value of the best available solution for each scenario in the dataset and Table 9 summa-

rizes the corresponding improvements and the total number of simulations (including the 100

of the initial models) executed in each case.

The results show that the Petrophysical Properties Optimizer component was the responsi-

ble for the highest portion of the improvements. It can also be noted that, for all the scenarios

in UNISIM-I-H-A dataset, the total improvement was higher than 50% and, on average, the

misfit of the initial best solution has been improved 58.6% during the optimization framework

execution.

Fig 13 and Fig 14 show, respectively, the NQDS graphics for the producer and injector well

series in scenario S1. The graphics for the other scenarios from UNISIM-I-H-A dataset were

similar to the ones presented in these two figures.

The NQDS graphics are a more compact way of presenting the results of a history matching

process. While a production history match plot may be necessary for specific analyses, a single

NQDS plot can be used to visualize simultaneously the data of several variables. In the case of

UNISIM-I-H benchmark, which involves the matching of 78 variables, without the NQDS

graphics of Fig 13 and Fig 14, it would have been necessary to generate 78 production plots to

evaluate and present the same results.

Each column in the NQDS plots of Fig 13 and Fig 14 represents the history matching qual-

ity of a particular variable, for a set of models, and may be interpreted in the following way: the

more the column fits inside the region delimited by the red horizontal lines, which represent

the “Excellent” quality range, the better is the history matching quality of the particular vari-

able in the considered models.

In Fig 13 and Fig 14, the columns labeled with ‘-initial’ show the NQDS values for the 100

initial models in S1 scenario. Similarly, the columns labeled with ‘-final’ show the NQDS val-

ues for the 100 best models after the optimization framework execution. It can be clearly seen

from the NQDS plots of these two figures that the ‘-final’ columns are closer to the excellent

range (red horizontal lines) for all series considered in the history matching process. This

Fig 11. Permeability I on initial best solution (a) and on final best solution (b), scenario UNISIM-I-H-A S1.

https://doi.org/10.1371/journal.pone.0178507.g011
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result shows how the proposed optimization framework can indeed improve the NQDS values

towards the excellent quality level, and hence find models with better history matching quality.

Fig 12. Evolution of the misfit values of best available solution during the optimization framework

execution.

https://doi.org/10.1371/journal.pone.0178507.g012

Table 9. Improvements on the misfit values of best available solutions and total number of simulations during the optimization framework

execution.

Scenario Improvement (%) after Petrophysical

Properties Optimizer

Improvement (%) after Global Properties

Optimizer

Total Improvement

(%)

Total #of

Simulations

S1 59.8 6.6 62.5 190

S2 44.0 10.9 50.1 185

S3 55.2 16.6 62.6 175

S4 47.0 15.9 55.4 185

S5 60.3 4.8 62.2 165

https://doi.org/10.1371/journal.pone.0178507.t009
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In order to illustrate the correspondence between a column in an NQDS plot and a set of

curves in a production history matching plot, consider the NQDS plot for the oil rate (QO) of

all producers in Fig 13. In this plot, the grey columns (QO-initial) show the NQDS values for

QO, in the 100 initial models. The green columns (QO-final) show the NQDS values for QO,

Fig 13. NQDS graphics for producer well series in scenario S1.

https://doi.org/10.1371/journal.pone.0178507.g013
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in the 100 final best models obtained with the execution of the proposed framework. Now,

consider the oil production rate curves, in Fig 15. These curves were generated with the same

models used in Fig 13. The grey curves are the ones corresponding to the 100 initial models in

scenario S1, and the green ones are the ones which correspond to the 100 final best models

obtained with the framework execution. Note, for example, that the green columns for N01,

N02, and N03 wells in the QO NQDS plot in Fig 13 are just slightly better than the correspond-

ing grey columns. The same behavior is verified for the oil rate curves of these wells in Fig 15:

the green curves are just slightly closer to the history curve. On the other hand, the green col-

umns of wells P5, P12, P14, P21, and P25 in the QO NQDS plot of Fig 13 clearly outperform

the corresponding initial grey columns. The oil rate curves of these wells, in Fig 15, confirm

this fact: the green curves are much closer to the history curve.

Fig 16 shows the evolution on the number of models by maximum |NQDSx|, for the 100

best models, during the optimization framework execution. The ideal output of a history

matching process, considering the quality levels defined in Table 1., would be having the final

curves (the green ones in the graphics of Fig 16) starting as much vertical, and close to 1, as

possible. Although this ideal has not been reached here, the output of the optimization

Fig 14. NQDS graphics for injector well series in scenario S1.

https://doi.org/10.1371/journal.pone.0178507.g014
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Fig 15. Oil rate curves for the producers.

https://doi.org/10.1371/journal.pone.0178507.g015
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framework in all the scenarios in UNISIM-I-H-A dataset clearly shows that the number of

models with lower values of maximum | NQDSx | has increased during the framework

execution.

Fig 17 shows the results reported by Mesquita et al. [8] for a scenario based on the same

UNISIM-I-H benchmark. Comparing the final 100 best models obtained with the proposed

optimization framework (Fig 16) with the ones reported by Mesquita et al. [8] (Fig 17), the fol-

lowing points are worth mentioning:

Fig 16. Distribution of models by maximum |NQDSx |, for the 100 best models, during the optimization

framework execution using UNISIM-I-H-A dataset.

https://doi.org/10.1371/journal.pone.0178507.g016

History matching through dynamic decision-making

PLOS ONE | https://doi.org/10.1371/journal.pone.0178507 June 5, 2017 27 / 32

https://doi.org/10.1371/journal.pone.0178507.g016
https://doi.org/10.1371/journal.pone.0178507


1. The decrease on the maximum |NQDSx | is larger with the proposed optimization frame-

work. In all the scenarios from UNISIM-I-H-A dataset, the final green curves in Fig 16 are

more vertical than the final one (Iteration 16) reported by Mesquita et al. [8] (Fig 17). Also,

in four, out of five, scenarios of UNISIM-I-H-A dataset, at least 88% of the 100 final best

models generated with the proposed optimization framework have |NQDSx |� 100. This

number contrasts with the corresponding 75–78% reported by Mesquita et al. [8].

2. Neither the proposed optimization framework nor the strategy presented by Mesquita et al.

[8] was able to generate models with maximum | NQDSx |� 10. This is a sign of how diffi-

cult is the history matching problem of the UNISIM-I-H benchmark and reinforces that

efforts to improve the current solutions are desirable and important.

Fig 17. Distribution of models by maximum |NQDSx |, based on the results reported by Mesquita et al.

[8].

https://doi.org/10.1371/journal.pone.0178507.g017

Fig 18. Improvements on the misfit value of best available solution obtained with the two versions of the

petrophysical properties optimizer, on the scenarios of UNISIM-I-H-A and UNISIM-I-H-B datasets.

https://doi.org/10.1371/journal.pone.0178507.g018
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3. The total number of simulations used by the proposed optimization framework was much

smaller: none of the scenarios from UNISIM-I-H-A dataset used more than 190 simulations

(Table 9), which is about 9% of the 2,100 simulations used by Mesquita et al. [8].

3.6 Experiment with the petrophysical optimizer on UNISIM-I-H-A and

UNISIM-I-H-B datasets

This experiment aimed at evaluating the improvements on history matching solutions

obtained with the petrophysical properties optimizer component (Section 2.4). The proposed

component, using the “Regions Definition” strategy (Section 2.4.1) for partitioning the reser-

voir into regions, was compared against a modified version in which the “Regions Definition”

step was replaced by a partitioning algorithm using the traditional Voronoi approach to

delimit the regions around the reservoir wells. Fig 18 compares the improvements on the ini-

tial best solution obtained with the original optimizer with the corresponding ones obtained

with the modified optimizer, for the scenarios in UNISIM-I-H-A and UNISIM-I-H-B

datasets.

From the results in Fig 18, one can see that, for UNISIM-I-H-A dataset, in three, out of five,

scenarios (S1, S3 and S4), the improvements obtained with the version of the petrophysical

properties optimizer using the Region Definition step was largely superior when compared

with the corresponding improvements obtained with the Voronoi partitioning algorithm. For

the remaining two scenarios, S2 and S5, where the use of the Voronoi partitioning strategy led

to better results, the difference was below 5%. For the UNISIM-I-H-B dataset, the improve-

ments obtained with the version of the petrophysical properties optimizer using the “Regions

Definition” step were superior in four, out of the five, scenarios.

Fig 19 depicts, for the 10 scenarios from UNSIM-I-H-A and UNISIM-I-H-B datasets, the

comparison of the improvements on the misfit value of the best available solution obtained

with the two versions of the Petrophysical Properties Optimizer. A two-sample paired Wil-

coxon signed rank test [15] conducted on these data led to a p-value of 0.06. With this result,

Fig 19. Improvements on the misfit value of best available solution obtained with the two versions of the

petrophysical properties optimizer, on scenarios from UNISIM-I-H-A and UNISIM-I-H-B datasets.

https://doi.org/10.1371/journal.pone.0178507.g019

History matching through dynamic decision-making

PLOS ONE | https://doi.org/10.1371/journal.pone.0178507 June 5, 2017 29 / 32

https://doi.org/10.1371/journal.pone.0178507.g019
https://doi.org/10.1371/journal.pone.0178507


we can conclude that the two versions of the Petrophysical Optimizer are, with 90% confi-

dence, statistically different.

4 Conclusions

This paper presented a dynamic decision-making optimization framework for history match-

ing problems. The proposed framework comprises two optimization components: the first

one focused on changes of petrophysical properties and the second one with the purpose of

improving the history matching solutions through the change of global reservoir properties.

The proposed framework has been applied to the UNISIM-I-H benchmark and the results

show the potential of the framework in improving the quality of history matching solutions.

Indeed, in terms of the final 100 best models found, the improvements obtained with the

framework were larger than previous improvements reported by Mesquita et al. [8] for the

same benchmark and were achieved using only 9% of the number of simulations.

The proposed Petrophysical Properties Optimizer component introduced a new strategy to

partitioning the reservoir into distinct regions. The results obtained with the new strategy were

superior to the ones obtained with the traditional Voronoi approach in 60% of the dataset sce-

narios used in the experiments.

The combination of the proposed Petrophysical Properties Optimizer with the Global Prop-

erties Optimizer, both using information learned from the dynamic evaluation of the available

data, could clearly improve the initial quality of history matching solutions. This shows how

the use of machine learning techniques, as the ones adopted in this work, can be promising in

the context of a history matching process.

Results obtained with the dynamic decision-making approach presented in this paper indi-

cate it may indeed be an option to improve the quality of history matching solutions with a

small number of simulations. Also, the proposed strategy to partitioning the reservoir into dis-

tinct regions, based on the k-means clustering algorithm, is an alternative for the traditional

Voronoi partitioning as it may lead to better results.

Future work includes extending the dynamic decision-making optimization framework

with other components so that better history matching solutions can be achieved. Optimizer

components that use soft clustering algorithms to partitioning the reservoir regions or that

dynamically focus on the matching of well variables having high misfit are some ideas that can

be explored and may bring further improvements in the search of history matching solutions

with high quality.
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