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Abstract
Offspring resemble their parents for both genetic and environmental reasons. Understanding the relative magnitude of these 
alternatives has long been a core interest in behavioral genetics research, but traditional designs, which compare phenotypic 
covariances to make inferences about unmeasured genetic and environmental factors, have struggled to disentangle them. 
Recently, Kong et al. (2018) showed that by correlating offspring phenotypic values with the measured polygenic score 
of parents’ nontransmitted alleles, one can estimate the effect of “genetic nurture”—a type of passive gene–environment 
covariation that arises when heritable parental traits directly influence offspring traits. Here, we instantiate this basic idea in 
a set of causal models that provide novel insights into the estimation of parental influences on offspring. Most importantly, 
we show how jointly modeling the parental polygenic scores and the offspring phenotypes can provide an unbiased estimate 
of the variation attributable to the environmental influence of parents on offspring, even when the polygenic score accounts 
for a small fraction of trait heritability. This model can be further extended to (a) account for the influence of different types 
of assortative mating, (b) estimate the total variation due to additive genetic effects and their covariance with the familial 
environment (i.e., the full genetic nurture effect), and (c) model situations where a parental trait influences a different off-
spring trait. By utilizing structural equation modeling techniques developed for extended twin family designs, our approach 
provides a general framework for modeling polygenic scores in family studies and allows for various model extensions that 
can be used to answer old questions about familial influences in new ways.
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Introduction

Parents share half of their (autosomal) additive genetic effects 
with their children, causing resemblance between parent and 
offspring for heritable traits. However, parents also help cre-
ate and shape their offspring’s environment, which may have 

an enduring influence for certain traits. If the parental traits 
that impact their children’s environment are themselves herit-
able, a covariance will develop between the genetic effects 
underlying those traits and the environmental effects pro-
vided by the parents. Educated parents, for example, provide 
to their offspring not only genes that predispose to higher 
education, but also a familial environment that is likely con-
ducive to higher education. Thus, offspring who inherit genes 
that predispose to higher education are also more likely to 
be influenced by a familial environment that encourages 
education. This phenomenon is a type of passive gene–envi-
ronment (G–E) covariance that has recently been referred 
to as genetic nurture (Kong et al. 2018). Generally, passive 
G–E covariance refers to the covariance between the genetic 
effects on a trait and the parenting environment influenced 
by that trait, regardless of whether the parenting environ-
ment actually influences the offspring (DiLalla and Gottes-
man 1991). However, passive G–E covariance can also arise 
from sociocultural influences unrelated to parenting (e.g., the 
correlation between genes influencing skin pigmentation and 
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environments conducive to educational opportunity). Here, 
we adopt the convention that genetic nurture refers to a spe-
cific type of passive G–E covariance that occurs when the 
environment provided by parents does directly influence the 
phenotype of their offspring, leading to covariance between 
the genes affecting a trait and the rearing environment of the 
offspring influenced by that parental trait. Genetic nurture 
is therefore a necessary consequence of the direct effect of 
a (heritable) parental phenotype on an offspring phenotype, 
a phenomenon known as vertical transmission (VT) in the 
behavioral genetics literature (Cavalli-Sforza and Feldman b). 
While passive G–E covariance can also arise from horizontal 
transmission—in which other collateral relatives (typically 
siblings) influence one another—we focus in this paper on 
genetic nurture arising from parental influences and discuss 
horizontal transmission at the end.

The occurrence of genetic nurture has important impli-
cations for understanding complex trait genetics. Genetic 
nurture increases the phenotypic variation in the population 
over what it would otherwise be, and can bias estimates of 
genetic or environmental influences. In genome-wide asso-
ciation studies (GWAS’s), genetic nurture inflates estimates 
of SNP associations. This bias can be quantified in part by 
comparing within-family estimates, which are immune to 
this inflation, to standard between-family estimates. For 
example, Lee et al. (2018) found that SNP associations with 
educational attainment estimated within-families were 40% 
smaller than those estimated between-families, consistent 
with the presence of genetic nurture. Similarly, by inflat-
ing the associations between traits and their causal variants 
across the genome, genetic nurture upwardly biases esti-
mates of SNP-heritability, including those from methods 
that use GWAS summary statistics (e.g., LD-score regres-
sion; Bulik-Sullivan et al. 2015) and from methods that use 
average similarity across genome-wide SNPs (e.g., genomic 
REML; Yang et al. 2011). Genetic nurture also increases 
dizygotic and monozygotic twin covariances to the same 
degree, leading to overestimates of the shared environmental 
variation in the classical twin design “ACE” models, and 
(less intuitively) to overestimates of the additive genetic var-
iance in “AE” or “ADE” models that estimate only genetic 
variation (Coventry and Keller 2005). For these reasons, 
quantifying genetic nurture is important for interpreting 
estimates across multiple designs and approaches.

While genetic nurture cannot be estimated in classical 
twin designs, it can in principle be detected using extended 
twin family designs (Cloninger et  al.  1979). However, 
doing so has been challenging because no observed sta-
tistic directly provides information to estimate it. Rather, 
genetic nurture must be inferred as a consequence of esti-
mated heritability that co-occurs with estimated VT (Eaves 
1976), and in turn VT must be estimated from residual par-
ent-offspring covariance that is higher than expected from 

estimated genetic and environmental influences. Nonethe-
less, factors such as dominance, epistasis, and gene-by-age 
interactions cannot be simultaneously modeled using these 
designs. Existing estimates of genetic nurture and VT from 
the extended twin family literature thus depend strongly on 
model assumptions and may be biased to the degree they are 
unmet (Keller et al. 2010).

In the past several years, studies using a Mendelian rand-
omization paradigm (Davey Smith and Ebrahim 2003) have 
leveraged measured genetic data to examine the extent to 
which observed parent–offspring similarity is due to a direct 
causal influence of parents on their children (i.e., due to VT). 
Typically, these studies have built polygenic scores (PGS’s; 
the predicted genetic scores for a trait based on SNP weights 
from a GWAS conducted in an independent sample) of a 
maternal trait (e.g., height) and assessed whether it is related 
to an offspring trait (e.g., gestational age). To account for 
shared genetic effects between mother and offspring, these 
studies have controlled for the offspring PGS (Lawlor et al. 
2008; Bonilla et al. 2012; Tyrrell et al. 2016). However, this 
approach is suboptimal because it can lead to a collider bias 
(Lawlor et al. 2017). A more elegant approach to controlling 
for shared genetic effects was thus proposed by Zhang et al. 
(2015), who built two maternal PGS’s of height: one based 
on the alleles that were transmitted to the offspring and one 
based on those that were not transmitted. They found that 
the nontransmitted PGS of maternal height was significantly 
associated with offspring gestational age. This association is 
a downwardly biased estimate (due to the PGS imperfectly 
capturing full trait heritability) of genetic nurture which, as 
explained above, necessarily implies VT; maternal height is 
having a causal influence on offspring gestational age, medi-
ated by the maternally provided intrauterine environment 
(see also Lawlor et al. 2017; Tubbs et al. 2020a). Warrington 
et al. (2018) and Evans et al. (2019) later built upon this 
basic idea by incorporating offspring and maternal PGS’s 
into a causal model, allowing recursive relationships between 
effects that naturally arise in this context (e.g., genetic effects 
upon which the PGS is based are themselves over-estimated 
due to genetic nurture) to be properly accounted for.

To date, the most comprehensive and best-known 
approach for using measured genetic data to examine paren-
tal influences is the Kong et al. (2018) investigation into the 
influences of parental educational attainment. From data on 
∼22K Icelandic offspring and their parents in the deCODE 
sample, Kong et al. constructed PGS’s for educational attain-
ment using the transmitted and nontransmitted alleles from 
both mothers and fathers. After controlling for the poten-
tial confounding influences of stratification, they found a 
highly significant relationship between the nontransmitted 
parental PGS (summed across both parents) and offspring 
educational attainment. This association is an estimation 
of genetic nurture that, unlike previous work, incorporates 
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paternal effects, accounts for assortment, and avoids poten-
tial collider bias (Lawlor et al. 2017; Tubbs et al. 2020b).

While a significant advance, their approach was not with-
out its limitations. First, as in the Zhang et al. paper, their 
estimate of genetic nurture was downwardly biased (again 
due to the partial predictive ability of the PGS) and they 
provided no estimate of the magnitude of VT. Secondly, 
as explained below, primary phenotypic assortative mat-
ing (hereafter simply ’AM’; the tendency for parents to 
chose mates who are similar to themselves) is a competing 
explanation for the relationship between the nontransmitted 
PGS and the offspring phenotype. Kong et al. attempted to 
account for the influence of AM, but because they found 
evidence that AM for educational attainment in Iceland 
occurred only in the parental generation (and not before), 
their approach assumes this specific type of disequilibrium 
assortment. Third, much of the math presented by Kong 
et al. was derived from first principles, limiting the gener-
alizability of their approach and not easily allowing it to be 
extended to other situations.

Thus, building upon this previous work, we present 
here a structural equation modeling (SEM) framework of 
their basic idea that uses transmitted and nontransmitted 
PGS’s to understand genetic and environmental parental 
influences. These models can be used to obtain unbiased 
estimates of total variation due to additive genetic effects 
( VA ), genetic nurture ( v + w ), and the variation accounted 
for by VT ( VF ), even when the PGS accounts for a small 
fraction of trait heritability. Furthermore, using techniques 
developed for extended twin family designs, we demonstrate 
how both disequilibrium and equilibrium AM can be tested 
and accounted for in causal models. Finally, the underlying 
principles of SEM (described below) allow these models 
to be easily extended in ways that would otherwise lead to 
intractable math.

We believe that using PGS’s to understand genetic and 
environmental influences of parents on offspring is an impor-
tant and exciting advance. The set of models presented here 
can be used to better utilize PGS’s for estimating parental 
influences. While they can be implemented “out of the box,” 
their greater utility is as examples of a general approach for 
incorporating PGS’s into family causal models in order to 
test specific hypotheses of interest. To this end, we present 
the logic and math underlying the models, adopting a tuto-
rial style so that the models presented can be modified and 
improved upon to best fit the hypotheses being tested.

Overview of causal modeling

SEM is very useful in the present context for several 
reasons. First, as mentioned, SEMs are easily extensible 
and provide a set of rules that can simplify potentially 

complex (e.g., recursive) relationships between variables 
by finding estimates jointly instead of individually. For 
scenarios such as those involving VT and AM, this can 
greatly simplify otherwise intractable math. In addition, 
SEM is advantageous because it encourages a focus on 
effect sizes rather than p-values, forces the user to think 
carefully about the possible causal mechanisms that under-
lie observed data, and requires that model assumptions 
be made explicit. Estimates from causal models will be 
biased to the degree that assumptions are violated, and so 
it is important to understand how estimates behave when 
assumptions are unmet in order to properly interpret them; 
this is usually done by comparing estimates to known 
parameters in simulated data, as was done for the models 
below in Kim et al. (2020).

To aid in the understanding of our models, we first 
review path tracing rules and the overall causal modeling 
framework we adopt here. Path tracing was developed by 
Sewell Wright (Wright 1934) as a means for deriving the 
expected variances and covariances among variables in a 
particular causal model—a set of assumed causal connec-
tions between measured and unmeasured variables. SEM 
can then be used to find estimates that maximize the likeli-
hood of the observed variances and covariances given the 
assumed causal model. Although sometimes misunderstood, 
SEM does not test causation but rather assesses the degree to 
which a set of observed variances and covariances is consist-
ent with a particular causal model (Bollen and Pearl 2013).

A causal model is considered identified if there is a 
unique solution for all the model’s parameters. Often, there 
is insufficient information to estimate all parameters of inter-
est, requiring that the values of some parameters be fixed 
(typically to 0 or 1) for the model to be identified (though it 
should also be noted that fixing parameters is itself a model 
assumption). Even for identified models, certain assump-
tions about causal relationships between variables can lead 
to high correlations among estimates, increasing their stand-
ard errors and potentially necessitating that one or more 
parameters be fixed.

Path diagrams pictorially represent causal models and are 
helpful for deriving the variances and covariances that the 
models imply. By convention, squares in path diagrams rep-
resent observed variables and circles represent unobserved 
latent variables—theorized causes of variation and covari-
ation among observed variables. Single-headed arrows from 
one variable to another signify causal relationships from the 
former to the latter, with their associated path coefficients 
being akin to partial regression coefficients. Double-headed 
arrows, meanwhile, signify covariances when connecting 
two variables to each other and variances when connect-
ing variables to themselves. Finally, a straight line with no 
arrows is called a copath and is used to model AM. The 
copath is a more recent innovation in SEM (Cloninger 1980) 
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and is not widely used outside the extended twin family 
literature.

To derive expectations using a path diagram, one must 
identify all legitimate paths that connect two variables (for 
expected covariances) or that connect a variable back to 
itself (for expected variances). These paths can be thought 
of as chains, with each individual arrow or copath repre-
senting a link in a particular chain. The expected value of 
a chain is equal to the product of all the coefficients associ-
ated with each of its links, and the final expected variance 
or covariance is equal to the sum of all legitimate chains. A 
chain is considered legitimate if it abides by the following 
path tracing rules: 

1. A chain begins by travelling backwards against the 
direction of a single or double-headed arrow (from the 
arrow’s head to its tail). However, once a double-headed 
arrow has been traversed, the direction reverses such that 
the chain now travels forwards, in the direction of the 
arrows.

2. A chain must include exactly one double-headed arrow 
(a variance or a covariance term), which is equivalent to 
stating that a chain must change directions exactly once. 
This is necessary because double-headed arrows provide 
the proper scaling for the coefficients in each chain.

3. All chains must be counted exactly once and each 
must be unique. However, the order of the links in the 
chains matters. For example, despite being algebraically 
equivalent, the chain Yp → NTp → Tp → Yp is distinct 
from the chain Yp → Tp → NTp → Yp in Fig. 1. Both 
are unique and both must be counted in determining the 
variance of Yp

4. Copaths may only be traversed once in a given chain, 
and a chain must be legitimate before traversing the 
copath. However, once the copath is crossed, the first 
two rules above reset. A chain must therefore contain 
exactly one double-headed arrow before traversing the 
copath, and one double-headed arrow after traversing 
the copath. Thus, copaths connect two legitimate chains 
to create a single, longer chain.

To demonstrate the first three rules (the fourth is demon-
strated below), we derive the expected cov(Yp,NTp) in Fig. 1, 
denoted as Ω in our models. As noted, deriving the covari-
ance between two terms requires tracing all legitimate chains 
that begin at one and end at the other. In this case, only 
two legitimate chains start at Yp and end at NTp (one could 
equivalently start at NTp and end at Yp ). The first travels 
up the arrow Yp → NTp (path coefficient � ), and because 
all chains require a double-headed arrow, finishes by tra-
versing the double-headed arrow leading back to NTp (i.e., 
the variance of NTp , with path coefficient 1

2
 ). The second 

travels up the arrow Yp → Fp (with path coefficient 1) and 

then traverses the double-headed arrow Fp → NTp (i.e., the 
covariance between Fp and NTp , with path coefficient w

2
 ). 

Thus, Ω = �(
1

2
) + 1(

w

2
) =

1

2
(� + w).

Models of parental effects

Although the path tracing procedures described above are 
simple and algorithmic, the number of unique chains grows 
rapidly as models become more complicated, making the 
process error-prone. To simplify chains and reduce the prob-
ability of errors, we substitute variables (e.g., Ω ) for chain 
segments that recur across multiple chains ( 1

2
(� + w) ) when 

possible. We use parameter subscripts p, m, and o for pater-
nal, maternal, and offspring, respectively. To reduce redun-
dancy, we use [N]T to denote either NT (the nontransmit-
ted) or T (the transmitted) haplotypic PGS, and we use the ∗ 
subscript to denote either p or m but not both within a single 
term. For example, cov(Y∗, [N]T∗) can be written in the place 
of cov(Yp, Tp) , cov(Yp,NTp) , cov(Ym, Tm) , or cov(Ym,NTm) , 
but cov(Y∗, T∗) does not equal cov(Yp, Tm) or cov(Ym, Tp) . For 
ease of comparison, we follow the notation of Kong et al. 
when possible. For example, the meanings of � , �T , �NT , Tp , 
NTp , Tm , and NTm are consistent across papers. Finally, the 
names of other parameters ( VF , w, f, V� , and � ) were chosen 
for consistency with existing extended twin family models. 
For descriptions of these and other parameters, see Table 1.

To ensure that our parameter derivations are correct, we 
compared expected equilibrium parameter values to simu-
lated ones from an adapted version of the GeneEvolve soft-
ware (Tahmasbi and Keller 2017), which we modified for 
efficiency such that causal variants were in linkage equi-
librium in the base population—the population before any 
AM or VT has occurred. Because most parameters depend 
on each other recursively, we found their expected equilib-
rium values by inputting start values into their expectations 
derived below and iterated all parameters together in R until 
their values converged. For all models, the expected equi-
librium values of the parameters agreed with their observed 
equilibrium counterparts from GeneEvolve.

Phased whole-genome maternal, paternal, and offspring 
data are required to detect identical by descent segments, 
from which both parents’ transmitted and nontransmitted 
alleles are distinguished. We show that these four pieces of 
information ( NTp , Tp , NTm , Tm ) along with Yo are sufficient 
for estimating the full VF when there is no AM (Model 0), 
though data need not be complete for every family as esti-
mates are unbiased by missingness. However, because AM 
induces covariances between latent and observed genetic 
scores, estimates of VF and genetic nurture will be biased 
when the PGS accounts for little of the heritability (Model 
1). Nonetheless, this bias can be eliminated by modeling the 
genetic variation not captured by the PGS (Model 2), either 
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through estimating it by including parental phenotypes in 
the model or by making an assumption about its value in the 
base population. Each of these models require assumptions; 
we describe these in the subsections below, but focus on 
their influences in Kim et al. (2020).

Model 0: VT but no AM

Figure 1 shows a path diagram of the simplest model of 
genetic nurture and so serves as a valuable starting place. It 
makes two assumptions that distinguish it from later mod-
els: (1) there is no AM, and (2) the PGS explains all of the 
genetic variation in the trait. The first assumption will be 
unmet for many traits of interest while the latter assumption 

is unmet for all traits currently. Nevertheless, when the first 
assumption is met (no AM), we show below that this simple 
model can provide unbiased estimates of the full VF.

This model estimates five unknown parameters: � , the 
direct effect of haplotypic PGS on the phenotype after 
removing the influence of genetic nurture; f, the direct effect 
of parental phenotype on the offspring environment (i.e., the 
VT effect) ; VF , the variance due to VT; w the genetic nur-
ture effect; and V� , the variance of the residual phenotypic 
variation. It is worth noting that the values of f and VF are 
determined given the values of � , w, and V� , and so only 
three of these five estimates are independent. Additionally, 
the parental phenotypes ( Yp and Ym ), familial environment 
value arising from VT (F), and unique environmental score 
( � ) are latent and are therefore represented by circles. To 

Table 1  Parameters in models 0, 1, and 2

Subscripts: m: maternal; p: paternal; o: offspring; ∗ : m or p; no subscript: m, p, or o

Parameter Interpretation

Y Phenotypic score
� Residual score
�

Primary phenotypic assortative mating (AM) copath coefficient; 
cov(Yp ,Ym)

V2

Y

F Family environmental score arising from Y∗ → Fo vertical transmission (VT)
f VT path coefficient; the causal effect of Y∗ → Fo

T∗ Polygenic score (PGS) of one of the two transmitted haplotypes
NT∗ PGS of one of the two nontransmitted haplotypes
k Variance of the haplotypic PGS in the base population (before AM or VT). It is a constant that depends on 

the scaling of the PGS (see Model 1)
g Increase in the (co)variance of the haplotypic PGS’s under AM
� effect of haplotypic PGS on Y
w Genetic nurture between the PGS and F; cov(T∗ + NT∗,F∗) = cov([N]Tp + [N]Tm,Fo)

Ω Covariance between Y∗ and either of that parent’s haplotypic PGS’s; cov(Y∗, [N]T∗)
�T Covariance between Yo and both of the transmitted haplotypes; cov(Yo,Tm + Tp)

�NT Covariance between Yo and both of the nontransmitted haplotypes; cov(Yo,NTm + NTp)

LT∗ Latent genetic score (LGS) of one of the two transmitted haplotypes
LNT∗ LGS of one of the two nontransmitted haplotypes
j Variance of the haplotypic LGS in the base population. It is a constant defined analogously to k (see Model 2)
h Increase in the (co)variance of the haplotypic LGS’s under AM
i Increase in the covariance between the haplotypic PGS’s and LGS’s under AM
a Effect of haplotypic LGS on Y
v Genetic nurture between the LGS and F; cov(LT∗ + LNT∗,F∗) = cov(L[N]Tp + L[N]Tm,Fo)

Γ Covariance between Y∗ and either of that parent’s haplotypic LGS’s; cov(Y∗,L[N]T∗)
�LT Covariance between Yo and the transmitted LGS; cov(Yo,LTm + LTp)

�LNT Covariance between Yo and the nontransmitted LGS; cov(Yo,LNTm + LNTp)

VA Full variance due to direct additive genetic effects; 2a2(j + 2h) + 2�2(k + 2g) + 8ai�

VA0
full variance due to direct additive genetic effects in base population; 2a2j + 2�2k

v + w Full genetic nurture (a type of passive G-E covariance)
VF Full variance due to VT; 2f 2VY (1 + �VY )

V� Residual variance not explained by other factors (i.e., unique environmental variance)
VY Phenotypic variance; VA + VF + 2(av + �w) + V�
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prevent under-identification, the F → Y and � → Y paths are 
fixed to 1. Similarly, the variances of the haplotypic PGS’s 
are constrained to 1

2
 , which should be true if the full PGS 

is standardized and there is no AM to induce covariances 
between haplotypic PGS’s.

As previously stated, there are five observed variables 
in this model—the transmitted and nontransmitted paternal 
( Tp and NTp ) and maternal ( Tm and NTm ) haplotypic PGS’s 
as well as the offspring phenotype ( Yo)—creating a 5-by-5 
observed variance-covariance matrix and leading to 15 
unique statistics from which to estimate parameters. Model-
fitting software mimics as closely as possible this observed 
variance-covariance matrix with the one implied by/the 
maximum likelihood estimates of the model’s unknown 
parameters. While 15 independent statistics are easily suf-
ficient for estimating a model with three unknowns, many of 
the statistics in this model provide redundant information. 
The four haplotypic PGS variances and the six covariances 
between them are assumed to be constants ( 1

2
 and 0, respec-

tively) and provide no information for estimating param-
eters. The remaining five statistics provide only three inde-
pendent pieces of information: one from the two covariances 
between the haplotypic nontransmitted PGS ( NT∗ ) and Yo , 
one from the two covariances between the haplotypic trans-
mitted PGS ( T∗ ) and Yo , and one from the variance of Yo . 
These three independent sources of information are used to 
estimate three independent parameters ( � , w, and V� ). Thus, 
this model is just-identified.

Although parental phenotypes are unobserved in this 
model, it is still useful to define the covariance between hap-
lotypic PGS’s and the latent parental phenotypes because 
this term recurs throughout. We denote this covariance 
as Ω and, as noted above, Ω =

1

2
(� + w) . Under this mod-

el’s assumptions of no sex-specific genetic or VT effects, 

Ω is the same regardless of the PGS’s parental origin or 
whether it is transmitted: cov(Tp, Yp) = cov(NTp, Yp) = 
cov(Tm, Ym) = cov(NTm, Ym) . Thus, Ω can be used as a sub-
stitute for 1

2
(� + w) in any chain that traverses Y∗ → [N]T∗ or 

[N]T∗ → Y∗ in order to simplify finding other expected val-
ues, such as in the two covariances at the core of this model:

Kong et al. emphasized that part of the relationship between 
Y and its PGS ( Tp + Tm ) may be due to the confounding 
influences of genetic nurture. This can be seen in the addi-
tional 2fΩ term in �T above. Thus, as noted by Kong et al., 
�T − �NT = � is an estimate of the direct genetic effect of the 
PGS, controlling for genetic nurture.

This model assumes that parameters have reached equi-
librium, which implies that variances and covariances are 
the same across parental and offspring generations. The 
equilibrium assumption allows the parameters that change 
over time ( VY , w, and VF ) to be estimated by constraining 
their values in the parental generation to their derived val-
ues in the offspring generation. For example, at equilibrium, 
the covariance between F∗ and the haplotypic PGS’s in the 
parental generation ( w

2
 ) must equal the implied covariance 

between Fo and any of the four haplotypic PGS’s ( fΩ , which 
can be found through path tracing). Thus,

Note that this estimated value of w is equal to the estimated 
value of �NT derived in equation (1), indicating that �NT is a 
direct estimate of genetic nurture (under the assumption of 
no AM). Meanwhile, the variance of Yp (denoted by VY ) is 
derived by summing all chains that begin at Yp and end back 
at Yp , and is assumed to be equal to the variance of Ym and Yo:

Finally, the expectations for the variances of Fp and Fm ( VF ) 
can be found by constraining their values to all legitimate 
chains that connect Fo back to itself, of which there are two: 
(1) Fo → Yp → Yp → Fo and (2) Fo → Ym → Ym → Fo . Thus,

Note that the variance Fo—as well as its covariances with 
the haplotypic PGS’s—are not shown in any of the models, 
as it is already implied through the connections between Fo 
and the parental phenotypes; explicitly including VF and w

2
 in 

the offspring generation would thus be redundant, resulting 

(1)

�NT = cov(Yo,NTp + NTm) = 2cov(Yo,NT∗) = 2f (cov(Y∗,NT∗))

= 2f (
1

2
(� + w)) = 2fΩ

(2)�T = cov(Yo, Tp + Tm) = 2cov(Yo, T∗) = � + 2fΩ

(3)
w = cov(Fo, Tp + Tm) = cov(Fo,NTp + NTm)

= 2cov(Fo, [N]T∗) = 2fΩ = �NT

(4)VY = var(Y) = 2�Ω + �w + VF + V�

(5)VF = var(F∗) = var(Fo) = (fVYf ) + (fVYf ) = 2f 2VY

Fig. 1  Path diagram of Model 0, which models the effects of VT, 
assuming that the PGS explains the full trait heritability and that 
there is no AM



270 Behavior Genetics (2021) 51:264–278

1 3

in expectations that are double their true values. Further-
more, note that VF is a function of VY but that VY is also a 
function of VF . Similarly, Ω is a function of w, which is a 
function of Ω . These types of recursive relationships are 
known as nonlinear constraints, which describe and con-
strain such interdependent relationships between parameters 
in a way that keeps the overall model internally consistent 
and identified. The implementation of nonlinear constraints 
is a hallmark of family models, and requires the use of opti-
mizers (such as NPSOL in OpenMx) that can estimate their 
values iteratively.

Last, we show that when the assumption of no AM is met, 
this model provides a full estimate of VF , regardless of the 
amount of variance explained by the PGS ( �2 ). Given equation 
(1), as well as the knowledge that w = �NT and � = �T − �NT,

Through rearrangement of terms,

Thus, the estimate of VF ( = 2f 2VY ) depends on only three 
observed statistics: �NT , �T , and VY . Note that the expectation 
of �NT contains two parameters, w and Ω , that are functions 
of one another. Substituting the value of w recursively thus 
leads to a geometric series:

Therefore, because �T = � + �NT,

As can be seen, � cancels out in the expected value of �NT
�T

 . 
Therefore, the point estimates of f and VF are influenced by 
the magnitude of VT and not by the predictive ability of the 
PGS (although the standard error of VF increases as � 
decreases; Kim et al. 2020). Finally, because −1 < f < 1 , the 
geometric series 

∑∞

n=1
f n converges to f

1−f
 , and thus

�NT = f � + fw = w

⇒ w(1 − f ) = f �

⇒
w

�
=

f

1 − f
=

�NT

�T − �NT

⇒ f �T − f �NT = �NT − f �NT

(6)f =
�NT

�T

(7)

�NT = 2fΩ = f � + fw = f � + f (2fΩ)

= f � + f 2� + f 2w = �

∞
∑

n=1

f n

(8)
�NT

�T
=

�

�

∞
∑

n=1

f n
�

�

�

1 +
∞
∑

n=1

f n

�

This demonstrates the same result in Eq. (6) again but from 
a different approach.

Model 1: VT and AM

Model 1 assumes that the PGS explains all the trait heritability, 
as did Model 0, but now incorporates the influences of AM 
(Fig. 2). As such, Model 1 yields estimates that are unbiased 
when there is AM, but only to the degree that the PGS captures 
the heritability of the trait. Given that the PGS’s for most traits 
explain little heritability (e.g., typically < 20%; Torkamani 
et al. 2018), the utility of this model is mostly didactic.

We model AM using a copath, which follows a special set 
of path tracing rules, as explained above. The copath is rep-
resented as a straight line between Yp and Ym in Fig. 2, and 
its path coefficient is denoted � . The expected covariance 
between mates is all chains Yp → Ym or vice-versa. To traverse 
the copath, a chain must first be legitimate, so it must have 
already traversed a double-headed arrow. Thus, chains from 
Yp → Ym begin with the sum of all chains that connect Yp back 
to itself (the sum of which = VY , and each of which includes a 
double-headed arrow) before then crossing the copath ( � ). At 
this point, the other path tracing rules reset, necessitating that 
each chain traverses another double-headed arrow. Thus, the 
chains end by traversing all chains from Ym → Ym (which also 
= VY ). Therefore, the covariance between mates is

Note that � =
cov(YP,YM)

V2

Y

 is neither the covariance ( = �V2

Y
 ) nor 

the correlation ( = �VY ) between mates. AM and VT increase 
VY over time, and because we assume that the correlation 

(9)
�NT

�T
=

f

1−f
(

1 +
f

1−f

) = f

(10)cov(Yp, Ym) = VY�VY = �V2

Y

Fig. 2  Path diagram of Model 1, which models the effects of AM and 
VT, assuming that the PGS explains the full trait heritability
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between mates is constant across generations, the value of � 
correspondingly decreases across generations until equilib-
rium is reached (which occurs in 5–10 generations). The 
information to estimate � comes from the six observed 
covariances between haplotypic PGS’s as well as the four 
observed haplotypic PGS variances.

AM for a trait creates gametic phase disequilibrium 
between causal variants, meaning that trait-increasing alleles 
tend to coaggregate with other trait-increasing alleles and 
vice-versa. This occurs because similarity based on mates’ 
phenotypic scores implies similarity of genetic effects across 
mates as well. Two important consequences of gametic 
phase disequilibrium are the increase in genetic variation 
over what it would be in the absence of AM (in the base 
population), and the increase in genetic covariation between 
mates and close relatives (Lynch and Walsh 1998).

A single generation of AM leads to covariance between 
the genetic scores of the maternal ( [N]Tm ) and paternal 
( [N]Tp ) haplotypes, which is referred to as a “trans” covari-
ance by Kong et al. and mediated by the copath in Model 1. 
However, two generations of AM (beginning in the grandpa-
rental generation) results in the recombination of alleles on 
the same haplotype, thus also leading to a “cis” covariance 
within the parental haplotypes. At equilibrium, after several 
generations of AM, the cis covariance ( cov([N]T∗, [N]T∗ )) 
equals the trans covariance ( cov([N]Tp, [N]Tm) ), with both 
denoted g in the models. Note, however, that only the cis 
covariances are explicit in Fig. 2; the trans covariances are 
implicit, already being accounted for by � . Note too that 
what is considered a trans covariance in the current gen-
eration (e.g., between Tp and Tm ) would be considered cis 
covariances in the next generation, when the offspring has 
children.

As denoted by the additional +g terms in the haplotypic 
PGS variances in Fig. 2, AM increases the variance within 
haplotypic PGS’s to the same degree as the covariance 
between them. The k term in the haplotypic PGS vari-
ance represents the variance of the haplotypic PGS in the 
base population, and is not estimated; rather, it is fixed 
depending on how the user scales the PGS. If the full PGS 
is standardized in the base population, then k = 1

2
 . This 

value of k is useful because the increase in the variances 
of haplotypic genetic scores under AM is easily quantified 
by the degree to which it is greater than 1

2
 . However, stand-

ardizing in the base population is typically impossible in 
real data, and so is mostly useful only in simulated data or 
when there is no AM (such as Model 0). In real data, the 
full PGS ( Tp + Tm ) will typically be standardized in the 
current generation, in which case k = 1

2
− 2g . Finally, if 

the haplotypic PGS is scaled in the current generation to 
have a variance of 1

2
 , then k = 1

2
− g . So long as the value 

of k is consistent with how the PGS is scaled, the estimates 
of other parameters will not be affected. In all cases, the 

variance of the full PGS ( = var(Tm + Tp) = 2k + 4g , which 
= 1 + 4g if the full PGS is standardized in the base popu-
lation) = 1 if the full PGS is standardized in the current 
population, and = 1 + 2g if the haplotypic PGS is scaled 
to have variance = 1

2
 in the current population.

The increase in genetic (co)variance of the PGS under 
AM, g, can be obtained by constraining its value to all 
chains that connect [N]Tp → [N]Tm or vice-versa. Using Ω 
as a substitute for all chains [N]T∗ → Y∗,

Of course, because of the additional variances and covari-
ances between the haplotypic PGS’s, the expectation of Ω 
itself is different in this model than it was in Model 0. For 
Model 1, the expected value is:

While accounting for AM makes this model more compli-
cated than Model 0, substituting recurring chain segments 
drastically simplifies the derivations of parameters. For 
example, �NT—which is derived by counting all chains Yo 
→ NTp and multiplying by 2 (to account for Yo → NTm)—
includes over 40 chains here as opposed to just 2 in Model 
0. However, by using substitutions, this can be reduced to 
just four chains: (1) Yo → Yp → NTp ( = fΩ , the genetic nur-
ture chain); (2) Yo → Tp → NTp ( = �g , arising from the AM-
induced covariance between Tp and NTp ); (3) Yo → Tm → 
NTp (also = �g , arising from the AM-induced covariance 
between Tm and NTp ); and (4) Yo → Ym → Yp → NTp ( = fVY�Ω , 
arising from the AM-induced covariance between Ym and 
NTp ). Therefore,

Similarly,

Thus, �T − �NT ( = 2�k ) is again an estimate of the direct 
effect of the PGS controlling for genetic nurture and, in this 
case, for AM.

In the same manner, the estimate of genetic nurture, w, 
can be derived by counting two chains Fo → NTm and mul-
tiplying by 2 (to account for Fo → NTp ): 1) Fo → Ym → NTm 
( = fΩ , the genetic nurture chain); and 2) Fo → Yp → Ym → 
NTm ( = fVY�Ω , arising from the AM-induced covariance 
between Yp and NTm ). This leads to:

(11)
g = cov([N]T∗, [N]T∗) = cov([N]Tp, [N]Tm)

= Ω�Ω = Ω2�

(12)
Ω = cov([N]T∗, Y∗) = (k + g)� +

w

2
(1) + g� = �k + 2�g +

1

2
w

(13)

�NT = cov(Yo,NTp + NTm)

= 2(fΩ + �g + �g + fVY�Ω)

= 2fΩ(1 + �VY ) + 4�g

(14)�T = cov(Yo, Tp + Tm) = 2�k + 2fΩ(1 + �VY ) + 4�g
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In Model 1, w remains an estimate of genetic nurture with 
its value being inflated by a factor (1 + �VY ) under AM. 
In the Kong et al. notation, direct genetic nurture (denoted 
� ) refers to the aspect of w after removing the influence of 
AM, and thus � = 2fΩ . Kong et al. also denote �� as the 
added influence of AM on apparent genetic nurture, and 
thus �� = 2fΩ�VY . We do not further make this distinc-
tion between direct and indirect genetic nurture. For com-
pleteness, it should be noted that �� (the genetic covariance 
between NT∗ and Yo induced by AM) in Kong et al.’s usage 
equals 4�g here. From this, it follows that �NT is no longer a 
direct estimate of genetic nurture (and that �NT ≠ w ) when 
there is AM because some of the covariance between Yo and 
NT∗ is now genetic in origin.

Finally, as was the case for w, the presence of AM causes 
the expectation of VF to be inflated by a factor of (1 + �VY ):

with the value of VY being similarly inflated in Model 1 ver-
sus Model 0:

(15)
w = cov(Fo, Tp + Tm) = cov(Fo,NTp + NTm)

= 2cov(Fo, [N]T∗) = 2fΩ(1 + �VY )

(16)VF = var(Fp) = var(Fm) = var(Fo) = 2f 2VY (1 + �VY )

(17)
VY = var(Yp) = var(Ym) = var(Yo)

= 2�2k + 4�2g + 2�w + VF + V�

Model 2: VT and AM with latent genetic 
effects

Model 2 builds on the concepts described above for mode-
ling AM, but unlike Model 1, it provides unbiased estimates 
when there is AM and the PGS explains little trait herit-
ability. It does this by modeling haplotypic latent genetic 
scores (LGS’s), denoted L[N]T∗ in Fig. 3, that are defined to 
be statistically orthogonal to the haplotypic PGS’s ( [N]T∗ ) 
in the base population. The latent genetic effects can be esti-
mated either by including observed parental phenotypes, or 
by making an assumption about the base population additive 
genetic variance (and thus about the value of a). Here, we 
take the first approach by assuming that parental phenotypes 
are measured (hence the squares used to represent Yp and Ym 
in Fig. 3), but discuss the second approach at the end of this 
section. It should be noted that full information maximum 
likelihood parameter estimates are unbiased by missingness 
unless the data is not missing at random (Schafer and Gra-
ham 2002). Thus, all three phenotypes need not be measured 
in every family. Indeed, each family could be made up only 
of pairs ( Yo, Yp ; Yo, Ym ; or Ym, Yp ) and so long as all pairs 
are observed, parameter estimates would be unbiased, albeit 
with larger standard errors than with complete data.

Model 2 includes two additional observed variables ( Yp 
and Ym ), leading to a 7-by-7 observed variance-covariance 
matrix and 28 unique statistics. The four haplotypic PGS 
variances and the six covariances between them are used to 
estimate g and � . Of the remaining 18 statistics, only six pro-
vide information that is not completely redundant to estimat-
ing parameters as specified in this model: the three described 
in Model 0 as well as the covariance between the parental 
phenotypes, the four covariances between one parent’s PGS 

Fig. 3  Path diagram of Model 
2, which models the effects of 
AM, VT, and latent genetics
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and the other’s phenotype, and the two covariances between 
each parental phenotype with the offspring phenotype. The 
parent-offspring covariances are used to estimate the latent 
genetic path coefficient (a), which increases to the degree 
that cov(Y∗, Yo) is higher than expected after accounting for 
genetic covariance through � and environmental covariance 
through f. In addition to a, there are four additional param-
eters (j, h, v, i) in this model. None of these are estimated. 
Rather, their values are determined from non-linear con-
straints, which we turn to in order.

The variance of the haplotypic LGS ( = j + h ) is treated 
analogously to the variance of the haplotypic PGS (=k + g ). 
Like k, j is defined as the genetic variance of the haplo-
typic LGS in the base population; however, unlike k (which 
is measured and therefore depends upon how the PGS is 
scaled), j is the variance of a latent construct and could 
thereby take any arbitrary value. The simplest choice is to 
define j so as to be consistent with k. Specifically, if the PGS 
is standardized in the base population (where k = 1

2
 ), then 

j =
1

2
 . If the PGS is standardized at equilibrium to have a 

variance of 1 (where k = 1

2
− 2g ), then j = 1

2
− 2h . If the 

haplotypic PGS is scaled at equilibrium to have a variance 
of 1

2
 (where k = 1

2
− g.), then j = 1

2
− h.

The increase in the variance of the haplotypic LGS due to 
AM (h) can be estimated under the reasonable assumption 
that the increase in the variance of the LGS from the base 
to the current population is proportionate to that of the PGS 
from the base to the current population. This assumption 
could be violated if the genes that drive the PGS associa-
tion are more or less correlated with the trait actually being 
assorted on than the genes underlying the LGS, which seems 
unlikely. This assumption is equivalent to g

�2
=

h

a2
 , which 

leads to

Thus, h and g are the same only when the PGS and LGS 
explain the same amount (half) of the total heritability. 
Furthermore, similar to Ω , we define Γ to be the covari-
ance between a parent’s phenotype and one of their LGS’s 
( Γ = cov(L[N]T∗, Y∗) . Using Γ as a shortcut, the expected 
value of h can also be found by path tracing

Setting these two values of h to be equal leads to the non-
linear constraint

(18)h = g
a2

�2

(19)
h = cov(L[N]T∗, L[N]T∗)

= cov(L[N]Tp, L[N]Tm) = Γ�Γ = Γ2�

(20)h = g
a2

�2
= Γ2�

To enable estimation of the covariance between F and the 
LGS’s (denoted by v), we make a similar assumption that 
the ratio of genetic nurture to direct genetic effects is the 
same for observed as for latent genetic effects. This assump-
tion could be violated if the genes driving the PGS associa-
tion are more or less correlated with the trait that VT works 
through than the genes underlying the LGS, which again 
seems unlikely. This assumption is equivalent to v

a
=

w

�
 , 

which leads to

The expected value of v via path tracing, and the resulting 
non-linear constraint, are

For the same reason that AM induces a covariance among 
PGS’s (g) and among LGS’s (h), it also induces a covariance 
between PGS’s and LGS’s, which we call i. From path trac-
ing, the expected value of i is

Unlike Model 1, Model 2 yields unbiased estimates of the 
full VF , genetic nurture, and additive genetic variation, even 
when there is AM and the PGS explains only a fraction of 
total heritability. Model 2 properly accounts for the addi-
tional covariance between the PGS and the offspring phe-
notype that arises from the AM-induced covariance between 
PGS and LGS. For example,

where

Thus, the PGS–LGS covariance (i) inflates both the genetic 
nurture part of �NT ( 2fΩ(1 + �VY ) ) as well as the genetic part 
that arises via AM ( 4�g + 4ai ). When the PGS explains a 
small portion of the heritability, the covariance between the 
LGS and the PGS can be much greater than the covariance 
between the PGS’s themselves ( i >> g ). By not account-
ing for i, the observed �NT in Model 1 is inflated over its 
expected value, upwardly biasing estimates of VF and genetic 
nurture (Kim et al. 2020).

(21)v =
wa

�

(22)
v = cov(Fo, LTp + LTm) = cov(Fo, LNTp + LNTm)

= 2fΓ(1 + �VY )

(23)⇒ v =
wa

�
= 2fΓ(1 + �VY )

(24)

i = cov(L[N]T∗, [N]T∗)

= cov(L[N]Tp, [N]Tm) = cov([N]Tp, L[N]Tm)

= Γ�Ω =
√

gh

(25)
�NT = cov(NTm + NTp, Yo)

= 2fΩ(1 + �VY ) + 4�g + 4ai

(26)Ω = cov([N]T∗, Y∗) = �k + 2�g + 2ai +
1

2
w
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Several other parameters in this model are the latent 
genetic analogs to parameters related to the observed PGS’s, 
including �LNT ( = cov(Yo, LNTp + LNTm) , the analog to �NT ) 
and �LT ( = cov(Yo, LTp + LTm) , the analog to �T ). Expec-
tations of these and other parameters that have not been 
derived in this section can be found in the Supplement.

Finally, as noted above, Model 2 can be fit without using 
parental phenotypes if there exist good estimates of the 
total heritability in the base population. For a standardized 
trait, the additive genetic variation in the base population 
is a2 + �2 ; thus, by subtraction of the �2 term observed in 
the data (where � = �T − �NT ), one can find the assumed 
value of a and substitute it into the model. This leads to 
unbiased estimates of all parameters whenever the assumed 
value of a is correct and downwardly biased estimates of 
w and VF to the degree that the assumed value of a is too 
high (and vice-versa). When using this strategy, it is there-
fore important to have decent estimates of heritability in the 
base population that account for the influences of genetic 
nurture and AM. Estimates from twin studies are biased 
under these conditions, but estimates from extended twin 
family models should be much less so (Keller et al. 2010). 
Kong et al. recognized the confounding influence that the 
LGS has on parameter estimates when there is AM, and 
attempted to estimate genetic nurture using assumed values 
of the base population heritability that came from related-
ness disequilibrium regression (RDR; Young et al. 2018). 
However, estimates of heritability from RDR are actually 
estimates of the base population genetic variance scaled by 
the phenotypic variance in the current population, and are 
therefore biased downwards under AM (Kemper et al. in 
press). This likely led to overestimates of genetic nurture in 
Kong et al. and would have led to overestimates of VF had 
it been estimated. Nonetheless, if the equilibrium spousal 
correlations are known, a simple correction can be applied 
to RDR estimates of heritability (Kemper et al. in press).

Accounting for differences in parent vs. 
offspring phenotypes

In all of these models, we have assumed that the genetic 
(PGS and LGS) effects are equivalent in parents and off-
spring. This assumption would be violated if there are gene-
by-age or gene-by-cohort effects. Kong et al. provide some 
evidence of this in their data: the correlation between the 
PGS and educational attainment was significantly higher 
among offspring (.22) than among parents (.12). When 
parental phenotypes are measured in Model 2, or when 
parental phenotypes are unmeasured but there are independ-
ent estimates of the PGS effects in the parental generation, 
accounting for such effects is possible by estimating two 
different � values, one for offspring ( �o ) and one for parents 

( �∗) . While information for estimating �o still comes directly 
from �T − �NT , there is no direct estimate of �∗ , even though 
it is informed by cov(Y∗, T∗ + NT∗) . A reasonable assump-
tion, such as equal proportions of direct genetic effects 
( �∗
cov(Y∗,T∗+NT∗)

 = �o

cov(Yo,Tm+Tp)
 ), should allow estimation of both 

�∗ and �o , making this model identified (although we have 
not checked this formally).

It may also be of interest to understand how one parental 
trait influences a different offspring trait. For example, Kong 
et al. showed a covariance between the nontransmitted PGS 
of educational attainment and offspring health, consistent 
with cross-trait (parental education to offspring health) VT 
and genetic nurture. Such cross-trait genetic nurture would 
contribute to apparent genetic correlations that have nothing 
to do with pleiotropy. To investigate cross-trait VT using the 
above example under the current framework, one could use 
the PGS and parental values of educational attainment along 
with the offspring values of health, and plug them into the 
above models without modification. This is similar to the 
approach taken by Kong et al. However, such an approach 
does not account for AM within (health–health) or across 
(education–health) traits, nor does it account for within-trait 
genetic nurture effects. For these reasons, we believe that 
cross-trait VT and genetic nurture effects are optimally mod-
eled bivariately, using the PGS’s and phenotypic values of 
the two traits in both parents and offspring; including more 
than two traits would also be possible, but results from such 
a model would likely be incomprehensibly complex. The 
parameters from the above models would be 2-by-2 full (in 
the case of path coefficients) or symmetric (in the case of 
variance–covariance) matrices. Conveniently, nothing about 
the derivations in this paper would change except for keep-
ing track of when matrices should be transposed, which 
obeys an additional path tracing rule (Vogler and Cocker-
ham 1985). This bivariate model would estimate two direct 
and two cross-trait VT paths and four genetic nurture paths 
all while accounting for direct genetic effects, pleiotropy, 
and AM within and between traits. While this may sound 
like a lot to ask of a model, there is a tremendous amount 
of unique information contained in the 14-by-14 observed 
variance-covariance matrix, making this approach powerful 
if the PGS r2 ’s for both traits are nontrivial. Development of 
bivariate extensions of the present models is left for future 
work.

Testing and modeling different mechanisms 
of AM

While our models have thus far assumed primary phenotypic 
AM under equilibrium, other mechanisms of assortment 
are possible. Indeed, there is considerable power for testing 
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different mechanisms of AM, which could itself be used as a 
focus of these models. This power stems from the amount of 
information in this model relevant to AM. There are a total 
of 10 observed haplotypic PGS variances or covariances 
which collectively provide 10 estimates of g (see Model 1). 
The �(1) test of whether the average value across all 10 g 
estimates is significantly greater than 0 tests whether mate 
similarity (either on the trait in question or a trait genetically 
correlated to it) has led to genetic covariance, as predicted by 
primary AM. Additionally, of these 10 estimates of g, 6 pro-
vide information on cis (within-person) genetic covariances 
and 4 provide information on trans (across-mate) genetic 
covariances. The �(1) test of whether these two groups of 
covariances are equal tests whether AM has gone on long 
enough to lead to equilibrium values of parameters. Signifi-
cantly higher estimates of trans g vs. cis g would suggest that 
AM is at disequilibrium. Similarly, if trans g estimates are 
significantly greater than 0 while cis g estimates are not, this 
would support the hypothesis that only a single generation of 
AM has occurred (which is consistent with what Kong et al. 
found for educational attainment in Iceland). Furthermore, 
the ten estimates of g can be used to derive expected values 
of cov(NTp + Tp, Ym) , cov(NTm + Tm, Yp) , and cov(Yp, Ym) to 
test various models of AM. For example, mate similarity 
caused by environmental similarity (social homogamy) pre-
dicts that observed cov(Yp, Ym) is higher than that implied 
by g. On the other hand, primary AM on a trait that is more 
genetically than phenotypically correlated with the meas-
ured trait (a form of genetic homogamy) would predict that 
observed cov(Yp, Ym) is lower than that implied by g

Once the data suggest a particular mechanism underlying 
mate similarity, it can be modeled using the present frame-
work. For example, in the Supplement, we show how dis-
equilibrium AM (from a single generation of assortment) 
can be modeled by setting expectations of cis g, h, and i 
to zero. Furthermore, social and genetic homogamy can be 
modeled by assuming that AM occurs on a latent trait, Ỹ  , 
that is related to Y through either environmental or genetic 
pathways, respectively (Keller et al. 2009). This allows the 
observed cov(Yp, Ym) to differ from the cov(Yp, Ym) implied 
by g. Thus, alternative mechanisms of AM can be formally 
tested using the rich information available from parent and 
offspring PGS’s and phenotypes, and when called for, mod-
els can be modified to incorporate alternative mechanisms 
of AM.

Discussion

Genetic nurture, the covariance between genes and paren-
tally provided environmental influences, can amplify genetic 
effects in a way that neither GWAS nor heritability studies 
have been able to sufficiently account for. While estimating 

direct genetic effects after removing their covariance with 
the environment is important, we argue that the converse—
estimating the direct environmental effect after removing its 
covariance with genetic effects—is at least as important. The 
models presented above allow for estimates of this direct 
environmental influences of parents on offspring, and also 
suggest several important extensions. For example, there 
exists much more GWAS data with siblings than with par-
ents, and so extending the models above to include siblings, 
twins, and potentially other collateral relatives remains a 
next step. Furthermore, as shown by Kong et al. with enough 
data it is straightforward to estimate differential genetic nur-
ture effects depending on the parent of origin; thus, it is 
equally straightforward to estimate differential VT effects 
from fathers vs. mothers. Finally, as noted above, future mul-
tivariate extensions to this model would provide insight into 
how one parental trait influences a different childhood trait.

There are several important caveats and limitations to the 
present approach. We discuss here the central ones. One very 
important caveat is that estimated VF from these models can-
not be considered the full parental effect on this trait. Rather, 
it is the variance in the trait due to parental influences that 
are associated with the specific trait assessed by the PGS. 
For example, the vertical transmission variance in a model 
that uses an educational attainment PGS only estimates how 
traits genetically related to parental educational attainment 
influence offspring educational attainment. If other parental 
traits, such as intelligence, warmth, work ethic, conscien-
tiousness, etc. also influence offspring educational attain-
ment, then the portion of variance due to these and other 
parental influences that are genetically uncorrelated to edu-
cational attainment will be missed.

The above caveat is related to the limitation that, in order 
to accurately characterize the influence of a parental trait 
on an offspring trait, sufficiently predictive PGS’s (e.g., 
r2 > .02 ) must exist for traits relevant to parenting. Opti-
mally (to use Model 2), these traits should also be measured 
in parents in the same dataset that the models are applied 
to. This is, perhaps, the greatest limitation of the current 
approach: it can only look under the lamppost, at traits 
analyzed in large GWAS’s for which sufficiently predic-
tive PGS’s exist. Because it is so easily and frequently col-
lected, educational attainment may be an exception, but a 
great many traits relevant to parental influences have never 
been investigated in GWAS. This—the ability to use PGS’s 
to understand how parents influence offspring—is a further 
motivation to continue to extend GWAS investigations from 
their traditional focus on health to as many behavioral and 
psychological traits as possible.

That said, there are many traits that have sufficiently 
predictive PGS’s to answer questions of great interest. 
For example, does parental liability to major depression, 
schizophrenia, or externalizing disorder directly influence 
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the same or different traits in the children (Okbay et al. 
2016; Barr et al. 2020)? Does parental socioeconomic sta-
tus directly impact offspring socioeconomic status, edu-
cational attainment, or subjective well-being (Hill et al. 
2019)? Does parental smoking influence offspring smok-
ing (Liu et al. 2019)? This latter question is interesting 
with respect to negative VT, which occurs when higher 
values of the parental trait lead to lower values of the off-
spring trait. Negative VT would lead to positive VF but 
to negative genetic nurture, dampening estimated genetic 
influences from GWAS or heritability studies. While this 
is probably rare, there is some evidence from extended 
twin family models that negative VT occurs for smoking 
(Maes et al. 2006). While this finding has been explained 
away in the literature as probably being driven by gene-by-
age interactions, it is also possible that smoking and other 
traits associated with teen rebelliousness lose their lustre 
when parents engage in them. Given that a sufficiently 
predictive PGS for smoking behaviors exists (Liu et al. 
2019) and that Model 2 can be extended to account for 
gene-by-age effects, a whole-genome dataset that includes 
parents, offspring, and information on smoking behavior 
could resolve whether parental smoking directly increases 
or decreases offspring smoking.

A further caveat to the above approach is that stratifica-
tion can bias estimates if it is not properly controlled for. For 
example, if a discovery GWAS for educational attainment 
does not fully correct for mean differences across ances-
try groups, the PGS for educational attainment will predict 
both educational attainment as well as ancestry. In the mod-
els explored above, this stratification effect would increase 
the covariance between the transmitted and nontransmitted 
PGS’s and the offspring phenotype ( �[N]T ), inflating evi-
dence of genetic nurture and VF . While stratification is a 
type of passive G-E covariance that inflates parent-offspring 
resemblance, the mechanism is due to a factor (ancestry) 
that is shared between parents and offspring rather than a 
direct parental-to-offspring influence, and so these should be 
disambiguated. Therefore, to minimize the effects of stratifi-
cation, principal components from the genomic relationship 
matrices should be included as covariates in both the discov-
ery GWAS as well as the causal models discussed above.

Last, we have assumed that the passive G–E covariance 
we model arises only from VT (genetic nurture) as opposed 
to horizontal (such as sibling) transmission. For certain 
traits, such as experimentation with drugs and alcohol, hori-
zontal transmission seems at least as likely as VT. In a model 
that includes both parents and siblings, there would be suf-
ficient power to differentiate horizontal transmission from 
VT. In the meantime, it must be kept in mind that estimates 
of VF from these models may also contain environmental 
influences from siblings or (less likely) from other collateral 
relatives.

To our knowledge, this is the first treatment of how trans-
mitted and nontransmitted PGS’s can be used to estimate 
the direct effect of parents on their offspring, and the first to 
account for the influence of different types of AM on these 
estimates. It builds upon the seminal work by Zhang et al. 
(2015) and Kong et al. (2018), who recognized that this data 
could be used to estimate genetic nurture. There has been 
long-standing interest in how parents influence offspring in 
fields such as developmental psychology, but the traditional 
approach of correlating parental behavior with offspring 
outcomes does not control for the confounding influence 
of shared genetic effects. Given the skepticism of genetic 
approaches in fields dedicated to studying parenting, it is 
perhaps ironic that molecular genetic data provides an excel-
lent way to estimate the direct effect of parents on offspring. 
Genome-wide data, originally collected to find the specific 
alleles that underlie health-related traits, has begun to be 
used for a multitude of purposes never envisioned by early 
practitioners. As we have argued here, another one of these 
purposes is to help disentangle how parents influence their 
children—genetically, environmentally, and in concert.
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