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Therapeutic antibodies play a crucial role in the treatment of various diseases. However,
the success rate of antibody drug development is low partially because of unfavourable
biophysical properties of antibody drug candidates such as the high aggregation
tendency, which is mainly driven by hydrophobic interactions of antibody molecules.
Therefore, early screening of the risk of hydrophobic interaction of antibody drug
candidates is crucial. Experimental screening is laborious, time-consuming, and costly,
warranting the development of efficient and high-throughput computational tools for
prediction of hydrophobic interactions of therapeutic antibodies. In the present study,
131 antibodies with hydrophobic interaction experiment data were used to train a new
support vector machine-based ensemble model, termed SSH2.0, to predict the
hydrophobic interactions of antibodies. Feature selection was performed against
CKSAAGP by using the graph-based algorithm MRMD2.0. Based on the antibody
sequence, SSH2.0 achieved the sensitivity and accuracy of 100.00 and 83.97%,
respectively. This approach eliminates the need of three-dimensional structure of
antibodies and enables rapid screening of therapeutic antibody candidates in the early
developmental stage, thereby saving time and cost. In addition, a web server was
constructed that is freely available at http://i.uestc.edu.cn/SSH2/.
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INTRODUCTION

Antibodies play an indispensable role in the vertebrate immune defence system (Kapingidza et al.,
2020). They also serve as essential agents in biomedical research and clinical diagnostic assays such as
enzyme-linked immunosorbent assay, immunohistochemical assay, and immunoprecipitation assay.
Furthermore, antibodies have been extensively used in clinical treatment of many types of cancers,
autoimmune diseases, and infectious diseases including the coronavirus disease 2019, which is
caused by the severe acute respiratory syndrome coronavirus 2 (Ning et al., 2021). Rapid
development of the monoclonal antibody (mAb) technology has revolutionised pharmaceutical
science and industry. Many proteins that cannot interact with small chemical molecules or are
undruggable due to self-tolerance are considered efficient targets for antibody drugs. More than 550
therapeutic mAbs have been tested in phase I/II clinical trials worldwide, of which 79 mAbs have
entered the final stage of development (Kaplon et al., 2020). Antibody drugs account for a large
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market share in the pharmaceutical industry. In 2018, the
therapeutic antibodies had a global value of United States
$115.2 billion, which is expected to reach $300 billion by the
end of 2025 (Lu et al., 2020). Moreover, the large-scale application
of antibody phage display, single B-cell antibody, and next-
generation sequencing technologies has resulted in the
development of tens of thousands of preclinical therapeutic
antibody drug candidates. However, the probability of a
human or humanised antibody drug candidate, which is under
clinical trials, being approved is low (approximately 15%) (Carter
and Lazar, 2018). Many mAbs fail due to unfavourable
physicochemical properties such as high viscosity, increased
aggregation tendency, and susceptibility to chemical
degradation (Jain et al., 2017b).

Protein aggregation has been considered as one of the major
challenges in biological drug development. It poses challenges during
different developmental processes from fermentation and
purification to storage (Obrezanova et al., 2015). It not only
reduces the effectiveness of a drug but also induces adverse
immune responses in patients (Martinez Morales et al., 2019).
Thus, identifying therapeutic antibody candidates with high
aggregation tendency at the early developmental stage is essential.
The factors that affect protein aggregation are either intrinsic (e.g.,
interaction between hydrophobic patches, van der Waals forces and
electrostatic interactions) or extrinsic (e.g., pH, salt concentration,
buffer type, and storage conditions). Among these factors, the
presence of hydrophobic moieties on the protein surface is the
strongest determinant (Hebditch et al., 2019). A few tools to
predict the hydrophobicity of proteins including mAbs have been
reported (Lienqueo et al., 2006; Mahn et al., 2009; Hanke et al., 2016;
Jain et al., 2017a). However, most of these tools rely on protein
structures and do not provide freeweb services. In our previous study,
we developed a tool called SSH, which can predict the hydrophobic
interaction risk of mAbs solely by using the mAb sequences (Dzisoo
et al., 2020). The SSH tool was trained with the tripeptide
composition (TPC), and the prediction accuracy of 91.226% was
achieved through the voting strategy. However, the number of
features used to build the SSH model is extremely higher than the
number of its samples, causing concerns with overfitting and weak
generalisation.

In the present study, we combined the experimental assay data to
construct a novel in silico tool called SSH2.0 for the prediction of
hydrophobic interaction risk of mAbs. The tool developed in this
study predicted hydrophobic interaction risk of mAbs by using only
the amino acid sequence. Compared with the previous version,
SSH2.0 was trained with new features that were optimised using a
new feature selection method. Overall, SSH2.0 was superior to the
previous version in terms of performance.

DATASET AND METHOD

Dataset
The antibody dataset used in a study by Jain et al. (2017b) was
selected in the present study. We linked the variable region in the
form of “heavy chain−light chain” as the antibody sequences. The
dataset comprised 137 antibody sequences (48 from approved

antibodies and 89 from clinical II/III trials) and data of 12
biophysical and binding assays. Six antibody sequences with
conflicting records were eliminated, resulting in inclusion of
131 antibody sequences. The assays, namely stand-up
monolayer adsorption chromatography (SMAC), salt-gradient
affinity-capture self-interaction nanoparticle spectroscopy
(SGAC-SINS), and hydrophobic interaction chromatography
(HIC), were used to determine the risk of hydrophobic
interaction. A threshold of 10% was employed according to a
study by Jain et al. (2017b) (Table 1). The antibody was labelled
with a fault flag if one of the aforementioned three assay values
exceeded the set threshold. We obtained 94 negative samples (0
flag) and 37 positive samples (25 with one flag, 8 with two flags,
and four antibodies with exactly three flags). Figure 1 shows the
detailed labelling of each antibody. To solve the problem of the
dataset imbalance, 94 negative samples were randomly divided
into three groups, with each group containing 31, 31, and 32
antibodies. Each sub-dataset (Group 1, Group 2, Group 3) was
combined with positive samples to train three sub-models
(SSH_a,SSH_b,SSH_c). Then, the results of the three sub-
models was integrated, and an ensemble predictor was
constructed using a voting strategy.

Feature Extraction and Selection
To construct an efficient prediction tool, appropriate feature
extraction methods for transforming sequence data into
numerical expressions (ideally, without distortion), in addition
to a reliable benchmark data set, are crucial. Features based on
sequence information such as the amino acid composition and
pseudo amino acid components (He et al., 2019; Dzisoo et al.,
2020; Wang et al., 2020), displayed good performance in protein
and peptide classification (He et al., 2016; Li et al., 2017; Kang
et al., 2019). Based on a large number of experimental results, the
CKSAAGP (composition of k-spaced amino acid group pairs)
(Chen et al., 2009; Chen et al., 2018) demonstrated the best
performance in the present study. In the CKSAAGP encoding
scheme, 20 amino acids were divided into the following five
groups according to their physicochemical properties: g1:
aliphatic group (GAVLMI); g2: aromatic group (FYW); g3:
positive charge group (KRH); g4: negative charged group
(DE); g5: uncharged group (STCPNQ) (Chen et al., 2018).
Then, the frequency of amino acid group pairs separated by k
residues was calculated (the default maximum value of k was set
as 5). CKSAAGP can be defined as follows:

(Ng1g1gap0

Ntotal
,
Ng1g2gap0

Ntotal
,
Ng1g3gap0

Ntotal
, . . . ,

Ng5g4gap5

Ntotal
,
Ng5g5gap5

Ntotal
)

where Ng1g1gap0 represents the number of times that the
composition of the residue pair g1g1 is separated by 0 amino
acids in the whole protein sequence; Ntotal represents the total
number of k-spaced amino acid pairs. For a protein of length P, k
= 0, 1, 2, 3, 4, and 5, and the values ofNtotal are P-1, P-2, P-3, P-4,
P-5, and P-6, respectively. CKSAAGP can be used to encode
unequal length sequences.

To compare the influence of different feature extraction
algorithms, we used 19 feature extraction methods on the same
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dataset and constructed 19 models. The feature extraction methods
tested in this study are AAC, DPC, TPC, CKSAAP, DDE, GAAC,
GDPC, GTPC, Moran, Geary, NMBroto, CTDC, CTDT, CTDD,
CTriad, KSCTriad, SOCNumber, QSOrder, and PAAC. All feature
extraction processes were performed using the iFeature (Chen et al.,
2018) python package, which can be obtained from github (https://
github.com/Superzchen/iFeature/).

High-dimensional small sample data usually cause the problem
such as overfitting, longer training time and redundant features. In
this study, an integrated method MRMD2.0 developed by He et al.
(2020) was used for feature sorting and dimension reduction.
MRMD2.0 represents different feature ranking with directed
graph. Then the PageRank algorithm was used to obtain the new
ranking. Finally, sequential forward selection (SFS) was used to select
the optimal feature subset.

Support Vector Machine Model
Establishment
Owing to a high prediction accuracy and simple parameter
optimisation, support vector machine (SVM) has been applied
extensively in many fields such as protein−protein interactions
(Romero-Molina et al., 2019), drug discovery (Patel et al., 2020),

and medical image processing (Yang et al., 2019). The basic idea of
SVM is to determine the hyperplane with the largest interval in the
space, which can divide positive and negative samples effectively and
accurately. We employed LIBSVM (Chang and Lin., 2011) to
construct the SVM sub-models. Among the given four kernel
functions, we chose the radial basis function (RBF) kernel to
obtain the optimal kernel parameter γ and penalty parameter C.
Three sub-models were integrated through the voting strategy. The
results of the three sub-models were integrated, and an antibody was
predicted to have high risk of hydrophobic interaction if it was
predicted as a positive sample by at least two models.

Performance Evaluation
Leave-one-out cross-validation (LOOCV) was adopted to assess
the performance of each sub-model. One sample in the sub-
dataset was used as the test set, whereas the remaining samples
constituted the training set. This process was repeated N times
(where N is the number of samples). Eventually, the average
prediction accuracy was considered as the final accuracy of the
sub-model. The performance of the prediction models was
evaluated using the common indicators, namely sensitivity
(Sn), specificity (Sp), accuracy (ACC), and Matthews
correlation coefficient (MCC). MCC is a relatively balanced

TABLE 1 | Three experimental thresholds for evaluating the hydrophobic interaction of antibodies (Jain et al., 2017b).

Assay Worst 10% threshold Units (flag)

Standup monolayer adsorption chromatography (SMAC) 12.8 Retention time (min) (>)
Salt-gradient affinity-capture self-interaction nanoparticle spectroscopy (SGAC-SINS) 370 Salt concentration (mM) (<)
Hydrophobic interaction chromatography (HIC) 11.7 Retention time (min) (>)

FIGURE 1 | The number of hydrophobic interaction flags and the classification of antibodies.
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indicator for prediction that is mainly used to measure
dichotomy. It comprehensively considers TP, TN, FP, and FN,
which can avoid sample imbalance deviation. These indicators
can be expressed as follows:

Sn � TP

TP + FN

Sp � TN

TN + FP

ACC � TN + TP

TP + FN + TN + FP

MCC � TN × TP − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√
where TP and TN represent the number of positive data and negative
data, respectively, that were predicted correctly, whereas FP and FN
represent the number of positive data and negative data, respectively,
that were erroneously predicted. In addition, AUC (area under the
ROC curve) was used to illustrate the performance of the model.
ROC curve is a TPR vs FPR plot that illustrates the diagnostic ability
of a binary classifier system as its discrimination threshold is varied.
AUC value ranges from 0 to 1. Amodel whose prediction efficiency is
100% has an AUC value of 1.

Developability Index (DI) Calculation
The developability index (DI) of each antibody in a study by Jain
et al. (2017b) was computed using BIOVIA Discovery Studio
2019 (BIOINFORMATICS SOCIETY OF SICHUAN
PROVINCE) with the default parameters pH = 6 and β =
0.05. The crystal structure of each antibody, if available, was
downloaded from the PDB database. For the antibodies whose
crystal structure was not available, we performed homology
modelling to build their structure. Spearman rank correlation
was used to explore the correlation between DI and 12
experiment assays (Jain et al., 2017b). Statistical analysis was
performed with R4.1.0.

Online Web Service
To facilitate the use of researchers, a user-friendly web server was
developed. We used HTML, CSS, PHP, JavaScript to write the
interface script for web service. The data processing process script
was written using Python.

RESULTS

Feature Selection Based on CKSAAGP
From a total of 150 features, the optimal feature was selected
using MRMD2.0. Finally, the three sub-datasets were respectively
composed of 29, 31, and 35 features. Figure 2 shows the variation
of ACC with feature number during the sequential forward
selection process. After feature selection, AUC was increased
by at least 12% (Group 3) compared with the previous value. The
prediction accuracy of the model increased with a decrease in the
number of features. The small number of features also reduced
the computational cost, model complexity, and the risk of
overfitting. The feature dimensions of the sub-datasets were all

reduced by more than 70%, which demonstrated that the
performance of MRMD2.0 was excellent.

Model Evaluation
We trained three SVM sub-models based on LOOCV using the
optimal features. As shown in Table 2, the accuracy rates of
SSH_a, SSH_b and SSH_c for the prediction of antibody
hydrophobic interaction were 80.88, 77.94 and 75.36%
respectively. By considering all samples as input of each sub-
model, we obtained three prediction results. To visually
demonstrate the ability of each sub-model to predict the
hydrophobic interaction, a receiver operating characteristics
(ROC) curve was drawn (Figure 3). The AUC value of SSH_a,
SSH_b and SSH_c reached 0.8583, 0.8956, and 0.8726,
respectively. According to the aforementioned analysis, an
ensemble model called SSH2.0 was constructed based on
voting strategy. The sensitivity of the ensemble model was
100.00%, indicating that SSH2.0 can correctly identify all
antibodies with a risk of hydrophobic interaction (Table 2).

Comparison of Different Feature Extraction
Methods
To comprehensively evaluate the effect of the CKSAAGP
algorithm, we compared it with the other 19 feature extraction
algorithms. Figure 4 shows the feature dimension and dimension
decline percentage obtained using all 20 algorithms after the
reduction of MRMD2.0. The dimensions of multiple methods
were reduced by more than 70%; however, the number of features
varied among the three sub-datasets. For example, the number of
TPC features decreased from 8,000 to 71 and 75 in Group 1 and
Group 2, respectively, whereas that in Group 3 was 231. These
results indicated that all feature extraction algorithms were
affected by the samples, whereas CKSAAGP had smaller
feature dimensions in all three sub-datasets with smaller
variance, which was relatively robust. Furthermore, we
assessed the ensemble model based on all 20 algorithms. As
shown in Table 3, although the sensitivity of multiple features
had reached 100%, CKSAAGP showed the highest specificity,
accuracy, MCC and AUC of 77.66%, 83.97%, 0.7093, and 0.8883,
respectively. Taken together, CKSAAGP was the most proper
feature type for this problem, considering feature dimensions and
the performance of sub-models and ensemble model.

CKSAAGP Features That Closely Related to
the Hydrophobic Interaction
The properties of amino acid side chains are closely related to the
structure and function of proteins. The nonpolar amino acids
(aliphatic, and aromatic amino acids) are usually hydrophobic.
Conversely, the polar amino acids (positively and negatively
charged and uncharged amino acids) are hydrophilic. Among
all the features in models, aliphatic. aliphatic.gap5, aromatic.
aliphatic.gap3, negativecharger. aliphatic.gap1 were present in
all sub-models, and only one of these features, namely aromatic.
aliphatic.gap3, was in the top 10 features (Table 4). The binding
of nonpolar amino acids with strong hydrophobicity increases the
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hydrophobicity of the protein. Interestingly, as shown in Table 4,
the combination “polar + nonpolar” appeared frequently, which
indicated that a polar amino acid and a nonpolar amino acid are

separated by several amino acids in space that probably enhances
the hydrophobicity of the protein, although a single polar amino
acid is hydrophilic. In summary, if the CKSAAGP features listed
in Table 4 appear frequently in an antibody sequence, the
antibody should be excluded from early development.

FIGURE 2 | The ACC of different feature numbers during the sequential forward selection process of three sub-datasets (Group 1, Group 2, Group 3).

TABLE 2 | The prediction performance of three sub-models evaluated through
leave-one-out cross-validation and that of the ensemble model evaluated
through voting strategy.

Model Sn(%) Sp (%) ACC(%) MCC AUC

SSH_a 81.08 80.64 80.88 0.6159 0.8086
SSH_b 81.08 74.19 77.94 0.5544 0.7763
SSH_c 78.37 71.87 75.36 0.5038 0.7513
SSH2.0 100.00 77.66 83.97 0.7039 0.8883

FIGURE 3 | The ROC curves of three sub-models for predicting all 131
antibodies.

FIGURE 4 | Analysis of MEMD2.0 dimensionality reduction results. (A)
The reduced ratio and (B) the number of features in the dimension of three
sub-datasets. The numbers in parentheses are the original feature numbers of
various feature extraction algorithm.
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Comparison Between the Previously
Constructed SSH Model and DI
Computational Tool
In our previous study, Dzisoo et al. (2020) provided a web-server
named SSH based on TPC features to predict the hydrophobic
interaction risk of mAbs. However, the number of features in SSH
was far more than the number of samples, which indicated the
probability of overfitting. In this study, we optimized the feature
extraction algorithm and feature selection method to maintain the
prediction accuracy with fewer features. We uniformly defined
sensitivity as the ability to identify samples with hydrophobic
interaction risk. As shown in Table 5, the number of each SSH
sub-model features was more than 300, whereas the number of
samples used for trainingwas< 70. After using theCKSAAGP feature
scheme and MRMD2.0 feature selection algorithm, the number of
features in SSH2.0 reduced to one-tenth that of SSH. Although the
ACC and AUC of the ensemble model decreased by 7.26% and
0.0737, respectively, we paid more attention to the performance to
identify defective samples. The sensitivity of SSH2.0 reached 100.00%,
which was 16.70% higher than that of SSH.

DI is another widely employed tool for assessing the
aggregation propensity of proteins (Lauer et al., 2012). We
performed the Spearman rank correlation test to explore the
correlation between DI and 12 experimental assays. Surprisingly,
the three most relevant assays were SMAC, SGAC-SINS and HIC
(Figure 5), which we used to assess the hydrophobic interaction
risk of mAbs in the current study. The result confirmed that
protein aggregation is mainly driven by hydrophobic interactions
(Hebditch et al., 2019). According to the methods based on the
experimental data presented by Jain et al. (2017b), 37 antibodies were
flagged with hydrophobic interaction warnings. We used this as the
gold standard. Because high DI values correspond to low
developability (Lauer et al., 2012), we sorted all the antibodies

according to the descending order of their DI values. The top 37
antibodies with high DI values were predicted to have the
hydrophobic interaction risk. However, the prediction performance
of the DImethod was inferior to that of SSH2.0. The accuracy rates of
SSH2.0 and DI were 83.97 and 61.83%, respectively. The results
suggest that owing to the low prediction accuracy, the application of
DI to a screening platformwould lead tomany antibodies with a high
aggregation risk being incorrectly selected.

Web-Server Guidance
To serve the relevant researchers, we established a user-friendly
web server for the prediction of hydrophobic interaction risk of
mAbs. The server is freely accessible at http://i.uestc.edu.cn/
SSH2/. The homepage of SSH2.0 is shown in Figure 6A. The
variable region sequences of heavy chains and light chains were
input separately. Because some antibodies only have one chain,
the input consisting of single heavy or light chain were allowed.
The submitted antibody sequences were in the FASTA format.
The AbRSA tool can help in antibody numbering and CDR
(complementarity-determining region) delimiting (Li et al.,
2019). SSH2.0 allowed the detection of illegal characters, and
only 20 common amino acids were found to be legal for sequence
input. Illegal characters such as B, J, O, U, X, Z and the numbers
1–9 were forbidden (Figure 6B). Figure 6C shows the prediction
results.

DISCUSSION

The developability assessment is performed mainly to evaluate
the biochemical and biophysical properties of mAbs and to select
the lead antibody with ideal efficacy, safety, pharmacokinetic
characteristics, and physicochemical characteristics to meet the
technical requirements of the production and preparation
processes (Xu et al., 2019). Various experimental strategies
have been used to identify the unfavourable physicochemical
properties of mAbs. However, experimental assays are time-
consuming, expensive, and laborious. Computational methods
can provide rapid and highly economic evaluation results and
thus are expected to promote the development of antibodies
(Krawczyk et al., 2017). DI is a well-known in silico tool for
assessing the aggregation propensity of therapeutic antibodies

TABLE 3 | The prediction performance of the ensemble model based on 20
feature extraction algorithms.

Feature Sn (%) Sp(%) ACC(%) MCC AUC

CKSAAGP 100.00 77.66 83.97 0.7039 0.8883
CTriad 100.00 75.53 82.44 0.6825 0.8777
DPC 100.00 72.34 80.15 0.6518 0.8617
TPC 100.00 71.28 79.39 0.6419 0.8564
AAC 100.00 70.21 78.63 0.6322 0.8511
CKSAAP 100.00 69.15 77.86 0.6226 0.8457
NMBroto 97.30 69.15 77.10 0.5983 0.8322
DDE 100.00 65.96 75.57 0.5947 0.8298
GTPC 100.00 63.83 74.05 0.5767 0.8191
CTDC 97.30 65.96 74.81 0.5699 0.8163
CTDT 91.89 63.83 71.76 0.5021 0.7786
CTDD 97.30 56.38 67.94 0.4910 0.7684
Geary 100.00 53.19 66.41 0.4929 0.7660
SOCNumber 100.00 52.13 65.65 0.4850 0.7606
Moran 100.00 50.00 64.12 0.4693 0.7500
QSOrder 83.78 60.64 67.18 0.4003 0.7221
KSCTriad 100.00 40.43 57.25 0.4010 0.7021
GAAC 75.68 62.77 66.41 0.3464 0.6922
GDPC 100.00 30.85 50.38 0.3345 0.6543
PAAC 100.00 0.00 28.24 0.0000 0.5000

TABLE 4 | The top 10 CKSAAGP features of three sub-models. The features
marked in red indicate that they exist in at least two sub-models (neg: negative
charged group; pos: positive charge group).

SSH_a SSH_b SSH_c

aromatic.uncharge.gap0 aromatic.aliphatic.gap1 aliphatic.pos.gap0
uncharge.uncharge.gap0 aliphatic.neg.gap3 uncharge.aliphatic.gap4
aromatic.aliphatic.gap3 pos.aliphatic.gap2 uncharge.aromatic.gap2
pos.neg.gap0 uncharge.uncharge.gap2 neg.aromatic.gap5
aliphatic.aromatic.gap5 aliphatic.pos.gap0 pos.uncharge.gap5
uncharge.uncharge.gap2 neg.uncharge.gap4 aliphatic.uncharge.gap5
pos.uncharge.gap0 aliphatic.aromatic.gap5 aromatic.aliphatic.gap3
pos.uncharge.gap4 neg.aliphatic.gap2 aliphatic.uncharge.gap1
neg.pos.gap2 aromatic.uncharge.gap2 aliphatic.aliphatic.gap2
aliphatic.uncharge.gap5 aromatic.pos.gap1 neg.neg.gap3
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and it is based on the principles that protein aggregation is mainly
driven by hydrophobic interactions. Regretfully, this tool relies on
the antibody structure and runs slowly. Moreover, it is an
expensive tool, which makes its application limited for high-
throughput screening of mAbs at the early developmental stage.

Currently, data mining and machine learning are widely applied in
antibody development research (Dzisoo et al., 2021). Lecerf et al. (2019)
confirmed that the sequence characteristics of the antibody variable
region can determine the physicochemical properties of therapeutic
antibodies. Obrezanova et al. (2015) constructed amodel to predict the
aggregation propensity based on the antibody sequence, and the AUC
of the best AdaBoost model reached 0.76. Furthermore, Jain et al.
(2017a) constructed a model to predict the solvent-accessible surface
area of each amino acid residue in the variable region based on the
amino acid sequence of the antibody and predicted the hydrophobic
interaction of antibodies through simple logistic regression. However,
aforementioned tools do not provide available model or sever.

The hydrophobic interaction prediction model constructed in
the present study was trained on sequence only and eliminated

the requirement of 3D protein structure, thereby saving the
computation resources. The high sensitivity usually
corresponds to the low specificity. The sensitivity of SSH2.0
reached 100.00%, which indicated that the SSH2.0 prediction
result may have more false positives. However, the high
sensitivity of SSH2.0 is acceptable or even preferred because
the main purpose of this tool is to exclude antibodies with a
risk of unfavourable hydrophobic interactions. In addition, after
the step of modern mAb discovery, usually tens of thousands of
therapeutic antibody candidates remain to be evaluated, and the
presence of even more false positives in SSH2.0 prediction results
is affordable. In summary, we propose that SSH2.0 is an efficient
model for predicting the hydrophobic interaction risk of mAbs.

The hydrophobic interaction risk predictor SSH2.0
constructed in this study for therapeutic mAb development is
a powerful tool for selection of the antibody drug candidates with
a high risk of hydrophobic interaction. This free tool based on the
antibody sequence might be a better and faster alternative to the
existing DI computational tool. We expect that the newer version

TABLE 5 | Comparison of the feature and performance between SSH2.0 and SSH.

Model Feature Feature extraction method Feature
number of sub-models

Sn(%) Sp(%) ACC(%) AUC

SSH TPC f -scores 313,315,315 84.30 96.39 91.23 0.9620
SSH2.0 CKSAAGP MRMD2.0 29,31,35 100.00 77.66 83.97 0.8883

FIGURE 5 | Correlation coefficient matrix of DI and 12 experimental assays. The lower triangle shows the spearman correlation coefficients, and the upper triangle
represents the corresponding correlation values. The radius of the circles is proportional to the magnitude of the correlation coefficient. Red represents a positive
correlation, and blue represents a negative correlation.
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of this tool can be used to identify reasonable mutants with a
decreased risk of hydrophobic interaction. Because the number of
proven therapeutic antibodies is limited, and the experiment
assays vary across batches, we also expect the tool can be
assessed by an independent dataset in future.

CONCLUSION

In this study, we developed SSH2.0, a SVM-based ensemble
model trained with CKSAAGP features, for predicting the
hydrophobic interaction risk of therapeutic mAbs. Compared
with our previous model SSH and the widely used DI tool, SSH2.0
may be a better and robust predictor that achieved the maximum
sensitivity of 100.00%, and ACC and AUC of 83.97 and 88.83%,
respectively. We also developed a user-friendly web server, which
is freely available at http://i.uestc.edu.cn/SSH2/. This tool offers a
high-throughput and efficient assessment of the developability of
antibodies from the perspective of hydrophobic interaction risk.
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FIGURE 6 | Screenshots of the SSH2.0 web server. (A)Homepage of the SSH2.0 web server. (B) If illegal characters appear in the input sequence, click “predict”
bottom and a prompt page will pop up, The prompt page showing “There is the illegal character!”. Users can click “submit another job.” to return to the home page and
resubmit the sequence. (C) Result display page. “1” in the “Result” column denotes that the submitted antibody candidate exhibits a high risk of hydrophobic interaction
and should be excluded from the development pipeline. The “Probability” column represents the probability of the risk of hydrophobic interaction. The antibody will
be predicted to have a high risk of hydrophobic interaction if the probability is 0.5 or higher. The result table can be sorted according to each column, and a custom
display box allows users to select and display specific information as needed.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8421278

Zhou et al. Antibody Hydrophobic Interaction Risk Prediction

http://i.uestc.edu.cn/SSH2/
https://www.pnas.org/content/114/5/944/tab-figures-data
https://www.pnas.org/content/114/5/944/tab-figures-data
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Carter, P. J., and Lazar, G. A. (2018). Next Generation Antibody Drugs: Pursuit of
the ’high-Hanging Fruit’. Nat. Rev. Drug Discov. 17, 197–223. doi:10.1038/nrd.
2017.227

Chang, C.-C., and Lin, C.-J. (2011). Libsvm. ACM Trans. Intell. Syst. Technol. 2,
1–27. doi:10.1145/1961189.1961199

Chen, K., Jiang, Y., Du, L., and Kurgan, L. (2009). Prediction of Integral Membrane
Protein Type by Collocated Hydrophobic Amino Acid Pairs. J. Comput. Chem.
30, 163–172. doi:10.1002/jcc.21053

Chen, Z., Zhao, P., Li, F., Leier, A., Marquez-Lago, T. T., Wang, Y., et al. (2018).
iFeature: a Python Package and Web Server for Features Extraction and
Selection from Protein and Peptide Sequences. Bioinformatics 34,
2499–2502. doi:10.1093/bioinformatics/bty140

Dzisoo, A. M., Kang, J., Yao, P., Klugah-Brown, B., Mengesha, B. A., and Huang, J.
(2020). SSH: A Tool for Predicting Hydrophobic Interaction of Monoclonal
Antibodies Using Sequences. Biomed. Res. Int. 2020, 3508107. doi:10.1155/
2020/3508107

Dzisoo, A. M., Ren, L. P., Xie, S. Y., Zhou, Y. W., and Huang, J. (2021). Progress in
Research on Evaluation of Developability of Therapeutic Antibody. J. Univ.
Electron. Sci. Techn. China 50, 476–480.

Hanke, A. T., Klijn, M. E., Verhaert, P. D. E. M., Van Der Wielen, L. A. M., Ottens,
M., Eppink, M. H. M., et al. (2016). Prediction of Protein Retention Times in
Hydrophobic Interaction Chromatography by Robust Statistical
Characterization of Their Atomic-Level Surface Properties. Biotechnol. Prog.
32, 372–381. doi:10.1002/btpr.2219

He, B., Kang, J., Ru, B., Ding, H., Zhou, P., and Huang, J. (2016). SABinder: AWeb
Service for Predicting Streptavidin-Binding Peptides. Biomed. Res. Int. 2016,
9175143. doi:10.1155/2016/9175143

He, B., Chen, H., and Huang, J. (2019). PhD7Faster 2.0: Predicting Clones
Propagating Faster from the Ph.D.-7 Phage Display Library by Coupling
PseAAC and Tripeptide Composition. PeerJ 7, e7131. doi:10.7717/peerj.7131

He, S., Guo, F., Zou, Q., and Ding, H. (2020). MRMD2.0: A Python Tool for
Machine Learning with Feature Ranking and Reduction. Curr. Bioinform. 15,
1213–1221. doi:10.2174/1574893615999200503030350

Hebditch, M., Roche, A., Curtis, R. A., and Warwicker, J. (2019). Models for
Antibody Behavior in Hydrophobic Interaction Chromatography and in Self-
Association. J. Pharm. Sci. 108, 1434–1441. doi:10.1016/j.xphs.2018.11.035

Jain, T., Boland, T., Lilov, A., Burnina, I., Brown, M., Xu, Y., et al. (2017a).
Prediction of Delayed Retention of Antibodies in Hydrophobic Interaction
Chromatography from Sequence Using Machine Learning. Bioinformatics 33,
3758–3766. doi:10.1093/bioinformatics/btx519

Jain, T., Sun, T., Durand, S., Hall, A., Houston, N. R., Nett, J. H., et al. (2017b).
Biophysical Properties of the Clinical-Stage Antibody Landscape. Proc. Natl.
Acad. Sci. USA 114, 944–949. doi:10.1073/pnas.1616408114

Kang, J., Fang, Y., Yao, P., Li, N., Tang, Q., and Huang, J. (2019). NeuroPP: A
Tool for the Prediction of Neuropeptide Precursors Based on Optimal
Sequence Composition. Interdiscip. Sci. 11, 108–114. doi:10.1007/s12539-
018-0287-2

Kapingidza, A. B., Kowal, K., and Chruszcz, M. (2020). Antigen-Antibody
Complexes. Subcell Biochem. 94, 465–497. doi:10.1007/978-3-030-41769-7_19

Kaplon, H., Muralidharan, M., Schneider, Z., and Reichert, J. M. (2020). Antibodies
to Watch in 2020. MAbs 12, 1703531. doi:10.1080/19420862.2019.1703531

Krawczyk, K., Dunbar, J., and Deane, C. M. (2017). Computational Tools for
Aiding Rational Antibody Design. Methods Mol. Biol. 1529, 399–416. doi:10.
1007/978-1-4939-6637-0_21

Lauer, T. M., Agrawal, N. J., Chennamsetty, N., Egodage, K., Helk, B., and Trout, B.
L. (2012). Developability index: a Rapid In Silico Tool for the Screening of
Antibody Aggregation Propensity. J. Pharm. Sci. 101, 102–115. doi:10.1002/jps.
22758

Lecerf, M., Kanyavuz, A., Lacroix-Desmazes, S., and Dimitrov, J. D. (2019).
Sequence Features of Variable Region Determining Physicochemical
Properties and Polyreactivity of Therapeutic Antibodies. Mol. Immunol. 112,
338–346. doi:10.1016/j.molimm.2019.06.012

Li, L., Chen, S., Miao, Z., Liu, Y., Liu, X., Xiao, Z. X., et al. (2019). AbRSA: A Robust
Tool for Antibody Numbering. Protein Sci. 28, 1524–1531. doi:10.1002/pro.
3633

Li, N., Kang, J., Jiang, L., He, B., Lin, H., and Huang, J. (2017). PSBinder: A Web
Service for Predicting Polystyrene Surface-Binding Peptides. Biomed. Res. Int.
2017, 5761517. doi:10.1155/2017/5761517

Lienqueo, M. E., Mahn, A., Navarro, G., Salgado, J. C., Perez-Acle, T., Rapaport, I.,
et al. (2006). New Approaches for Predicting Protein Retention Time in
Hydrophobic Interaction Chromatography. J. Mol. Recognit. 19, 260–269.
doi:10.1002/jmr.776

Lu, R.-M., Hwang, Y.-C., Liu, I.-J., Lee, C.-C., Tsai, H.-Z., Li, H.-J., et al. (2020).
Development of Therapeutic Antibodies for the Treatment of Diseases.
J. Biomed. Sci. 27, 1. doi:10.1186/s12929-019-0592-z

Mahn, A., Lienqueo, M. E., and Salgado, J. C. (2009). Methods of Calculating
Protein Hydrophobicity and Their Application in Developing Correlations to
Predict Hydrophobic Interaction Chromatography Retention. J. Chromatogr. A
1216, 1838–1844. doi:10.1016/j.chroma.2008.11.089

Martinez Morales, M., Zalar, M., Sonzini, S., Golovanov, A. P., Van Der Walle, C.
F., and Derrick, J. P. (2019). Interaction of a Macrocycle with an Aggregation-
Prone Region of a Monoclonal Antibody. Mol. Pharm. 16, 3100–3108. doi:10.
1021/acs.molpharmaceut.9b00338

Ning, L., Abagna, H. B., Jiang, Q., Liu, S., and Huang, J. (2021). Development and
Application of Therapeutic Antibodies against COVID-19. Int. J. Biol. Sci. 17,
1486–1496. doi:10.7150/ijbs.59149

Obrezanova, O., Arnell, A., De La Cuesta, R. G., Berthelot, M. E., Gallagher, T. R.,
Zurdo, J., et al. (2015). Aggregation Risk Prediction for Antibodies and its
Application to Biotherapeutic Development. MAbs 7, 352–363. doi:10.1080/
19420862.2015.1007828

Patel, L., Shukla, T., Huang, X., Ussery, D. W., and Wang, S. (2020). Machine
Learning Methods in Drug Discovery. Molecules 25. doi:10.3390/
molecules25225277

Romero-Molina, S., Ruiz-Blanco, Y. B., Harms, M., Münch, J., and Sanchez-Garcia,
E. (2019). PPI-detect: A Support Vector Machine Model for Sequence-Based
Prediction of Protein-Protein Interactions. J. Comput. Chem. 40, 1233–1242.
doi:10.1002/jcc.25780

Wang, Y., Kang, J., Li, N., Zhou, Y., Tang, Z., He, B., et al. (2020). NeuroCS: A Tool
to Predict Cleavage Sites of Neuropeptide Precursors. Protein Pept. Lett. 27,
337–345. doi:10.2174/0929866526666191112150636

Xu, Y., Wang, D., Mason, B., Rossomando, T., Li, N., Liu, D., et al. (2019).
Structure, Heterogeneity and Developability Assessment of Therapeutic
Antibodies. MAbs 11, 239–264. doi:10.1080/19420862.2018.1553476

Yang, K., Zhou, B., Yi, F., Chen, Y., and Chen, Y. (2019). Colorectal Cancer
Diagnostic Algorithm Based on Sub-patch Weight Color Histogram in
Combination of Improved Least Squares Support Vector Machine for
Pathological Image. J. Med. Syst. 43, 306. doi:10.1007/s10916-019-1429-8

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The handling editor declared a past collaboration with one of the authors JH.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhou, Xie, Yang, Jiang, Liu, Li, Abagna, Ning and Huang. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8421279

Zhou et al. Antibody Hydrophobic Interaction Risk Prediction

https://doi.org/10.1038/nrd.2017.227
https://doi.org/10.1038/nrd.2017.227
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1002/jcc.21053
https://doi.org/10.1093/bioinformatics/bty140
https://doi.org/10.1155/2020/3508107
https://doi.org/10.1155/2020/3508107
https://doi.org/10.1002/btpr.2219
https://doi.org/10.1155/2016/9175143
https://doi.org/10.7717/peerj.7131
https://doi.org/10.2174/1574893615999200503030350
https://doi.org/10.1016/j.xphs.2018.11.035
https://doi.org/10.1093/bioinformatics/btx519
https://doi.org/10.1073/pnas.1616408114
https://doi.org/10.1007/s12539-018-0287-2
https://doi.org/10.1007/s12539-018-0287-2
https://doi.org/10.1007/978-3-030-41769-7_19
https://doi.org/10.1080/19420862.2019.1703531
https://doi.org/10.1007/978-1-4939-6637-0_21
https://doi.org/10.1007/978-1-4939-6637-0_21
https://doi.org/10.1002/jps.22758
https://doi.org/10.1002/jps.22758
https://doi.org/10.1016/j.molimm.2019.06.012
https://doi.org/10.1002/pro.3633
https://doi.org/10.1002/pro.3633
https://doi.org/10.1155/2017/5761517
https://doi.org/10.1002/jmr.776
https://doi.org/10.1186/s12929-019-0592-z
https://doi.org/10.1016/j.chroma.2008.11.089
https://doi.org/10.1021/acs.molpharmaceut.9b00338
https://doi.org/10.1021/acs.molpharmaceut.9b00338
https://doi.org/10.7150/ijbs.59149
https://doi.org/10.1080/19420862.2015.1007828
https://doi.org/10.1080/19420862.2015.1007828
https://doi.org/10.3390/molecules25225277
https://doi.org/10.3390/molecules25225277
https://doi.org/10.1002/jcc.25780
https://doi.org/10.2174/0929866526666191112150636
https://doi.org/10.1080/19420862.2018.1553476
https://doi.org/10.1007/s10916-019-1429-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	SSH2.0: A Better Tool for Predicting the Hydrophobic Interaction Risk of Monoclonal Antibody
	Introduction
	Dataset and Method
	Dataset
	Feature Extraction and Selection
	Support Vector Machine Model Establishment
	Performance Evaluation
	Developability Index (DI) Calculation
	Online Web Service

	Results
	Feature Selection Based on CKSAAGP
	Model Evaluation
	Comparison of Different Feature Extraction Methods
	CKSAAGP Features That Closely Related to the Hydrophobic Interaction
	Comparison Between the Previously Constructed SSH Model and DI Computational Tool
	Web-Server Guidance

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


