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One‑particle engine with a porous 
piston
Carlos E. Álvarez1*, Manuel Camargo2,4 & Gabriel Téllez3,4

We propose a variation of the classical Szilard engine that uses a porous piston. Such an engine 
requires neither information about the position of the particle, nor the removal and subsequent 
insertion of the piston when resetting the engine to continue doing work by lifting a mass against a 
gravitational field. Though the engine operates in contact with a single thermal reservoir, the reset 
mechanism acts as a second reservoir, dissipating energy when a mass that has been lifted by the 
engine is removed to initiate a new operation cycle.

In 1929 Leo Szilard proposed a version of Maxwell’s demon that appeared to violate the Kelvin-Planck statement 
of the second law by lifting a mass against a gravitational field while in contact with a single heat reservoir1. The 
demon consists of an engine working with a single particle gas, and since then several models for single particle 
engines and processes have been studied (see for example2–4). Though some variants of this demon, known as 
Szilard’s engine, have been proposed5–10, the basic design is composed of the following parts: a particle inside 
a container along with a removable piston, a heat bath at temperature T in contact with the container walls, a 
hanging mass which is attached to the piston in such a way that work is performed on it as the piston moves, and 
an external agent in charge of resetting the system once the piston has reached one of the ends of the container.

During a cycle, the agent inserts the piston in the middle of the container and measures the particle’s position 
with respect to the piston (left or right). Next, it attaches the mass to the piston from the same side as the particle, 
such that when the piston is released the particle pushes it to the opposite end of the container, simultaneously 
lifting the mass in the process. Finally, the agent removes the piston from the end of the container, taking away 
with it the potential energy gained by the mass in the current cycle and preparing the system for the next one.

However, the agent generates entropy with its actions. The information obtained from the measurement is 
stored in a memory and it is used when the decision to hang the mass, either from the left or right, has to be 
made. Landauer found that in order to reset the memory an amount of entropy equal to the entropy reduction 
produced by the engine has to be generated11. To this minimal entropy one can add other terms, like the amount 
of entropy generated when resetting the piston, which has also been calculated12. This connection between physics 
and information theory is now the subject of the field of thermodynamics of information13.

Currently, there is a growing interest in automating the process by which a small out-of-equilibrium sys-
tem like Szilard’s engine generates work, by replacing a demon that acquires and processes information by an 
autonomous agent which is coupled to the system14–16. The second law of thermodynamics still holds in such 
schemes, as the autonomous agent has to be coupled to a thermal reservoir at a temperature which is lower than 
the lowest temperature in the system17.

In this paper we propose a variation of Szilard’s model engine that does work without the need for an agent 
to measure the position of the particle, to decide based on this information from which side of the container to 
hang the mass, or to reallocate the piston in the reset step of the process. This system is not driven by changing a 
set of variables following some defined protocol and, according to our analysis, it still respects the Kelvin-Planck 
statement of the second law, as even if the engine is technically in contact with a single thermal reservoir the 
process dissipates energy through its reset mechanism.

Model
We propose a model composed by a single particle of mass m and a piston of mass M inside a one dimensional 
container of length L whose ends are in contact with a heat bath at temperature T, as schematically shown in 
Fig. 1. The piston has pores in it such that when the particle is close enough, there is a probability p for it to cross 
to the other side of the container instead of colliding with the piston. We refer to p as the porosity of the piston. 
As with Szilard’s model, a load mass Ml can be hanged from the piston so that when it is pushed by the particle, 
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the mass is lifted. If p is small enough, most of the time the particle will be able to push the piston to the opposite 
side of the container before crossing through the pore and lift the load mass in the process. Once the particle 
crosses, it will push the piston in the opposite direction.

An external agent is charged with the task of removing the incoming high potential energy mass once the 
piston has reached one of the container’s ends, while another agent prepares a new mass with low potential 
energy on the opposite side of the container, which will be coupled to the piston at a later instant. One can use 
feedback by measuring the state of the system to pinpoint the moment at which a mass has been removed from 
the system and use this information to place a new mass as soon as possible. To model the coupling between the 
piston and the hanging mass we assume that the mass is connected through an ideal string to a hook that the 
agent places at one of the ends of the container. Such a hook can couple to the piston by spending a small fixed 
amount of the kinetic energy of the piston. As the particle pushes the piston, the piston collides elastically with 
the mass hook, pushing it to the other side of the container until it gets removed past a given point a (see Fig. 1). 
When reaching point b, the piston hook couples with the mass hook at that point, dissipating once again the 
same arbitrary amount of kinetic energy.

The inner workings of the engine presented here can be understood in the context of nonequilibrium ther-
modynamics of feedback control18. Let us consider the system composed of the particle and the piston. Let x be 
phase-space point of the system composed of the particle position and momentum and the piston position and 
momentum. The Hamiltonian of the system is composed of the interaction between the piston and the particle, 
the fixed external interaction between the particle and the container walls and the potential interaction Upl(x, �) 
between the piston and the load masses. As the system evolves, this interaction potential switches between three 
different forms depending on the load masses, labelled by � ∈ {L,R,U} , corresponding respectively to a load mass 
on the left side (L), load mass on the right side (R) or the piston is unhooked from the masses (U). If � is kept 
fixed, i.e., the unhook and hooking mechanism is switched off, the system will attain thermal equilibrium with 
an equilibrium free energy F(�) . Due to the symmetry of reflection between left and right sides F(L) = F(R) , 
therefore the difference of free energy between two states where a load mass is hooked is �F = 0.

When the hooking and unhooking mechanism is operating, a given function �(t) can be though as a pro-
tocol controlling the dynamics of the system. But, contrarily to many small-scale systems studied in stochastic 
thermodynamics19, the protocol in this case is neither fixed nor deterministically applied to the system on each 
realization. Rather, the inner mechanisms of the engine described previously are responsible for switching � at 
random times, which can be interpreted as a feedback mechanism as follows.

Suppose that at each time step, a measure without error is performed on the system to obtain x, from which 
the position of the piston and its kinetic energy are obtained. Then the following feedback control is performed:

•	 If the piston is neither in any of the positions a or b shown in Fig. 1, then � is unchanged from its current 
value. Note that there are actually two a positions and two b positions, located symmetrically at each side of 
the container: aL and bL at the left, and aR and bR at the right.

•	 If the piston is in a position aL and � = R or the piston is at aR and � = L , then � is changed to U (unhook).
•	 If the piston is in a position bL (or bR ) and has enough kinetic energy, and � = U  then � is changed to L (or 

R) corresponding to the side the piston is at.

Similarly to Szilard’s engine, there is an arbitrary amount of work that the external agents must perform to 
remove the masses that have been lifted and to bring new masses from the surroundings to the position at which 
they can be connected to the piston. We consider such agents as part of the surroundings and concentrate instead 
on the intrinsic capacity of the engine to perform work given that the protocol described previously is carried 
out by the agents. For simplicity, the new masses are introduced to the system with zero kinetic energy, as if they 
were drawn from a thermal reservoir at zero temperature.

It is not always possible to define cycles for engines at the nanoscale level in the same way as it is done 
macroscopically20. However, in our case we find it useful to define a cycle as the process that occurs between the 

Figure 1.   Schematic of the engine with porous piston. (a) The piston is initially connected to the right load 
mass and the particle bounces between the right thermal wall and the piston. (b) The particle pushes the piston 
to the left. (c) Once the piston gets to position a, the high energy load mass hanging from its right is removed 
and a new low energy one is placed on the right end of the container. (d) As the piston gets to point b it couples 
with the left load mass. Once the particle crosses to the left side through the pore it will push the piston to the 
right and the cycle repeats.
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coupling of a new load mass to the piston and the subsequent removal of an old one. Note that the duration of 
such a cycle ( tc ) is variable.

Simulations
Mesoscale and smaller systems are commonly subject to diffusive effects and hydrodynamic interactions, as 
they are in general not found in vacuum. Such effects are important at the moment of thinking about a possible 
experimental realization. However, in this first study we are neglecting them to concentrate on the basic opera-
tion of a simple model of the engine.

We perform event driven simulations21 for ensembles of 200 systems using reduced mass (M), distance (l) 
and time (t) units defined as

which, for the energy (E) and acceleration (g) gives

For ease of notation the asterisks will be dropped in the following.
To simulate the interaction of the particle with the thermal walls, every time it collides with one of the con-

tainer’s end walls, its recoil speed v is randomly drawn from the distribution3

where β = (kBT)
−1 , kB is the Boltzmann constant and T is the absolute temperature of the thermal walls.

The collisions between the particle and the piston are elastic and occur with probability 1− p every time they 
meet each other, otherwise the particle crosses through the pore and both the piston and the particle continue 
with their trajectories without interacting. Once the piston reaches a return point, indicated by b in Fig. 1, a 
small fixed amount of energy is subtracted from its kinetic energy to overcome the energy barrier to couple the 
hook. The model assumes that this energy is dissipated. If the piston does not have enough kinetic energy then 
an elastic collision occurs. Lastly, as shown in Fig. 1, once a load mass is coupled to the piston, it is pushed by 
means of elastic collisions until it gets pass point a, where it is removed from the system. Between collisions the 
load mass moves under the influence of the external gravitational field.

The energy dissipated every time a coupling occurs, as well as the kinetic energy that gets out of the system 
along with the masses and their hooks, is accumulated in a variable Edis , that accounts for the energy dissipated 
by the process. The change in the gravitational potential energy of the load masses as they are lifted by the engine 
is accumulated in the variable W. The work done by the engine (particle + piston) on the load masses is −W . The 
change in kinetic energy of the particle each time a collision with one of the thermal walls occurs is accumulated 
in the variable Q, that accounts for the heat exchanged with the bath. Finally, the kinetic energy change of the 
piston during the collisions with the mass hooks is accumulated in the variable W (ph) which represents the work 
done by the hooks on the piston.

We compute the efficiency of the engine as the ratio between the power delivered by the engine on the hanging 
mass Ẇt during a time t and the heat exchanged per unit of time Q̇t during the same lapse

In addition to the total efficiency ηt , we obtain the efficiency η(bp)t  of the energy transfer between the heat 
bath and the piston

as well as
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Ẇ
(ph)
t

Q̇t
,

(9)η
(pl)
t =

Ẇt
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that measures the conversion efficiency of work done by the piston on the hooks of the load masses into work 
done against the external field.

The parameters explored by the simulations were: kBT = 1 , M = 50 , b = 0.075 , a = 0.15 and the gravita-
tional field g = 2 , along with several values for the porosity p ∈ {0.036, 0.2, 0.4, 0.6, 0.96} and the load mass 
Ml ∈ {0.1, 0.5, 1.0, 2.0, 3.0}.

Results
As the engine is a system out of equilibrium featuring predominant fluctuations, we study the distribution of the 
efficiency22,23 obtained from the simulations in order to estimate the macroscopic efficiency3,24,25

where �·� denotes the ensemble average in the thermodynamic limit ( t → ∞ ). To achieve this, we make use of 
the large deviation function26–28 defined as

where P(ηt ∈ [η, η + dη]) is the probability for ηt to take a value between η and η + dη . The large deviation 
function describes the asymptotic behavior ( t → ∞ ) of the efficiency fluctuations, and its minimum, which is 
located at the most probable value, indicates the macroscopic efficiency of the engine η̄ . To estimate J(η) , one can 
resort to the extrapolation procedure proposed by Proesmans and van den Broeck25, which assumes a general 
functional form for Pt(η) having three fitting parameters, that can be determined by using three evaluations of 
Pt(η) at finite times.

An example of the dynamics of the different components of the engine during a simulation is displayed in 
Fig. 2. It is observed in Fig. 2a that the piston bounces against the stops on each side of the engine while it col-
lides with the particle. In the crossing events, in which the particle goes through the pore, one observes that 
the trajectory of the particle crosses that of the piston without bouncing back. Similarly, Fig. 2b shows how the 
piston pushes the hooks against the gravitational field by means of elastic collisions until the hook reaches the 
opposite end of the engine and then it is reset.

Figure 3a shows the accumulated work done on the load mass and the heat exchanged between the thermal 
walls and the particle as a function of time for a single simulation. Note that in this simple model the amount 
of work done per cycle by lifting the load mass is constant and equal to Mlgh , where h = 0.7 corresponds to the 
height that the mass is lifted restricted by the chosen geometry of the container, which can be seen in the plot as 
discrete jumps in the accumulated work. That the work per cycle is constant means that for fixed Ml the power 
delivered in a cycle ( Mlgh/tc ) is a function of tc only. The oscillations of the work observed over the base line 

(10)η̄ = −
�Ẇ�

�Q̇�
,

(11)J(η) = lim
t→∞

−
1

t
ln P(ηt ∈ [η, η + dη]),

Figure 2.   Example of the system dynamics. (a) Position along the container of the particle and the piston as a 
function of time. (b) Position of the piston, left and right hooks as a function of time, during a simulation of the 
engine where p = 0.2 and Ml = 1.0 . The arrows in (a) point to some events where the particle crosses through 
the pore, while the arrows in (b) point to events where one of the hooks is pushed out of the system and reset.
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correspond to the bounces of the hooks observed in Fig. 2b. Figure 3b shows the ensemble average of the heat 
and the work.

The probability density function (pdf) of the time per cycle ( tc ) for a fixed load mass Ml = 1 and various 
porosities is displayed in Fig. 4. The pdf presents several peaks before decaying. In contrast with systems like, for 
example, a gas within a piston that follows an isothermal process, where it is compressed from state A to state B 
and then expanded from B to A to complete a cycle taking always the same time, the maxima found in the pdf 
can be explained by the fact that many different events might occur within one of the cycles of the engine with 
porous piston. For example, the piston can simply couple a mass soon after it was introduced and pull it all the 
way up, or it might wiggle for a time, bounce against it without coupling to it and pick instead the mass in the 
opposite side of the container. These different types of cycle might have different characteristic times that reflect 
in the pdf as different peaks. The inset of Fig 4 shows that the average time ( ̄tc ) gets to a minimum value near 
p = 0.2 and as the work delivered per cycle is constant in this setup, it can be said that the engine operates at 
maximum power for a value close to p = 0.2.

Similarly, Fig. 5 shows the pdf of tc for a fixed porosity p = 0.2 and various load mass values. In contrast with 
its dependence on p, the average cycle duration as a function of Ml increases monotonically.

On the other hand, we obtained the pdf of the work performed by the engine on the load mass during a time 
window of length t. Figure 6a shows the pdf of the work Wt normalized by Mlgh when a time window of length 
t = 40t̄c is used for a fixed load mass and several values of the porosity. The periodic peaks observed are located 
at integer multiples of the work done during a single cycle. That the mode of the distributions in Fig. 6a is close 

Figure 3.   Work and heat vs. time. Work done to lift the load mass (W) and heat exchanged between the particle 
and the thermal walls (Q) during a simulation of the engine where p = 0.2 and Ml = 1.0 . (a) Single simulation. 
(b) Ensemble average.

Figure 4.   Cycle duration tc pdf for systems with Ml = 1 and several values of p. The inset shows the logarithm 
of average cycle duration time t̄c as a function of p.
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to Wt/Mlgh ≈ −40 tells us simply that the most probable scenario when the engine runs during a time that spans 
40 times the average cycle duration, is for it to complete 40 cycles.

In microscopic models of the Carnot engine it has been found that the pdf of the work presents a long 
tail towards zero, but it approximates a Gaussian in the quasistatic limit3, which sometimes has been used to 
approximate the distribution of the work29,30. To estimate the importance of these tails in the case of the engine 
with porous piston, we obtained a curve consisting of all the local minima observed in Fig. 6a and computed 
its logarithm, as shown in Fig. 6b. It is observed that the distribution deviates from a Gaussian as it presents the 
mentioned tail towards zero.

The inset in Fig. 6b presents the variance of the distributions obtained directly from the data, as well as from 
a Gaussian fit performed around the mode of the distribution. The variance values computed from the data are 
considerably higher that those obtained from the fit because of the large tail towards zero of the distribution, but 
this difference becomes smaller as p → 0 . Also, it is observed that the variance of the data gets to a maximum 
around the point at which the engine operates at maximum power.

Figure 7a shows the pdf of Wt , when a time window of length t = 40t̄c was used, for a fixed porosity and 
several values of the load mass. It is observed that, when normalized by Mlgh , the amount of work done depends 
slightly on the load mass. As Ml increases, the variance of the distribution decreases and it can be better fitted by 
a Gaussian function. As the pdf of tc is skewed towards large times and the accumulated work ( Wt ) increases as 
more cycles fit within the time window, the pdf of Wt is skewed towards small absolute values. Figure 7b shows 
the logarithm of the pdf of Wt , where a deviation from a Gaussian behavior is also observed.

Figure 5.   Cycle duration tc pdf for systems with p = 0.2 and several values of Ml . The inset shows the average 
cycle duration time t̄c as a function of Ml.

Figure 6.   Work distribution at fixed load mass. (a) Pdf of the work performed by the engine on the load mass 
during a time window t = 40t̄c for systems with Ml = 1 and several values of p. (b) Logarithm of the local 
minima of the curves shown in (a). Inset: Variance of the distribution computed from a Gaussian fit to the data 
around its maximum (squares) and from the numerical computation using all the work data (circles).
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A closely related quantity to the variance of the work distribution is the entropy production. It has been shown 
for various systems that the latter is bounded from below by the inverse of the so-called precision, i.e., the ratio 
of the variance to the squared mean value of a current31–33,

where �t indicates the average entropy production during a time window of length t and the current measured 
is the work done by the engine on the load masses. Table 1 shows the precision as a function of averaging time 
t/t̄c . It is observed that for larger time windows there is less uncertainty in the value of the work. Assuming that 
the uncertainty relation given by Eq. (12) holds for this system, these precision values indicate a lower bound 
for the entropy production.

Figures 8 and 9 show the pdf of the heat exchanged between the particle and the thermal walls. As the 
change in the accumulated heat is not done in discrete steps as those present on the accumulated work, the 
peaks observed at multiples of Mlgh in the work distribution are absent and, more importantly, the mode of the 
distributions for the heat varies noticeably as the parameters p and Ml are changed. It is this variation in heat 
absorption which produces the variation in the efficiency, as presented in the following paragraphs.

Figure 10 shows an example of the pdf of ηt , η
(bp)
t  and η(pl)t  obtained from the simulations. The bar plot refers 

to the actual efficiency per cycle of the engine, while the lines show the efficiency pdf computed for several time 
windows of size t. The distributions observed are heavily skewed towards small values of t, while both the spread 
and skewedness decrease as t → ∞ . The peak at η = 0 shows that for values of t near ̄tc there is a high probability 
of the window falling within the same cycle doing almost no work, as shown in Fig. 3a. Note that the shape of 
these distributions is different from those of previously studied systems22,24,25, in that in most of those cases two 
maxima are present. The presence of the two maxima can be explained by the possibility for the systems to func-
tion either as an engine or a heat pump with certain probability29. However, due to the reset of the masses, the 
engine with porous piston cannot operate in a reverse fashion. The sudden change in the probability distribution 
of microstates that the reset produces amounts to a symmetry breaking34, and it has been observed that such 
events might affect the distributions and fluctuation relations that the system obeys35.

(12)
�t

kB
≥

2�Wt�
2

Var(Wt)
,

Figure 7.   Work distribution at fixed porosity. (a) Pdf of the work performed by the engine on the load mass 
during a time window t = 40t̄c for systems with p = 0.2 and several values of Ml . (b) Logarithm of the local 
minima of the curves shown in (a). Inset: Variance of the distribution computed from a Gaussian fit to the data 
around its maximum (squares) and from the numerical computation using all the work data (circles).

Table 1.   Inverse of the precision as a function of the averaging time t/t̄c for a system with Ml = 1 and p = 0.2.

t/t̄c 2 〈Wt 〉
2 /Var (Wt )

0.1 0.22

0.2 0.46

0.5 0.79

1.0 2.59

2.0 5.13

3.0 7.41

5.0 11.76
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As explained in “Simulations”, the macroscopic efficiency η̄ was computed by means of the large deviation 
function (Eq. (11)) using several finite values of t and then extrapolating the asymptotic behavior. Figure 11 shows 
Eq. (11) as t goes from t̄c to 320t̄c for an ensemble of systems with parameters p = 0.2 and Ml = 1.0 . The values 
for η̄ are shown in Fig. 11 and were computed as an average of extrapolations using all possible combinations of 
ordered triplets of the curves, as described in Ref.25.

Figures 12 and 13 plot the macroscopic efficiencies η̄ , η̄(bp) and η̄(pl) as functions of the porosity and load 
mass, respectively. It is observed that η̄(bp) remains at 1, as on average all the energy that comes from the thermal 
walls goes to the piston. We also have that on average η̄ = η̄(bp)η̄(pl) , and that the dissipation is taking place as 
the work provided by the piston is transformed into potential energy of the load masses, because part of the 
energy transferred is converted into kinetic energy of the load masses that is lost at the instant of their removal 
from the system.

The associated average power is also shown in Figs. 12 and 13, this time without the normalization by Mlgh . 
As it was previously observed, for fixed Ml = 1 the engine operates at maximum power around p = 0.2 . On the 
other hand, for fixed p = 0.2 the data show that the engine operates at maximum power for a load mass value 
around Ml = 1.0.

According to the general theory of feedback control in non-equilibrium systems,18 the work W done on the 
system between two states satisfies the generalized Jarzynski relation36,37

Figure 8.   Heat distribution at fixed load mass. (a) Pdf of the heat exchanged between the particle and the 
thermal walls during a time window t = 40t̄c for systems with Ml = 1 and several values of p. (b) Logarithm of 
the data  shown in (a). Inset: Variance of the distribution computed from a Gaussian fit to the data around its 
maximum (squares) and from the numerical computation using all the heat data (circles).

Figure 9.   Heat distribution at fixed porosity. (a) Pdf of the heat exchanged between the particle and the 
thermal walls during a time window t = 40t̄c for systems with p = 0.2 and several values of Ml . (b) Logarithm 
of the data shown in (a). Inset: Variance of the distribution computed from a Gaussian fit to the data around its 
maximum (squares) and from the numerical computation using all the heat data (circles).
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Figure 10.   Pdf of the efficiency obtained from an ensemble of systems with p = 0.2 and Ml = 1 . The bar plots 
refer to the actual efficiency per cycle of the engine, while the lines represent the efficiency pdf obtained by 
sampling several time windows of size t.

Figure 11.   Estimation of the large deviation function. Behavior of the function − ln(P(ηt))/t in Eq. (11) 
computed at p = 0.2 and Ml = 1.0 , using several time window sizes.

Figure 12.   Macroscopic efficiency as a function of p for ensembles of systems with Ml = 1 . The solid line plots 
the average power as a function of p using a time window of t = 320t̄c (note the corresponding scale on the right 
side of the figure).
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where �F is the free energy difference between the initial and final state and Ic is the mutual information between 
phase-space point x and the outcome of its measure y. Here the measure is without error, therefore the average 
〈Ic〉 has its maximum value equal to the Shannon information H[X] of the trajectory X = {x(t)}

with P[X] is probability of the trajectory X being realized. From the convexity of the exponential function one 
obtains

If in both, the initial and final state, a load mass is hooked then �F = 0 . In this point of view, the work that 
the machine is able to provide comes from the information obtained by measuring the piston position and 
performing the feedback control. Note that, contrarily to the Szilard engine, the position of the particle is not 
used in the feedback control.

To characterize how efficient the feedback control is, one can introduce the efficacy parameter18 γ , which we 
obtain from our simulations and the relation

For systems without feedback control γ = 1 , whereas for systems with feedback control γ > 1 . Figure 14 
shows the efficacy, estimated as the average of exp(−βWh) over the ensemble of simulations, with Wh the work 
done during the intervals where the control parameter � is either R or L, so that �F = 0 . As expected from a 
feedback controlled system, the efficacy starts at 1 and increases from there as the time increases.

Discussion
By modifying Szilard’s engine with the replacement of the piston by a porous one, the engine can convert heat 
into work without the need to store information about the position of the particle with respect to the piston. If 
the engine is not coupled to an external system on which to perform work, one can expect it to wiggle constantly 
as it exchanges heat back and forth with the thermal walls. However, the coupling of the engine with another 
system on which to do work introduces the possibility for energy dissipation.

We chose to couple the engine to a system similar to the one proposed in Szilard’s original model, where 
work is done by lifting a small mass against a gravitational field. Energy is dissipated because once the load mass 
is removed from the system one does not take away merely the potential energy gained during the process, but 
also any kinetic energy that the load mass happens to have at that instant. This reset operation amounts to a sym-
metry breaking34,35, and as with engines in which an autonomous agent ultimately has to discard heat to a low 
temperature reservoir17, in this case the mechanical agent that places the new, low-energy load masses with zero 
kinetic energy, acts as a low temperature reservoir at Tlow = 0 in the sense that it takes away all the kinetic energy 
from them. In addition, we chose to use a feedback control by unhooking and hooking a new load mass when the 
piston passes through positions a and b respectively. As observed previously in a thermal ratchet system18, such 
a feedback allows for an efficacy parameter γ > 1 . In this case, the feedback reduces the amount of time that the 
system of spends with no mass hanging from the piston, enabling a greater power output.

If it were possible to take the system to a quasi-static limit at which the masses arrive to the extraction point 
with a velocity close to zero, one could expect that the amount of dissipated energy would also be very small. 

(13)�e−β(W−�F)−Ic � = 1,

(14)�Ic� = H[X] = −

∫

P[X] ln P[X] dX,

(15)�W� ≥ �F − kBT�Ic�.

(16)�e−β(W−�F)� = γ .

Figure 13.   Macroscopic efficiency as a function of Ml for ensembles of systems with p = 0.2 . The solid line 
plots the average power as a function of Ml using a time window of t = 320t̄c (note the corresponding scale on 
the right side of the figure).
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Although the system is not driven by an external parameter which can be made to change infinitely slowly, it 
is observed that as the load mass is increased, keeping all the other parameters constant, the efficiency of the 
engine does increase while the power decreases past a certain point. The effect of the porosity of the piston on the 
efficiency seems to be more modest, achieving slightly better efficiency and less power output at higher values of 
p. Finally, an approximate maximum in the power output of the engine was observed as a function of both, the 
load mass and the porosity of the piston. The power decreases as one moves away from these maxima in both 
directions, towards small and large values of parameters p and Ml , respectively.

Data availability
The code and datasets used and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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