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(e fatigue energy consumption of independent gestures can be obtained by calculating the power spectrum of surface elec-
tromyography (sEMG) signals. (e existing research studies focus on the fatigue of independent gestures, while the research
studies on integrated gestures are few. However, the actual gesture operation mode is usually integrated by multiple independent
gestures, so the fatigue degree of integrated gestures can be predicted by training neural network of independent gestures. (ree
natural gestures including browsing information, playing games, and typing are divided into nine independent gestures in this
paper, and the predicted model is established and trained by calculating the energy consumption of independent gestures. (e
artificial neural networks (ANNs) including backpropagation (BP) neural network, recurrent neural network (RNN), and long
short-term memory (LSTM) are used to predict the fatigue of gesture. (e support vector machine (SVM) is used to assist
verification. Mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) are utilized to evaluate
the optimal prediction model. Furthermore, the different datasets of the processed sEMG signal and its decomposed wavelet
coefficients are trained, respectively, and the changes of error functions of them are compared.(e experimental results show that
LSTMmodel is more suitable for gesture fatigue prediction. (e processed sEMG signals are appropriate for using as the training
set the fatigue degree of one-handed gesture. It is better to use wavelet decomposition coefficients as datasets to predict the high-
dimensional sEMG signals of two-handed gestures. (e experimental results can be applied to predict the fatigue degree of
complex human-machine interactive gestures, help to avoid unreasonable gestures, and improve the user’s interactive experience.

1. Introduction

Unreasonable gesture is one of the reasons for the increase of
hand lesions. To avoid injuries caused by improper gestures,
the publishing paper titled Quantitative Analysis on the
Interaction Fatigue of Natural Gestures selects three daily
interactive gestures browsing information, playing games,
and typing as the research objects and divides them into nine
independent gestures. After denoising, filtering, segmenting,
and extracting the parameters of the acquired surface
electromyography (sEMG) signals, time-domain, frequency-
domain, and time-frequency-domain characteristics are
analysed. (e characteristics of envelope waveform, power
spectrum threshold, and fatigue of nine independent

gestures are obtained.(e long short-termmemory (LSTM),
one of the recurrent neural network (RNN) methods, is used
to train nine independent gesture models. (e fatigue
characteristics of the integrated gestures are predicted by the
trained LSTM series model. (e energy consumption
characteristics of integrated gestures in smartphones and
PCs are obtained. It is found that the simple behaviour of
browsing in the integrated behaviour is suitable for using
natural interactive gestures, and the complex behaviours as
playing games or typing of PC have lower energy con-
sumption than that of smartphones. Among the indepen-
dent natural gestures, the energy consumption of click is
higher than that of dragging. Comparing the behaviours of
the same purpose, the energy consumption of mouse gesture
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of PC is much lower than that of smartphone. (e study of
gesture fatigue provides a reference for the design of natural
gesture and the development of Internet products. On this
basis, this paper focuses on the selection of neural network
prediction models and the optimization of datasets to im-
prove the prediction accuracy of the model.

Artificial neural network (ANN) is also referred to as
neural networks or connection models. It is an algorithmic
mathematicalmodel that imitates the behaviour characteristics
of animal neural networks and carries out distributed parallel
information processing [1]. (is kind of network depends on
the complexity of the system and achieves the purpose of
processing information by adjusting the relationship between
a large number of internal nodes. Moh [2] used the ANN
classifier to test the two different feature sets including all
principal components and selected principal components.
Joga [3] used the trained neural network to embed into the
wearable extra robotic fingers to control the robotic motion
and assist the human fingers in bimanual object manipulation
tasks. With the improvement of the algorithm, neural network
models have been widely applied in many industries.

(ere is a very extensive research foundation to establish a
variety of evaluation methods of prediction model such as
ANN and support vector machine (SVM). Li [4] reported on
the evaluations of five different machine learning algorithms,
ANN, support vector regression (SVR), least-square support
vector machine (LS-SVM), Gaussian process regression
(GPR), and Gaussian mixture model (GMM), applied to four
residential datasets that contain smart meters. Vega [5]
evaluated and compared two common methods, ANN and
SVR, for predicting energy productions from a solar pho-
tovoltaic system in different times. Zheng [6] proposed a
novel approach combing wavelet technique with LS-SVM for
forecasting of dissolved gases in oil-immersed power trans-
formers, and the mean absolute percentage errors of the
proposed approach are significantly better than that of BPNN,
radial basis function neural network, generalized regression
neural network, and SVM regression (SVR). Hima [7] studied
the applicability of LS-SVM for estimating the blast-induced
flyrock. For comparison aim, SVR was also employed. Six
machine learning models, including ANN, SVR, classification
and regression tree, bagging regression tree, least absolute
shrinkage and selection operator, and GPR, were applied to
predict the bending force in the hot strip rolling process [8].
Nourani et al. [9] employed several artificial intelligence-
based techniques including SVR, adaptive neurofuzzy in-
ference system, ANN, and multiple linear regression models
for ahead predictions of climatic stations in Iraq. Hassan [10]
built a hybrid framework consisting of eleven SVRs imple-
mented in Proteus 6/MATLAB environments. Data collected
over seven years in a city of the north of Spain were analysed
by Nieto using four different mathematical models: vector
autoregressive moving-average, autoregressive integrated
moving-average, multilayer perceptron neural networks, and
SVMs with regression [11].

To further improve the prediction accuracy of neural
networks, many scholars tried to adjust the super parameters
of the neural networks, optimize the data models [12–14]
and the algorithms [15], and use the hybrid neural network

[16] and other methods. Chen [17] used the combination of
neural networks of convolutional neural network (CNN)
and LSTM to predict multi-DoF finger force and obtained
the best performance. Arvind [18] introduced a transfer-
learning-based Long-term Recurrent Convolution Network
named as “MyoNet” for the classification of lower limb
movements, along with the prediction of the corresponding
knee joint angle. Arjunan [19] proposed a model employing
the deep architecture combining CNNs and RNNs to esti-
mate EMG-based limb movement. However, these methods
are only applicable to specific research objectives and are not
universal. (is paper tries to optimize the dataset to further
improve the prediction accuracy.

2. Previous Works

2.1. Prediction Models. (ere are many kinds of neural
networks with different advantages and characteristics. (e
neural network models used for prediction include BP
neural network, RNN, and LATM model. (ese prediction
neural networks have advantages and disadvantages during
testing. According to the characteristics of neural networks,
many scholars established matching neural network models
to solve different problems.

BP neural network was proposed by Rumelhart and
McClelland in 1986. It is a multilayer feedforward network
composed of nonlinear transformation units and trained
according to error backpropagation algorithm. Li [20] uti-
lized the BP neural network to recognize the imagery tasks.
Chen et al. [21] used a BP neural network to map the optimal
surface EMG features to the flexion/extension joint angles.
Lei [22] used the neural network toolbox of MATLAB to
train BP neural network and tested the established con-
tinuous movement control model. (e advantage of BP
neural network is that it has strong nonlinear mapping
ability and flexible network structure. However, there are
also some defects, such as slow learning speed, easy to fall
into local minimum value, lack of theoretical guidance in the
selection of the number of network layers and neurons. BP
neural network is mainly including input layer, hidden layer,
and output layer. Each layer is composed of several neurons.
(e neurons between the layers are fully connected, and the
information flows from the input to the output in one di-
rection. BP neural network adopts the learning rules of the
gradient descent method. (e core of the algorithm is to
backpropagate the error between the target output of the
input layer and the calculation value of the output layer from
output to input layer by layer, and assign to each connection
point. (e calculated reference errors of connection points
are used to adjust the thresholds and weights of the network,
which benefits the expected output of the network ap-
proximating to the actual output.

RNN is a kind of neural network which takes sequence
data as input, recursion in the evolution direction of se-
quence, and all nodes (cyclic units) are linked in chain. RNN
has characteristics of memory, parameter sharing, and
Turing completion, so it has certain advantages in learning
nonlinear features of sequences. RNN has been applied in
natural language processing, time series prediction, and so
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on. Huang et al. [23] used deep-recurrent neural networks to
predict the real-time intended knee joint motion. Li et al.
[24] embedded Kalman filter and RNN into the real-time
functional electrical stimulation system for identification
and estimation. Kudithipudi [25] proposed a neuro-
memristive reservoir computing architecture with doubly
twisted toroidal structure that significantly improved RNN
architecture with an accuracy of 90 and 84% for epileptic
seizure detection and EMG prosthetic finger control, re-
spectively. However, the challenge in using RNN is the very
unstable relationship between parameters and the dynamics
of hidden states, known as “fading or exploding gradients.”
(erefore, LSTM and gate recurrent unit gating systems are
proposed. (e typical structure of RNN is consistent with
that of neural network, which is composed of input layer,
hidden layer, and output layer. Different from the input and
output of the fixed dimension feedforward neural network,
the neurons in RNN have self-feedback and cyclic structure.
(e inputs of interconnected neurons in the hidden layer
include not only the weight and input of the current time t,
but also the output of the hidden unit t− 1 at the previous
time and all the previous moments.

LSTM is an important branch of RNN. It solves the
vanishing gradient problem caused by the gradual reduction
of the gradient backpropagation process. LSTM model can
store the input memory of long-time steps when processing
time series information, and the insertion of random time
steps on the input sequence has robustness. Dao [26] de-
veloped and evaluated a LSTM model as a recurrent deep
neural network to transfer learning for the prediction of
skeletal muscle forces. Chen et al. [27] used LSTM to verify
the improvement of the estimated accuracy of the contin-
uous estimation model of upper limb joint angles proposed
by them. LSTM can solve the problem of RNN gradient to a
certain extent, but not completely. Because the structure of
each cell has a full connection layer, LSTM has drawbacks of
large calculation, low efficiency, and slow speed.

SVM is a kind of generalized linear classifier which
classifies data by supervised learning. Its decision boundary
is the maximum margin hyperplane to solve the learning
samples [28]. SVM was proposed in 1964 and has been
developed rapidly since the 1990s. A series of improved and
extended algorithms have been developed and applied in
pattern recognition. Cao [29] compared the performance of
the CNN model, the model based on SVR, and the model
based on partial least-square regression. Barenya [30]
compared the predictionmodel of COVID-19 with the state-
of-the-art SVR model and the conventional RVFL model.

Pontes [31] proposed a novel flexible hierarchical age
estimation approach consisting of a multiclass SVM to
classify a subject into an age group followed by an SVR to
estimate a specific age. Koerich [32] compared rainfall-
runoff modelling between an SVM-based approach and the
EPA’s storm water management model. SVR shows great
potential for applications in the field of urban hydrology, but
the algorithm tends to underestimate the peak discharge,
which has significant limitations regarding the model cali-
bration. Kang [33] proposed a semisupervised SVR method
based on self-training.

(e core idea of SVM is to construct a hyperplane in an
n-dimensional space to distinguish different classifications
in the feature space. To calculate the distance between the
two types of patterns, the algorithm constructs two hy-
perplanes parallel to the classification surface on both sides
of the classification surface, and the data on these two hy-
perplanes are called support vectors. For linear inseparable
data, the classification idea of SVM is to map the inseparable
data into a high-dimensional space through nonlinear
transformation, so that the original unclassifiable data can be
transformed into high-dimensional separable data. At the
same time, the data are divided by solving the optimal
classification hyperplane in the high-dimensional space to
achieve the effect of data classification [34]. SVM has the
advantages of good generality and robustness, simple, ef-
fective, and perfect theory.(erefore, SVM has many unique
strengths in solving the problems with small sample, non-
linear, and high-dimensional pattern recognition.

BP neural network, RNN, and LSTM are widely used in
the prediction of gesture fatigue.(e SVR algorithm of SVM
is used in the predictive model. However, SVM is inefficient
for large-scale training samples, and it is difficult to solve the
multiclassification problem. In this paper, more than 10000
sets of sEMG signals are collected by integrated gestures, so
SVR is only used as the reference of neural network model in
a small sample fatigue prediction model of independent
gestures.

2.2. Prediction Model Datasets. Many scholars attempt to
optimize datasets to further improve the accuracy of the
neural network prediction model. Zhao [35] used the mean
absolute value (MAV), variance (VAR) of time-domain
features, median frequency (MF), average power frequency
(MP) of frequency-domain features, and wavelet decom-
position coefficients to recognize gesture by BP neural
network. It was found that the recognition rate of the fusion
features was significantly higher than that of the single
feature. It is more efficient to use VAR+MMV (modulus
maximal of wavelet transform coefficients) as the feature for
pattern recognition of sEMG signals. Wu et al. [36] obtained
the optimal measurement position sets for gesture recog-
nition when different feature sets were used, and similarly,
the optimal feature sets when different measurement posi-
tion sets were used. (e results showed that the error
function can be effectively reduced by using appropriate
datasets for different problems. (erefore, this paper uses
different sEMG signal features to test and find suitable
datasets for gesture fatigue prediction.

3. Materials and Methods

3.1. Experimental Process and Data Processing. First, to
evaluate the accuracy of the prediction, BP neural network,
RNN, and LSTMmethods are used to train the sEMG signals
of independent gestures in this paper, and SVR is used as the
reference. (e more effective neural network is selected
according to the MSE, RMSE, and MAE values of evaluation
indexes of prediction. Second, after the type of neural
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network is determined, the influence of different datasets
(the processed sEMG signals and wavelet decomposition
coefficients) on the prediction accuracy of the model is
explored. Finally, combine the optimizations of Steps 1 and 2
to improve the accuracy of neural network prediction
models, as shown in Figure 1.

EMG wireless signal collector and Ergolab software of
Beijing Jinfa Technology Co., Ltd., are used to collect original
sEMG signals. (ere are 5 postgraduates aged 20–35 years as
subjects. (e width and thickness of their hands are in
accordance with the national standard GB/T 26158. (e
electrode slices, electrodes, acquisition unites, and fixation
straps are used for sEMG signal acquisition of independent
and integrated gestures. (e sEMG signals have been re-
ceived and preliminary processed to the computer, as shown
in Figure 2. (e acquisition frequency of the original sEMG
signal is 1024Hz.

In Figure 3, the circles represent the click and the arrows
indicate the sliding direction. (e turning arrow of G8
indicates rolling. (e solid dots on the outside of the
smartphones in G4-G6 indicate the second supporting. G1,
G2, and G3 are one-handed click gesture, horizontal drag,
and vertical drag, respectively. G4, G5, and G6 are two-
handed click, horizontal drag, and vertical drag, respectively.
G7 is one-handed mouse click gesture. G8 is the middle
mouse button scroll gesture. G9 is two-handed keyboard
input gesture.

In this paper, three comprehensive gestures of browsing
information, playing games, and typing are divided into nine
independent gestures, as shown in Figure 3. To explore the
influence of large-screen smartphones on fatigue in more
detail, the screens are divided into upper, middle, and lower
parts in G1 and G3 gestures. (e circles represent the click
and the arrows indicate the sliding directions. (e turning
arrow of G8 indicates rolling.(e solid dots on the outside of
the smartphones in G4-G6 indicate the second supporting.
Due to the large difference of the nine independent gestures,
these gestures can be classified into three categories: one-
handed gesture based on smartphone, two-handed gesture
based on smartphone, and gesture based on PC. For each
category, one-handed G1-lower gesture, two-handed G4
gesture, and G7 with mouse click are selected as feature sets
of neural network prediction. According to the principle of
anatomy, the sEMG signals of thenar and hypothenar
muscles, extensor digitorum, and flexor digitorum super-
ficialis are measured as four channels of one-handed gesture.
(e two-handed gesture of 7 channels also includes the
sEMG signals of the thenar and hypothenar muscles and the
extensor digitorum of the left hand.

In this paper, the original sEMG signals are filtered by
Chebyshev third-order low-pass filter. (e band pass and
band stop of the filter are 55Hz and 90Hz, respectively, and
normalized. A group of periodic signal length as window
length is selected by each gesture to cut signals. Due to
different data characteristics, the window length is selected
according to the actual signal characteristics, for example,
the window length of G1 is 15 and the window length of G4
and G7 is 20. (e processed sEMG signals are used as the
feature datasets of the training models.(e power spectrums

of the processed sEMG signals are extracted in the frequency
domain and used as the label dataset of the processed sEMG
signals. (e parameters of wavelet decomposition in the
time-frequency domain are extracted as the backup feature
dataset.

To speed up the learning efficiency of neural network
prediction models, the input and output datasets of pro-
cessed sEMG signals are standardized as follows:
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where k represents the number of samples, xold
k andyold

k are
input and output datasets before network processing, and
xnew

k andynew
k are input and output datasets after network

processing. In this paper, the sEMG signals are normalized
to the threshold of (0, 1). According to the formula principle
of SVM, the decision boundary is divided according to (−1,
1), and the normalized threshold of (−1, 1) is also used in the
validation of SVR model.

3.2. Prediction Model Training. According to literature re-
search and the characteristics of sEMG signals, such as
multidimensional, time series, and large amount of data, BP
neural network, RNN, and LSTM are chosen as training
models to predict fatigue in this paper.

(e input matrixes of one-handed gestures are 4-channel
signals, while those of two-handed gestures are 7-channel
signals. To compare the training results, the input sequence
is set as a matrix of 4 vectors with 4 dimensions for each
vector. (e epochs of models are 200 times, and 120 groups
of data are trained in each batch. To optimize the prediction
model, regularizers of l1 and l2, optimizers of Adam, and
stochastic gradient descent (SGD) are widely used in this
paper. After many times of training, compared with the
optimal gradient descent, the super parameters and opti-
mizer of each prediction model are different. (e hidden
layer neurons of BP neural network are independent neu-
rons, hidden layer neurons of RNN have continuous time
series characteristics, and hidden layer neurons of LSTM are
memory neurons, as shown in Figure 4. (e error values of
MSE, RMSE, and MAE are calculated between the output
layer and the original y value.

3.2.1. BP Neural Network. A three-layer BP neural network
structure with one hidden layer is used in this paper. (e
sigmoid activation function is used from input layer to
hidden layer. (e optimizer uses Adam with a learning rate
of 10−4.

Let the dataset of input layer be x, the weight and bias
from input layer to hidden layer be w and b1, and that from
hidden layer to output layer be v and b2. (en the equation
from input layer to hidden layer is as equation (3). (e
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equation from the hidden layer to the output layer is as
equation (4):

netinput−hidden � w
T

x + b1, (3)

nethidden−output � v
T
x + b2. (4)

(1) Import feature and label datasets. (e weights and
biases in the initialization network are recorded as
w(0), b

(0)
1 , v(0), b

(0)
1 , respectively.

(2) Activate forward propagation, and obtain the ex-
pected values of the output and loss functions of each
layer:

E(θ) �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
, (5)

where θ, yi, 􏽢yi represent the parameter set, real value,
and predicted value, respectively, and n represents
the output of n-dimensional data.

Processed sEMG of G1, G4, G7 as datasets
to select neural networks

Selected neural
networks compared

with SVR

BP neural
network
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SVR

Better neural
network SVR

Improving
the accuracy of

neural
network

prediction
models

Wavelet decomposition coefficient of
G1, G4, G7 as datasets

Selected neural networks with appropriate
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Step 3
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Figure 1: Optimization flowchart of the prediction model.
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Figure 2: Illustration of sEMG signal acquisition system.
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(3) Calculate the error terms of output unit and hidden
unit according to the loss function.
Calculating the error term of the output unit is to
calculate the gradient value or partial derivative of
the loss function with respect to the output unit as
follows:

∇(k)v �
zE

zv
, (6)

∇(k)b2 �
zE

zb2
. (7)

(e error term of hidden unit is calculated as follows:

∇(k)w �
zE

zw
, (8)

∇(k)b1 �
zE

zb1
. (9)

(4) Update weights and bias terms in BP neural
networks.

Update the parameters of output unit as follows:

v
(k)

� v
(k− 1)

− η∇(k)v, (10)

b
(k)
2 � b

(k−1)
2 − ∇(k)b2. (11)
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Figure 3: Illustrations of G1-G9 independent gestures.
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Figure 4: BP, RNN, and LSTM neural network prediction model training.
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Update the parameters of hidden unit as follows:

w
(k)

� w
(k− 1)

− η∇(k)w, (12)

b
(k)
1 � b

(k−1)
1 − η∇(k)b1, (13)

where η represents the learning rate and k� 1, 2, ..., n
represents the number of updates or iterations.

(5) Repeat steps 2–4 until the loss function is less than
the given threshold or the number of iterations is
reached. (e output parameters at this time are the
current optimal parameters.

3.2.2. RNN. In this paper, a three-layer RNN structure is
adopted. (e l2 regularizer is used in each layer of regu-
larization.(e activation function of output layer is sigmoid.
(e SGD optimizer is used.

(e output structure of RNN is shown in Figure 5. (e
parameters t, x, s, and o are the basic parameters of network
structure, which represent time sequence, input layer,
hidden layer, and output layer, respectively. (e parameters
U and W are the offset and weight of transfer function.

(e input time series of sEMG signals are
x � (x(1), . . . , x(T)), and the basic RNN calculates the
hidden element sequence h � (h(1), . . . , h(T)) and the output
sequence of power spectrum o � (o(1), . . . , o(T)) by iterating
the following equations:

h
(t)

� f Wxhx
(t)

+ Whhh
(t− 1)

+ bh􏼐 􏼑, (14)

o
(t)

� g Whoh
(t)

+ bo􏼐 􏼑, (15)

where t� 1, . . ., T,W represents the weight matrix (e.g., Wxh

is the weight matrix of input to the hidden element), and b is
the offset vector (e.g., bh is the offset vector of the hidden
layer), and the activation function of the hidden layer is
represented by f and g.

(e parameters in the model are shared at each time, so
that the model can be easily extended to samples of different
lengths and generalized. Moreover, parameter sharing
prevents the overall parameters of the network from in-
creasing with the increase of data volume, which is con-
venient for training. (e cost function is defined as follows:

L1 �
−1
NT

􏽘

N

n�1
􏽘

T

t�1
􏽘

K

i�1
y

(t)
(ni)log o

(t)
(ni)􏼐 􏼑⎛⎝ ⎞⎠, (16)

whereN represents the sample number of input data, T is the
total number of times, K is the dimension of model output at
each time, o(t) is the output of the tth moment, and y(t) is the
target output at the tth moment.

(e parameters of RNN can be trained by the back-
propagation through time algorithm [37], that is, from the
end of the sequence, it is calculated reversely. For each node
in the model, the gradient of the node needs to be calculated
recursively based on the gradient of the next node.

3.2.3. LSTM. A LSTM predictive model with a hidden layer
is used. To prevent overfitting, the dropout of hidden layer
uses the value of 0.1. When the optimizer is Adam and the
learning rate is 10−4, the convergence effect of loss function
is the best.

(ree important gate control functions are introduced
into the memory cell module of the hidden layer in LSTM.
(e three gate control functions realize three kinds of gate
control functions: forgetting gate, input gate, and output
gate. In the forward propagation process of LSTM, the
storage and interaction of information are controlled by the
three gate structures of the hidden layer memory unit, as
shown in Figure 6.

(1) Forget gate ft is used to control the proportion of
time span of input information and determine how
much of the cell state Ct-1 of last moment is left to
current moment.(e proportional control is realized
by the parameter σ whose value range is (0, 1).

(e sigmoid function is used to control the su-
perposition of hidden layer ht−1, output layer, and
input layer xt. (e output expression ft of forget
gate is as follows:

ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑. (17)

(2) (e input gate it controls the input process of in-
formation in the current time and determines how
much of the input xt of the network at the current
time is saved to cell state Ct.(is process includes the
update process of the information in the current time
completed by the input gate and superimposes the
input of the previous time on the hidden layer to the
current state to realize the dependence on the time
sequence information. (e input gate function in-
cludes a sigmoid function and a tanh function. (e
calculation method is as follows:

it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁. (18)

V V V V

W W W W

U U U U

S St–1 St St+1

o ot–1 ot ot+1

x xt–1 xt xt+1

Figure 5: Schematic diagram of RNN structure.
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Candidate 􏽥Ct is used to conclude new knowledge to be
stored in cell state. (e calculation method for the update
process of the information in current time is as follows:

Ct � tanh W
C

xt + U
C

ht−1􏼐 􏼑. (19)

(e superposition process of the output of the previous
time on the hidden layer and the current input is shown
in the following equation:

Ct � ft ∗Ct−1 + it ∗Ct. (20)

At the current moment t, according to the combined
action of the forget gate and input gate, the memory
unit of hidden layer completes the information
multiplication operation and realizes the output of
the memory unit cell state Ct.

(3) (e output gate Ot controls how much of unit status
Ct outputs to the current output value ht of LSTM.
Before exporting the memory unit information, the
output gate function controls the output information
and returns the timing information to the hidden
layer. (is process updates the information state of
the memory unit. (e calculation method of output
gate is shown in the following equation:

Ot � σ WO · ht−1, xt􏼂 􏼃 + bo( 􏼁. (21)

(e information of memory state ht returned to hidden
layer is calculated as follows:

ht � O∗ tanh Ct( 􏼁. (22)

3.2.4. SVM. (is paper uses an SVR prediction model.
When the penalty parameter C is 10, kernel type is RBF
function, and gamma uses “auto,” the prediction result is
stable, and error function is low.

(e sEMG training dataset of SVM is T � (x1, y1),􏼈

(x2, y2)}, where xi is the eigenvector used for classifica-
tion, yi is the category label, and yi ∈ 1, −1{ }, and SVM
optimizes data segmentation by constructing the fol-
lowing hyperplane:

(ω · x) + b � 0. (23)

(e above equation needs to satisfy the conditions as
follows:

ω · xi( 􏼁 + b≥ 1, yi � 1,

ω · xi( 􏼁 + b≤ 1, yi � −1,
􏼨 (24)

yi ω · xi( 􏼁 + b≥ 1, (25)

where i ∈ 1, . . . , N{ }. (e optimal classification plane needs
to satisfy the condition that the distance between the two
support planes is the largest:

d �
2

‖ω‖
. (26)

To find max(2/‖ω‖), it can be transformed into the
following equation:

min
‖ω‖

2

2
, (27)

where i ∈ 1, . . . , N{ }, and s.t., yi(ω · xi) + b≥ 1. (e original
problem can be transformed into a dual optimization
problem by introducing Lagrange multiplier α. (e original
equation can be changed as follows:

L(ω, b, α) �
ω2����

����

2
− 􏽘

n

i�1
αi yi ωxi + b( 􏼁 − 1( 􏼁. (28)

(rough Lagrange multiplier, solving the problem is
equivalent to finding the maximum value of L function.
(rough the process of solving the dual problem, the L
function can be expressed as follows:

L(ω, b, α) � 􏽘
n

i�1
αi −

1
2

􏽘

n

i,j�1
aiajyiyjx

T
i xj, (29)

where the constraint condition is αi ≥ 0, and 􏽐
n
i�1 aiyi � 0.

(e question of solving equation (27) can be transformed
into finding the maximum value of L(ω, b, α). (e final
problem is to find the appropriate ai making L maximum.
Supposing obtained ai is recorded as a∗i , the normal vector ω∗
and intercept b∗ of the corresponding plane can be expressed
as follows:

ω∗ � 􏽘
n

i�1
α∗i xiyi, (30)

b
∗

� ysv − 􏽘
n

i�1
α∗i yi <xi, xsv>, (31)

where xsv and ysv are the corresponding data of support
vector. 〈xi, xsv〉 is the inner product of xi and xsv.

ht–1

Ct–1

ft

Ct

Ct

it ot

xt

ht

ht

×

××

+

tanh

tanh σσσ

~

Forget gate

Input gate Output gate

Figure 6: Diagram of LSTM structure.
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For the nonlinear separable data of sEMG signals, the
kernel function is used to map data from low-dimensional
space to high latitude. Using the parameter K to represent
the kernel function, the question can be expressed as follows:

f(x) � 􏽘
i∈SV

α∗i yiK xi, xsv( 􏼁 + b
∗
. (32)

(e commonly used kernel functions include linear
kernel, polynomial kernel, radial basis function (RBF), and
sigmoid tank [38]. Gaussian function is used in this paper.
(e expression of Gaussian function is as followsfd33:

K x1, x2( 􏼁 � exp
x1 − x

2
2

����
����

2δ2
􏼠 􏼡, (33)

where x1 and x2 are two points in the sample space, and
x1, x2 ∈ Rn. δ is the kernel radius and δ > 0.

3.3. Dataset Optimization

3.3.1. Wavelet Transform @eory. Wavelet transform (WT)
theory is a signal analysis tool. By using the methods of
dilation and translation, the displacement r of the base
wavelet function ψ(t) is calculated, and different scales of a
does the inner product with the signal f(t) in WT theory:

WTf(α, τ) �
1
��
a

√ 􏽚
+∞

−∞
f(t)ψ∗

t − τ
α

􏼒 􏼓dt, a> 0. (34)

(e frequency-domain equivalent expression of WT is as
follows:

WTf(α, τ) �

��
α

√

2π
􏽚 F(ω)Ψ∗(αω)e

jωtdω, a> 0, (35)

where F(ω),Ψ∗ (αω) are the Fourier transforms of f(t) and
ψ(t), respectively.

According to the structure chart of wavelet decompo-
sition tree, the multiresolution characteristic of wavelet
decomposition is only reflected in the low-frequency part.
(e decomposition process can carry out secondary de-
composition of low-frequency components, until the high-
frequency components are obtained. (erefore, the sEMG
signal S is decomposed into a high-frequency component d1
and a low-frequency component a1, as shown on the left side
of Figure 4.(e low-frequency component a1 is decomposed
into a low-frequency component a2 and a high-frequency
component d2 again. (e final formula is as follows:

S � a2 + d2 + d1. (36)

3.3.2. Wavelet Decomposition Coefficient. Wavelet decom-
position is widely used in the research field of gesture
recognition, and it can obtain low-frequency and high-
frequency decomposition coefficients of sEMG signals,
which are more significant than the characteristics of the
original signals. In this paper, Daubechies 3-order basis
wavelet is used to decompose the processed sEMG signals in
two layers. Two relative energy coefficients representing

different frequency components are extracted to form a 20-
dimensional feature samples. As shown in Figure 7, the left
diagram is the wavelet decomposition tree of sEMG signal
channel 1 of gesture G1, and the right figure is the waveform
diagram of detailed wavelet decomposed signals.

4. Results and Discussion

(ere are many evaluation criteria for prediction models. In
this paper, MSE, RMSE, andMAE are used as the calculation
functions of accuracy. MSE is the expected value of the
squares of the differences between the estimated values and
the true values of the parameter. MSE can be used to evaluate
the degree of change in data. (e smaller the MSE value is,
the better the prediction model is to describe the experi-
mental data:

MSE �
1
n

􏽘

n

i�1
yreal − ypredict􏼐 􏼑

2
. (37)

RMSE is an evaluation criterion to measure the error rate
of the regression model. When the predicted value and the
real value are completely consistent in the range of [0, +∞),
it is equal to 0, that is, the perfect model. (e greater the
error, the greater the value:

RMSE �

����

1
n

􏽘

n

i�1

􏽶
􏽴

yreal − ypredict􏼐 􏼑
2

. (38)

MAE is the mean absolute error of given data points, in
the same units as the original data. Generally, the smaller the
value, the better the fitting effect of the model:

MAE �
1
n

􏽘

n−1

i�0
yreal − ypredict

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (39)

RMSE and MAE can only compare models’ error with
the same unit. (e magnitude of MAE is approximated to
that of RMSE, but its error value is relatively small.

4.1. PredictionModel Selection. (e different neural network
test results of three groups of sEMG signals after treatment
are shown in Table 1. Each group is trained with 200 epochs,
and each epoch has a batch size of 120. Each group of sEMG
signals is divided into training set and test set for evaluation.
Since SVR uses Gaussian regression kernel to calculate the
problems and has a clear training process, the predicted
evaluation value has good robustness. (e MSE values of BP
neural network, RNN, and LSTM are fixed, while the
evaluation values of RMSE and MAE are different with the
random gradient decrease. However, the difference of that is
small. (e optimal values of random 5 times are obtained
and compared.

(e comparison results show that the prediction effect of
BP neural network is poor.(eMSE value of three groups of
sEMG signals is ideal, but the RMSE of G1 training set and
test set is as high as 0.34, and MAE is more than 0.3. (e
training effect of SVR is good.MSE, RMSE, andMAE of SVR
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are all in a low level. Both RNN and LSTM are neural
network models suitable for time series characteristics. (e
results of prediction training show that the three groups of

signals of the two models perform the same in MSE which
cannot be compared. In RMSE evaluation, the results of
LSTM in G1 and G7 groups are better than that of RNN, but

Diagram of wavelet decomposition at 2 levels by db3
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Figure 7: (e wavelet decomposition diagram of G1 gesture of sEMG signals in channel 1.

Table 1: Temperature and wildlife count in the three areas covered by the study.

sEMG MSE RMSE MAE

BP-G1 Train 0.0196 0.3385 0.3127
Test 0.0085 0.3421 0.3306

BP-G4 Train 0.0339 0.2218 0.1782
Test 0.0243 0.1979 0.1617

BP-G7 Train 0.0395 0.2468 0.2032
Test 0.0395 0.2327 0.1911

RNN-G1 Train 0.0214 0.1354 0.0928
Test 0.0069 0.086 0.0579

RNN-G4 Train 0.033 0.1812 0.1487
Test 0.0261 0.1612 0.1289

RNN-G7 Train 0.04 0.1169 0.1024
Test 0.0376 0.1107 0.0984

LSTM-G1 Train 0.0214 0.1133 0.0768
Test 0.0069 0.0696 0.0491

LSTM-G4 Train 0.033 0.1842 0.152
Test 0.0261 0.166 0.1331

LSTM-G7 Train 0.04 0.0763 0.06
Test 0.0376 0.0717 0.0569

SVR-G1 Train 0.0214 0.0576 0.0439
Test 0.0069 0.04 0.0305

SVR-G4 Train 0.033 0.1643 0.1298
Test 0.0261 0.1488 0.1162

SVR-G7 Train 0.04 0.0482 0.0373
Test 0.0376 0.046 0.0361

10 Computational Intelligence and Neuroscience



that of G4 group is slightly worse than RNN. It shows that
the training LSTM model has more advantages in shorter
dimension datasets.

For more intuitive comparison, the results of three
groups of prediction models based on sEMG signal of each
neural network are shown in Figure 8. Blue represents MSE
value of each group of models, and pink and green represent
RMSE and MAE values, respectively. (e prediction eval-
uation result of the training sets is shown in Figure 8(a), and
that of the test sets in Figure 8(b).

It can be seen intuitively that the error value of BP neural
network in the prediction effect of three group gestures is
significantly bigger than that of other models. (erefore, the
BPmodel is excluded and will not be discussed any more.(e
average prediction errors of RNN, LSTM, and SVR are
similar. (e values of evaluation index of two-hand G4
gesture are higher than that of one-hand gesture. SVR has the
lowest average error in small samples G1, G4, and G7, and it is
one of the suitable predictive models to study gesture fatigue.

Since the sEMG signals of hand gestures belong to time
series datasets, RNN and LSTMmodels are more suitable for
the prediction of gesture movement trend. According to the
comparison in Table 2 and Figure 8, the prediction error of
LSTM in G1 and G7 is slightly lower than that of RNN, and
that in G4 is slightly higher than that of RNN. (erefore,
according to the comparison results, SVR and LSTM as
superior models are selected in this paper for optimization
training in the next step.

4.2. Dataset Optimization. In this paper, the sEMG signal
and its wavelet decomposition coefficients are used as feature
sets to test the prediction models. (e evaluation of

prediction results based on LSTM is shown in Table 2. (e
overall prediction results are similar to those of SVR. (e
results show that the prediction effects of sEMG-based
datasets of G1 and G7 gestures are better than that of wavelet
decomposition.(eMSE, RMSE, andMAE values of sEMG-
based training set of G1 are 0.02, 0.06, and 0.07 lower than
that of wavelet decomposition, respectively. And the values
of G7 are 0.05, 0.04, and 0.14 lower than those of wavelet
decomposition, respectively. On the contrary, the MSE,
RMSE, and MAE values of wavelet decomposition dataset
are 0.02, 0.06, and 0.08 which are lower compared to sEMG-
based training set, respectively. (e largest error of LSTM
prediction model is sEMG-based dataset of G4, and its
RMSE value is 0.1842. (e least error is G1 wavelet de-
composition dataset with the MSE value of 0.0002. More-
over, the MSE of G7 wavelet decomposition test set has an
abnormal value, up to 6.2217.

According to Figure 9, when the sEMG signals are used
as datasets for gestures G1 and G7, the MSE, RMSE, and
MAE values of LSTM prediction model are lower than those
of wavelet decomposition coefficient datasets. (e error
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Figure 8: Comparison chart of MSE, RMSE, and MAE for sEMG-based prediction models.

Table 2: Comparison of MSE, RMSE, and MAE for LSTM pre-
diction models based on sEMG and its wavelet decomposition
datasets.

Prediction models sEMG Wavelet
MSE RMSE MAE MSE RMSE MAE

LSTM-G1 Train 0.0214 0.1133 0.0768 0.0415 0.1709 0.1427
Test 0.0069 0.0696 0.0491 0.0002 0.1047 0.1027

LSTM-G4 Train 0.033 0.1842 0.152 0.0148 0.1246 0.0785
Test 0.0261 0.166 0.1331 0.0004 0.0313 0.0272

LSTM-G7 Train 0.04 0.0763 0.06 0.0938 0.1115 0.195
Test 0.0376 0.0717 0.0569 6.2217 0.0213 0.1377
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values of G4 of LSTM prediction model are slightly higher
than those of wavelet decomposition. Compared with the
SVR model, the prediction and evaluation error of G1 and
G7 based on wavelet decomposition dataset is increased,
which is similar to or even higher than that of G4.

(e evaluation of prediction results based on SVR is
shown in Table 3. (e overall prediction error of processed
sEMG signals is less than that of wavelet decomposition
coefficient.(eMSE, RMSE, andMAE values of G1 based on
wavelet decomposition datasets are 0.02, 0.8, and 0.06 which
are higher than those of sEMG signals, respectively. (e
MSE, RMSE, and MAE values of G7 based on wavelet de-
composition datasets are 0.05, 0.08, and 0.06 which are
higher than those of sEMG signals, respectively. (e MSE,
RMSE, and MAE of G4 wavelet decomposition coefficient-
based training set are better, which are 0.02, 0.06, and 0.06,
higher than those of sEMG signals.

(e biggest error of SVR prediction models appears in
the sEMG-based dataset of G4 gesture, and the RMSE value
is 0.1643. (e least error is in the wavelet decomposition-
based dataset of G1, and its MSE value is 0.0002, followed by
wavelet decomposition-based dataset of G4 with MSE value
of 0.0004. Both of them are evaluations of test sets. (e
smallest error of the training set is wavelet decomposition-
based dataset of G4, and the MSE value is 0.0148.

(e MSE, RMSE, and MAE values of SVR prediction
models in the training set based on sEMG signal and wavelet
decomposition datasets are shown in Figure 10. Because of
the outliers in the prediction of wavelet decomposition-
based test set of G7, only the evaluation value of training set
is compared.

(e results show that the sEMG-based error of two-hand
gesture G4 is the largest, and the RMSE and MAE values are
2-3 times higher than those of G1 and G7. However, the
MSE, RMSE, and MAE of G4 of wavelet decomposed co-
efficient feature sets are lower than those of G1 and G7. It can
be seen that the one-hand gesture of 4-channel signal can get
better prediction results by using the processed sEMG
signals as datasets. To obtain good prediction results, wavelet
decomposition coefficients should be used to reflect the low-
frequency characteristics of 7-channel signals.

4.3. Integrated Gesture Fatigue Predictions. (e integrated
gestures to be predicted can be divided according to two
electronic equipment: smartphone and PC, as shown in
Table 4. Browsing information on the two electronic
equipment is one-handed 4-channel gesture, and its dataset
is the most suitable for using sEMG signals. According to the
situations of independent gestures, training models of G1,
G2, and G3 are connected in series tomake prediction. Series
models of G7 and G8 are selected for PC-based browsing
gesture prediction. Playing games and typing are both two-
hand gestures on the two electronic equipment, which have
7-channel input signals. It is suitable to use wavelet de-
composition coefficients of sEMG signals as datasets. Playing
games and typing on smartphones use series models of G4,
G5, and G6 to predict. PC-based games and typing use
prediction training model of independent gesture G9.

(e MSE, RMSE, and MAE evaluation values of training
set are shown in Table 5, which are in a lower range. (e
trained series models are used to predict the fatigue degree of
integrated gestures. To compare the accuracy, this paper uses
the sEMG-based datasets for browsing information of one-
handed gesture and the wavelet decomposition datasets for
playing games and typing gestures and extracts 10000 groups
of signals of each integrated gesture as feature sets for
prediction.

(e training results of the series model are ideal, and the
evaluation errors are in a low range. (e prediction error of
playing games and typing gestures based on PC is the lowest,
with an MSE value of 0.0032, followed by the MSE pre-
diction error of games and typing based on smartphone of
0.0151. Because the prediction results of LSTM model are
normalized sequences which cannot be compared directly.
In this paper, the predictive fatigue values are obtained by
inverse normalization calculation, as shown in Table 5. (e
results show that the fatigue of browsing information is the
least, the fatigue of smartphone games is greater than that of
typing, and the fatigue of PC typing is slightly lower than
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Figure 9: Comparison chart of MSE, RMSE, and MAE for LSTM
prediction models based on sEMG and its wavelet decomposition
datasets.

Table 3: Comparison of MSE, RMSE, andMAE for SVR prediction
models based on sEMG signals and wavelet decomposition
datasets.

Prediction
models

sEMG Wavelet
MSE RMSE MAE MSE RMSE MAE

SVR-G1 Train 0.0214 0.0576 0.0439 0.0415 0.1367 0.1098
Test 0.0069 0.04 0.0305 0.0002 0.0765 0.0735

SVR-G4 Train 0.033 0.1643 0.1298 0.0148 0.1049 0.068
Test 0.0261 0.1488 0.1162 0.0004 0.035 0.0302

SVR-G7 Train 0.04 0.0482 0.0373 0.0938 0.1215 0.0993
Test 0.0376 0.046 0.0361 6.2217 0.0696 0.0687
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that of smartphone. (e trend is consistent with the cal-
culated results of energy spectrum.

Figure 11 shows the comparisons between the prediction
results and the power spectrums. For sEMG signals used as the
feature data of browsing information gestures, those two results
are consistent with each other, as shown in Figures 10(a) and
10(b). (e trend of the two results is consistent in the wavelet
decomposition coefficients-based gestures, but the predicted
values of normalized distribution are lower than that of power
spectrum. By adding the influence factors of independent
gestures which compose the integrated gesture, the prediction
model is validity. (e predicted distribution power value is
consistent with the distribution trend of spectrum, which
proves the reliability of the models.

(e fatigue degree of all independent and integrated
gestures calculated by LSTM can provide reference for the
design of natural user interface, gesture, and app, as shown
in Figure 12.

4.4.Discussion. (eBP neural network toolbox of MATLAB
software is used for prediction training firstly. (e nor-
malized processed sEMG signals are used as the input
datasets and the normalized power spectrum as the output.
Nine hidden neurons with continuous weights and learning
rate of 0.01 are used for training. (e values of regression R
represent the consistency between outputs and targets based
on MSE. It is found that the training results are not very
stable. During 20 tests, R of the best training set is 0.98 and
that of the test set is 0.96. When the training results are poor,
R of the training set is 0.71 and that of the test set is 0.63.
(ere are eight times that the R of training sets is more than
0.9. (e average R of the 20 training sets is 0.88, and that of
test sets is 0.87 in 20 tests. When the number of neurons
added or the epochs is increased to 50000, the R value is not
significantly improved or stable, and the robustness is poor.
Using Python-based Jupyter Notebook training, the training
accuracy is 0.92.

SVR-G1 SVR-G4 SVR-G7
0.00

0.05

0.10

0.15

0.20

Models

EMG-MSE
EMG-RMSE
EMG-MAE

Wavelet-MSE
Wavelet-RMSE
Wavelet-MAE

Train sets

D
eg

re
es

Figure 10: Comparison chart of MSE, RMSE, and MAE for SVR prediction models based on sEMG and wavelet decomposition datasets.

Table 4: Optimal configuration of integrated gesture fatigue predictions.

Integrated gestures
Smartphone PC

Signal dimensions Datasets Training models Signal dimensions Datasets Training models
Browsing One-hand with 4C sEMG signals G1 +G2+G3 One-hand with 4C sEMG signals G7 +G8
Playing games Two-hand with 7C WT coefficients G4 +G5+G6 Two-hand with 7C WT coefficients G9
Typing Two-hand with 7C WT coefficients G4 +G5+G6 Two-hand with 7C WT coefficients G9

Table 5: (e prediction results of integrated gestures fatigue.

LSTM gestures Smartphone PC
MSE RMSE MAE Prediction MSE RMSE MAE Prediction

Brower 0.0351 0.0662 0.0526 −1.61 × 1016 0.0372 0.0567 0.0425 −4.14 × 1015
Game 0.0151 0.1204 0.0886 −1.74 × 1014 0.0032 0.0559 0.0197 −4.43 × 1015
Typing 0.0151 0.1205 0.089 −9.70 × 1012 0.0032 0.0558 0.0185 −3.34 × 1015

Computational Intelligence and Neuroscience 13



0 5000 10000
0.0

0.5

1.0

Number of signals

Power spectrum
Predictive power

Browsing information on smartphone

Fa
tig

ue
 p

ow
er

(a)

Browsing information on PC

0 5000 10000
0.0

0.5

1.0

Number of signals

Power spectrum
Predictive power

Fa
tig

ue
 p

ow
er

(b)

Playing games on smartphone

0 5000 10000
0.0

0.5

1.0

Number of signals

Power spectrum
Predictive power

Fa
tig

ue
 p

ow
er

(c)

Playing games on PC

0 5000 10000
0.0

0.5

1.0

Number of signals

Power spectrum
Predictive power

Fa
tig

ue
 p

ow
er

1.5

(d)

Typing on smartphone

0 5000 10000
0.0

0.5

1.0

Number of signals

Power spectrum
Predictive power

Fa
tig

ue
 p

ow
er

1.5

(e)

0 5000 10000

0.0

0.5

1.0

Number of signals

Power spectrum
Predictive power

Fa
tig

ue
 p

ow
er

1.5
Typing on PC

(f )

Figure 11: Fatigue comparisons between predicted results and power spectrums.
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An interesting phenomenon in the process of
superparameters debugging during tests has been found.
When the data are normalized to (0, 1), the accuracy of
train sets based on MSE is 0.7782 and that of test sets is
0.7141. When normalized to (−1, 1), the accuracy of train
sets is improved to 0.9887, and the accuracy of test sets is
improved to 0.9769. (is may be caused by the percentage
of error function.

5. Conclusions

To better predict the fatigue problems of integrated gestures in
complex environment, the following work has been done in this
paper: First, BP neural network, RNN, and LSTM are trained,
respectively. SVR is used as reference sample. MSE, RMSE, and
MAE are used to evaluate. Second, the processed sEMG signals
and wavelet decomposition coefficients are used as feature sets,
and they are input into LSTM model and SVR for training.

Innovations: (1) For the fatigue analysis of compre-
hensive integrated gestures, the method of decomposing
complex movements into independent gestures which are
more convenient for monitoring is proposed for the first
time and then integrated by neural network. (2) By com-
paring several neural network prediction models, it is found
that LSTM is the most effective one for gesture fatigue
prediction. (3) To further improve the accuracy, it is found
that simple signals are suitable for EMG signals, and
complex signals are suitable for using decomposed wavelet
coefficients for further feature extraction as input sets.

(rough experiments, it is found that the LSTM pre-
diction model with appropriate datasets can improve the
fatigue prediction ability of single spectrum calculation. (e
prediction model is more accurate and reliable by adding the
influence factors of independent gestures which compose
the integrated gesture. (e predicted distribution power
values are consistent with the distribution trend of spectrum,

which proves the validity of the model. (e research results
can be applied to the reference of gesture design in complex
human-computer interaction, and the reasonable gesture
design can be determined by the fatigue degree of evaluation
test. Quantitative analysis of gesture fatigue can avoid un-
reasonable gesture application, improve user interaction
experience, and promote the realization of human-computer
barrier-free interaction.

Neural network is the development trend. With the
development of complex bionic neuron and the im-
provement of algorithm, neural network can be used in
many fields. (is study will also test more neural net-
works and optimization algorithms to improve the ac-
curacy of the prediction models, such as CNN-LSTM
integrated neural networks. In this study, we only col-
lected the sEMG signals of five graduate students. In the
future work, we should increase the number of subjects to
obtain more comprehensive research data. (e age and
occupation of the subjects should also be expanded to
obtain a wider sample reference.
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