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Abstract

Background: Genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs)
that may be genetic factors underlying Alzheimer’s disease (AD). However, how these AD-associated SNPs (AD
SNPs) contribute to the pathogenesis of this disease is poorly understood because most of them are located in
non-coding regions, such as introns and intergenic regions. Previous studies reported that some disease-associated
SNPs affect regulatory elements including enhancers. We hypothesized that non-coding AD SNPs are located in
enhancers and affect gene expression levels via chromatin loops.

Methods: To characterize AD SNPs within non-coding regions, we extracted 406 AD SNPs with GWAS p-values of
less than 1.00 × 10− 6 from the GWAS catalog database. Of these, we selected 392 SNPs within non-coding regions.
Next, we checked whether those non-coding AD SNPs were located in enhancers that typically regulate gene
expression levels using publicly available data for enhancers that were predicted in 127 human tissues or cell types.
We sought expression quantitative trait locus (eQTL) genes affected by non-coding AD SNPs within enhancers
because enhancers are regulatory elements that influence the gene expression levels. To elucidate how the non-
coding AD SNPs within enhancers affect the gene expression levels, we identified chromatin-chromatin interactions
by Hi-C experiments.

Results: We report the following findings: (1) nearly 30% of non-coding AD SNPs are located in enhancers; (2) eQTL
genes affected by non-coding AD SNPs within enhancers are associated with amyloid beta clearance, synaptic
transmission, and immune responses; (3) 95% of the AD SNPs located in enhancers co-localize with their eQTL
genes in topologically associating domains suggesting that regulation may occur through chromatin higher-order
structures; (4) rs1476679 spatially contacts the promoters of eQTL genes via CTCF-CTCF interactions; (5) the effect of
other AD SNPs such as rs7364180 is likely to be, at least in part, indirect through regulation of transcription factors
that in turn regulate AD associated genes.

Conclusion: Our results suggest that non-coding AD SNPs may affect the function of enhancers thereby
influencing the expression levels of surrounding or distant genes via chromatin loops. This result may explain how
some non-coding AD SNPs contribute to AD pathogenesis.
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Background
Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by cognitive impairment. In postmortem
brains from AD patients, amyloid beta (Aβ) deposits on
the surface of neurons and intracellular aggregations of
hyperphosphorylated tau protein are observed. The her-
itability of AD is estimated to be between 58 and 79%
[1]. The APOE ε4 allele is the genetic factor with the
strongest influence identified to date on the risk of late-
onset AD (LOAD). Genome-wide association studies
(GWASs) have found 20 genetic loci associated with AD
[2–8]. Furthermore, genome-wide linkage studies have
reported the associations with 14 genomic regions, in-
cluding nearly 150 genes [9]. Of them, APOE, CLU, CR1,
and PICALM were found in both of the GWASs and the
linkage studies. CLU is located in a chromosome 8p21.1
and encodes clusterin or apolipoprotein J. CR1 is located
in a chromosome 1q32.2 gene and encodes the comple-
ment component (3b/4b) receptor 1. CLU and CR1 are
associated with immune and inflammatory responses.
PICALM is located in a chromosome q14.2 and encodes
phosphatidylinositol binding clathrin assembly protein.
PICALM is involved in clathrin-mediated endocytosis.
Most of the genes that were reported in the GWASs in-
cluding above genes are the closest genes of the single-
nucleotide polymorphisms (SNPs) identified in these
GWASs, however, it is unclear whether the GWAS SNPs
really affect the closest genes because most of the
GWAS SNPs are located in non-coding regions, such as
introns and intergenic regions. In fact, 98% of the SNPs
that were found in a recent GWAS meta-analysis were
located in non-coding regions [10]. These AD-associated
SNPs (AD SNPs) could be tag SNPs of surrounding
functional exonic variants [11]; however, a fine-mapping
study of BIN1, CLU, CR1, and PICALM, which are the
closest genes to several AD SNPs, showed no direct as-
sociation with AD pathogenesis [12].
Recent studies have reported that disease-associated

non-coding SNPs alter the functions of regulatory se-
quences, such as enhancers that typically regulate gene ex-
pression levels. For instance, Soldner et al. showed that a
non-coding risk variant rs356168, which is associated with
Parkinson’s disease (PD), is located in an enhancer region
and upregulates the expression level of a PD-susceptibility
gene SNCA [13]. It is reported that some SNPs in AD in-
fluenced gene expression levels as in AD [14, 15]. In par-
ticular, Karch et al. searched functional AD SNPs from 21
loci that were found in the IGAP GWAS and revealed that
the ZCWPW1 and the CELF1 loci were associated with
some gene expressions [15].
The SNPs that influence gene expression levels as

mentioned above are called expression quantitative trait
loci (eQTLs). eQTLs are useful for considering function
of non-coding SNPs, however this approach only achieves

indirect evidence because eQTL effects are usually deter-
mined by correlations between genotypes and expression
levels of target genes [16]. One of the molecular mecha-
nisms to explain eQTL effects is contact between eQTLs
and target genes by the formation of chromatin loops.
Chromatin regions including eQTLs fold in order to bring
in proximity to the genes they regulate. A growing body of
evidence indicates that disease-associated variants in en-
hancers affect the expression levels of distal genes via
chromatin loops in several diseases such as frontotem-
poral lobar degeneration, which belongs to the group of
neurodegenerative diseases that includes AD [17–20].
These findings suggest that non-coding AD SNPs may
alter the functions of regulatory sequences, such as en-
hancers that typically regulate gene expression levels via
chromatin loops. Thus, we hypothesized that non-coding
AD SNPs are located in enhancers and affect gene expres-
sion levels.
To test this hypothesis, we analyzed 392 AD SNPs located

in non-coding regions by integrating enhancer activity data
and chromatin interaction data. In particular, we used data
from the Encyclopedia of DNA Elements (ENCODE) pro-
ject [21] and the Roadmap Epigenomics project [22]. These
projects measured epigenomic markers, including histone
modifications and DNase I-hypersensitive sites, across every
human tissue or cell type, and used these data to estimate
genome-wide chromatin states (e.g., whether an enhancer
is activated or not) [23, 24]. To identify chromatin–chro-
matin interactions such as chromatin loops, we used data
from the chromosome conformation capture (3C) variant
Hi-C, which can capture genome-wide chromatin interac-
tions via high-throughput sequencing. We found that
nearly 30% of the non-coding AD SNPs were located in en-
hancers and that they affected the expression of genes
associated with Aβ clearance, synaptic transmission, and
immune responses. Among the non-coding AD SNPs,
rs1476679 at the ZCWPW1 gene locus and rs7364180 at
the CCDC134 gene locus were associated with several
eQTL genes, which are the genes influenced by the eQTLs.
Finally, analysis of chromatin higher-order structure re-
vealed direct associations between rs1476679 and eQTL
genes. Our findings would explain the regulatory mechan-
ism of this AD SNP.

Methods
AD-associated SNPs (AD SNPs)
AD SNPs were obtained from the GWAS catalog database
(Release 20,170,627, ftp://ftp.ebi.ac.uk/pub/databases/
gwas/releases/2017/06/27/gwas-catalog-associations.tsv)
[25]. These SNPs included “Alzheimer” in the “DISEASE/
TRAIT” column of the GWAS catalog data. We investi-
gated 406 of these SNPs, including 19 confirmed SNPs
identified in the IGAP study [10] and AD SNPs with
GWAS p-values of less than 1.00 × 10− 6, which is used as
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a suggested threshold in GWAS. The suggested threshold
is generally used as a common threshold for initial SNP
selection in many studies. The SNPs that satisfied a
GWAS suggestive threshold are not fully denied the asso-
ciation with diseases. The statistical significance of those
SNPs may increase with an increase in sample size or
meta-analysis. In this study, we analyzed the SNPs that are
likely to relate to AD, not just the SNPs that were strongly
associated with AD. The non-coding AD SNPs and the
methods for association test are described in Additional
file 1: Table S1. The genomic positions of all SNPs were
standardized to the human reference genome (hg19)
based on their reference SNP ID (rsID). SNPs without a
rsID were manually curated.

Enhancer data from 127 tissues or cell types
A chromatin state model for 127 tissues or cell types was
obtained from the Roadmap Epigenomics website (http://
egg2.wustl.edu/roadmap/web_portal/). These 127 tissues or
cell types are described in Additional file 1: Table S2. The
chromatin state model segments the human genome into
25 states based on 12 chromatin marks (H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac, H4K20me1,
H3K79me2, H3K36me3, H3K9me3, H3K27me3, H2A.Z,
and DNase I-hypersensitive sites) using ChromHMM and
ChromImpute [23, 24]. We extracted six enhancer states
(Active Enhancer 1 (EnhA1), Active Enhancer 2 (EnhA2),
Active Enhancer Flank (EnhAF), Weak Enhancer 1
(EnhW1), Weak Enhancer 2 (EnhW2), and Primary
H3K27ac possible Enhancer (EnhAc)) from the 25 states
and treated them as enhancer data (Additional file 1: Table
S3). EnhA1, EnhA2, and EnhAF show high levels of
H3K4me1 and H3K27ac, which are enhancer-associated his-
tone modifications. EnhW1 and EnhW2 show high
H3K4me1 and low H3K27ac levels. EnhAc shows low
H3K4me1 and high H3K27ac levels.

Expression quantitative trait loci (eQTLs)
The eQTL genes of each AD SNP were searched in the
GTEx Portal database (https://www.gtexportal.org/) [26,
27] and the BRAINEAC database (http://www.braineac.
org/) [28]. For further details, see Additional file 2:
Supplementary Information. The eQTL genes in the
above databases are located on the same chromosome as
the associated SNPs. Pseudogenes were removed based
on the GENCODE pseudogene resource from the eQTL
analysis [29]. The AD SNPs were considered to associate
with the eQTL genes if the corrected p-value was less
than 0.05. Each p-value was corrected for multiple testing
across genes on the same chromosome using Storey’s q-
value [30]. Gene functional enrichment analysis of the
eQTL genes was performed using the Metascape database
(http://metascape.org/) [31].

Differentially expressed genes (DEGs) from publicly
available datasets
DEGs between AD and non-demented brains were iden-
tified using three publicly available gene expression data-
sets (syn5550404 [32], GSE5281 [33], and GSE44770
[34]). For further details, see Additional file 2: Supple-
mentary Information. The syn5550404 dataset contains
RNA-seq data for cerebellum and temporal cortex sam-
ples from 312 Caucasian subjects with neuropathological
diagnosis of AD, progressive supranuclear palsy, patho-
logic aging or elderly controls without neurodegenera-
tive diseases. The DEGs were identified using multivariate
linear regression after adjusting for covariates (age at death,
gender, RNA integrity number (RIN), source, and flow cell).
These statistics were provided by the AMP-AD Knowledge
Portal (https://www.synapse.org/#!Synapse:syn2580853/wiki
/409840). The GSE5281 dataset contains microarray data
for six brain regions that are either histopathologically or
metabolically relevant to 33AD and 14 aging; these include
the entorhinal cortex (BA 28 and 34), superior frontal gyrus
(BA 10 and 11 and approximate BA 8), hippocampus,
primary visual cortex (BA 17), middle temporal gyrus (BA
21 and 37 and approximate BA 22), and the posterior
cingulate cortex (BA 23 and 31). The GSE44770 dataset
contains microarray data for 230 autopsied tissues from
dorsolateral prefrontal cortex (PFC), visual cortex (VC) and
cerebellum (CR) in brains of LOAD patients, and non-
demented healthy controls. These two datasets were reana-
lyzed, because statistics for the comparisons were not
provided. The reanalyses of GSE5281 and GSE44770 was
performed using t-tests and logistic regression analyses with
covariates (age, gender, postmortem interval in hours, sam-
ple pH, RIN, sample processing, and batch), respectively, as
described in the original analyses. DEGs were defined based
on an FDR-adjusted p-value < 0.05.

Overlap between the eQTL genes and the DEGs
To test whether the DEGs significantly include the
eQTL genes, we calculated the p-value by hypergeo-
metric distribution test and the fold enrichment ratio
(FER) as follows:

P X ¼ xð Þ ¼
m
x

� �
N−m
n−x

� �

N
n

� � ;

FER ¼ x
E
;

E ¼ mn
N

;

where x is the number of genes which are the DEGs and
the eQTL genes, and m and n are the numbers of the
DEGs and the eQTL genes, respectively. P(x) is a prob-
ability when the number of genes which are the DEGs
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and the eQTL genes is x. N is the total number of genes
that were analyzed in the dataset. E is the expected
value. When the FER was greater than 1, the overlap be-
tween the DEGs and the eQTL genes was higher than
an expected value.

Cell culture
We employed two cell lines for this study: the neuro-
blastoma cell line SK-N-SH (American Type Culture
Collection, Manassas, VA, USA) (HTB-11) and the as-
trocytoma cell line U-251 MG (Japan Collection of Re-
search Bioresources Cell Bank, Ibaraki, Osaka, Japan)
(IFO50288). Both cell lines were grown in Eagle’s MEM
and cultured at 37 °C with 5% CO2. For further details,
see Additional file 2: Supplementary Information.

TCC library preparation and deep sequencing for target
regions
Tethered conformation capture (TCC), which is a variation
of Hi-C, was performed to detect chromatin interactions. A
TCC library was prepared in accordance with the method
reported by Kalhor et al. with minor modifications [35]. The
captured DNA fragments corresponding to the target re-
gions were obtained from the TCC library using the SureSe-
lect Target Enrichment System (Agilent Technologies). The
library was subjected to paired-end sequencing on the Gen-
ome Analyzer IIx or MiSeq (Illumina) platform. For further
details, see Additional file 2: Supplementary Information.

Processing the sequencing output
In accordance with the procedure established by Ima-
kaev et al. [36], we mapped the sequenced reads to the
human reference genome (hg19) using Bowtie2 and used
the “hiclib” library (provided by the Leonid Mirny La-
boratory (https://bitbucket.org/mirnylab/)) to filter out
non-informative reads. For further details, see Additional
file 2: Supplementary Information.

Chromatin interaction analysis
To identify significant chromatin interactions, we ap-
plied the R software package fourSig [37]. We counted
mapped reads from TCC to the nearest restriction sites
(HindIII sites) because TCC assumes that chromatin in-
teractions occur around restriction sites. A viewpoint
nearest to the HindIII sites on both sides of the SNP
was selected when we detected chromatin interactions
for an SNP. A window size of one fragment was set. The
significance level employed was an FDR-adjusted p-value
of 0.05.

Identification of topologically associating domains (TADs)
Identification of TADs in the SK-N-SH and U-251MG
cell lines was performed using the R software packages
HiCdat and HiCseg [38, 39]. The sequenced reads

mapped to the human reference genome (hg19) were
normalized using HiCdat and compiled using a genomic
bin size of 100 kb. The default values for the HiCseg pa-
rameters were employed to detect TADs. HiCseg esti-
mated the TAD block boundaries based on a maximum
likelihood approach.

Results
Nearly 30% of non-coding AD SNPs are located in
enhancers
Figure 1 provides an overview of our study. First, we col-
lected AD SNPs from the GWAS catalog database [25].
These AD SNPs have GWAS p-values of less than
1.00 × 10− 6, which is used as a suggested threshold in
GWAS. Among the 406 AD SNPs, 392 SNPs (96.6%)
were in non-coding regions, whereas the rest were mis-
sense and synonymous mutations (Fig. 2a). Next, we
checked whether these non-coding AD SNPs were lo-
cated in enhancers, using publicly available enhancer
data. Enhancer locations were predicted based on 11 his-
tone modifications and DNase I-hypersensitive sites
quantified in 127 human tissues or cell types, including
10 brain tissues (see Methods). We counted non-coding
AD SNPs located in the enhancers that were predicted
in one or more tissues or cell types. Among the 392
non-coding AD SNPs, 106 (27.0%) were in enhancers
(Fig. 2b). Of these 106 SNPs, 40 (10.2% of the 392 non-
coding AD SNPs) were in enhancers identified in one or
more brain tissues.

Genes affected by non-coding AD SNPs are related to AD-
relevant processes and are often differentially expressed
in AD patients
The 106 non-coding AD SNPs may affect the expression
levels of genes in any tissue or cell type because en-
hancers are regulatory elements that influence the ex-
pression levels of genes. Next, we investigated whether
the non-coding AD SNPs functioned as eQTLs, which
affect gene expression levels. To this end, the genes in-
fluenced by the non-coding AD SNPs (hereafter referred
to as eQTL genes) were collected from the GTEx Portal
[26, 27] and BRAINEAC databases [28]. We used the
eQTL genes that are located on the same chromosome
as the associated AD SNPs. Among the 106 non-coding
AD SNPs located in enhancers, 46 SNPs were associated
with at least one eQTL gene and, overall, 130 eQTL
genes were identified. These eQTL genes were related to
Aβ formation, synaptic transmission, and immune re-
sponses (Table 1). These results were replicated even
when different databases were used (Additional file 1:
Tables S4 and S5). Interestingly, AD GWAS SNPs from
a previous GWAS meta-analysis study were also associ-
ated with immune responses [40].
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We tested whether the eQTL genes were differentially
expressed between AD and non-AD brain tissues. For
this analysis, we used three publicly available datasets
(syn5550404 [32], GSE5281 [33], and GSE44770 [34])
that include gene expression data analyzed in nine hu-
man brain tissues (prefrontal cortex, temporal cortex,
visual cortex, entorhinal cortex, hippocampus, medial
temporal gyrus, posterior cingulate, superior frontal
gyrus, and cerebellum). Differentially expressed genes
(DEGs) between AD and non-AD were identified in each
brain tissue in each dataset (FDR < 0.05) (Additional file
1: Table S6)). We counted the number of the eQTL
genes that were identified as the DEGs and test whether
the DEGs significantly include the eQTL genes using a
hypergeometric distribution test (see Methods). Our

results showed that the eQTL genes were significantly
included among the DEGs in some tissues including the
entorhinal cortex and hippocampus that are closely re-
lated to AD pathologies (Table 2). Among the 126
eQTL genes analyzed in these datasets (4 of the 130
eQTL genes were not analyzed in the datasets be-
cause those corresponding probe sets were not con-
structed in the microarray or those transcripts did
not satisfy criteria in RNA-seq), 110 genes (87.3%)
were differentially expressed in one or more brain tis-
sues or datasets. Additionally, 35 of 46 SNPs (76.1%)
had one or more these differentially expressed eQTL
genes. These results suggested that the non-coding
AD SNPs affected genes whose expression levels were
altered in the AD brain.

Fig. 1 Flowchart of the present study

Fig. 2 Nearly 30% of non-coding AD SNPs are located in enhancers. a Circle chart showing the genomic region location of AD SNPs from the
GWAS catalog database (p-value < 1.00 × 10− 6). b Circle chart showing the proportions of non-coding AD SNPs located in non-enhancer regions
and in enhancers identified in one or more tissues or cell types. “Brain Enhancer” indicates non-coding AD SNPs located in enhancers identified
in one or more brain tissues. “Non-Brain Enhancer” indicates non-coding AD SNPs located in enhancers that were not identified in brain tissues
but were identified in the other tissues or cell types. All tissue and cell type names are described in Additional file 1: Table S2
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AD SNPs with eQTL effects are often located at protein-
binding sites
Enhancers are regulatory regions that control the ex-
pression levels of surrounding genes when bound by
specific proteins, such as transcription factors (TFs). To
emphasize that the non-coding AD SNPs are located in
the enhancers, we looked for TF-binding sites in these
enhancers using the ENCODE ChIP-seq data for 161
TFs from 91 human cell types, which included 17 brain
tissues or cell types (Additional file 1: Table S7). Among
the 46 SNPs with eQTL effects discussed above, 19 were

located at a protein-binding site in at least one cell types
(Table 3). The closest genes were the corresponding eQTL
genes for only eight of these SNPs, indicating that GWAS
SNPs do not always affect the closest genes (Table 3). Four
SNPs of the SNPs (rs4663105, rs1532278, rs4147929, and
rs439401) were located around well-known AD candidate
genes (BIN1, CLU, ABCA7, and APOE) and were eQTLs of
those genes. The BIN1 locus rs4663105 was located in
enhancer that was activated in five tissues or cell types.
Interestingly, all of these tissues or cell types were from
brain regions including the hippocampus, suggesting that

Table 1 Gene functional enrichment analysis

GO Category Description Count % Log10(P) Log10(q)

GO:1902430 GO Biological Processes Negative regulation of amyloid-beta formation 3 2.38 -5.03 -0.94

GO:0007271 GO Biological Processes Synaptic transmission, cholinergic 4 3.17 -4.47 -0.91

R-HSA-1834949 Reactome Gene Sets Cytosolic sensors of pathogen-associated DNA 5 3.97 -4.34 -0.89

GO:0002768 GO Biological Processes Immune response-regulating cell surface receptor signaling pathway 11 8.73 -4.29 -0.89

GO:0072665 GO Biological Processes Protein localization to vacuole 4 3.17 -3.86 -0.8

GO:0006353 GO Biological Processes DNA-templated transcription, termination 5 3.97 -3.45 -0.59

GO:0016032 GO Biological Processes Viral process 13 10.32 -3.35 -0.53

GO:0007169 GO Biological Processes Transmembrane receptor protein tyrosine kinase signaling pathway 11 8.73 -2.74 -0.26

GO:0071466 GO Biological Processes Cellular response to xenobiotic stimulus 5 3.97 -2.62 -0.2

GO:0007127 GO Biological Processes Meiosis I 4 3.17 -2.36 -0.02

GO:0031329 GO Biological Processes Regulation of cellular catabolic process 11 8.73 -2.33 -0.02

R-HSA-5653656 Reactome Gene Sets Vesicle-mediated transport 10 7.94 -2.31 -0.01

M254 Canonical Pathways PID MYC REPRESS PATHWAY 3 2.38 -2.27 0

GO:0043547 GO Biological Processes Positive regulation of GTPase activity 7 5.56 -2.09 0

GO:0002274 GO Biological Processes Myeloid leukocyte activation 9 7.14 -2.06 0

Terms with p-value < 0.01, minimum count 3, and enrichment factor > 1.5 (enrichment factor is the ratio between observed count and the count expected by
chance) are collected and grouped into clusters based on their membership similarities

Table 2 Statistical test for DEG enrichment in eQTL genes

“Brain region” includes the following regions; TC temporal cortex, CBE cerebellum, PFC prefrontal cortex, VC visual cortex, EC entorhinal cortex, HIP hippocampus,
MTG medial temporal gyrus, SFG superior frontal gyrus, PC posterior cingulate. “Samples” indicates the number of samples in each dataset. “Significant DEG
Count” indicates the number of significantly differentially expressed genes in eQTL genes dataset. “FER” indicates the number of the observed genes to the
expected value. “P-value” were calculated from hypergeometic distribution test
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rs4663105 has the brain-specific eQTL effects (Additional
file 1: Table S8). An enhancer near CLU locus was activated
in 63 tissues or cell types including 4 brain tissues. The
APOE locus rs439401 is located in the APOE-APOC1 inter-
genic region. Enhancers near rs439401 were activated in
102 tissues or cell types including 7 brain tissues
(Additional file 1: Table S8). This region is known as multi-
enhancer 1 and affects APOE expression in various tissues
or cell types, including macrophages, adipose tissue, and a
neuronal cell line [41, 42]. Indeed, APOE was identified as
one eQTL gene of rs439401 in our study. On the other

hand, 28 tissues or cell types where the enhancer involving
the ABCA7 locus was activated did not include brain tissues
and were mainly from immune cells, such as monocytes, B
cells, and T cells.

AD SNPs and their eQTL genes co-localize in topologically
associating domains
A fundamental mechanism underlying the effects of
eQTLs on their regulated genes is enhancer-promoter
regulation via chromatin higher-order structures, such
as chromatin loops. Therefore, we examined whether

Table 3 List of 19 SNPs that were located at protein-binding sites and that have eQTLgene(s)

“eQTL” indicates whether the closest gene is eQTL gene or not. “Enhancer Tissue Count” indicates the number of tissues or cell lines showed enhancer activity.
“GWAS p-value” indicates p-value from GWAS Catalog database

Fig. 3 AD SNPs and their eQTL genes co-localize in topologically associating domains (TADs). Heatmap showing the frequency of chromatin
interactions based on tethered conformation capture (TCC) experiments in the astrocytoma cell line U-251MG (100-kb bins). Diagonal darker
blocks indicate TAD. AD SNP could contact the distal eQTL genes via chromatin interactions
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the non-coding AD SNPs in enhancers regulate their
eQTL genes through chromatin higher-order structures.
We focused on topologically associating domains
(TADs), which are genomic regions that spatially inter-
act with each other (Fig. 3) [43, 44], since enhancers and
their targeted promoters aggregate in the same TAD
[45, 46]. Therefore, we examined whether the 19 SNPs
shown in Table 3 co-localized with the corresponding
eQTL genes in the same TAD. To detect TADs, we per-
formed tethered conformation capture (TCC), which is a
variant of the Hi-C method that is used for the identifi-
cation of comprehensive chromatin loops through
paired-end sequencing [35]. The neuroblastoma cell line
SK-N-SH and the astrocytoma cell line U-251 MG were
analyzed in the TCC experiment. These cell lines were
used as models of brain cells. TADs were detected in
each cell line using HiCdat and HiCseg software [38,
39]. Among the 19 SNPs, 18 SNPs (94.7%) co-localized
with at least one eQTL gene in the same TAD in the
SK-N-SH and/or U-251 MG cell line (Table 4). Further-
more, 13 SNPs in SK-N-SH and 14 SNPs in U-251 MG
co-localized in the same TAD with more than 80% of
the eQTL genes associated with that particular SNP.
These results suggested that the AD SNPs might regu-
late eQTL genes in the same TAD through chromatin
higher-order structures.

AD SNPs associating with many eQTL genes are located
in CTCF-binding sites
We found that rs1476679 and rs7364180 SNPs were as-
sociated with a particularly large number of eQTL genes
(23 and 25, respectively) in Table 3. rs1476679 is located
in the intronic region of the ZCWPW1 gene and in the
enhancer where it is was activated in nine tissues and
cell lines including adipocytes and chondrocytes, but not
brain tissues (Fig. 4a and Additional file 1: Table S9).
rs7364180 is located in the intronic region of the
CCDC134 gene and in the enhancer where it was acti-
vated in 64 tissues or cell types, including 5 brain tissues
(Fig. 4b and Additional file 1: Table S9). These SNPs co-
localized with only approximately 30–70% (depending
on the cell lines) of the corresponding eQTL genes in
the same TAD (Table 4), suggesting that these SNPs af-
fected eQTL genes outside of the TADs via long-range
chromatin interactions. Interestingly, rs1476679 and
rs7364180 SNPs were localized at protein-binding sites
of the CCCTC-binding factor (CTCF) in 12 and 66 cell
lines, respectively, including neuronal cell lines (Fig. 4a,
b and Additional file 1: Table S10). CTCF is a key factor
to form chromatin loops and protects promoters against
acting by chance from distant enhancers [47]. Chroma-
tin loops are formed by the dimerization of two CTCF
proteins binding to both regions that interact each other

Table 4 eQTL genes in TAD
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and the binding of a ring-shaped cohesin complex
(Fig. 4c) [48–50]. The formation of chromatin loops
draws enhancers closer to promoters and can influence
the expression of nearby or distant genes. In addition,
we found binding sites for several TFs within the 1 kb
region downstream from rs1476679 (Fig. 4a) and in the
region including rs7364180 (Fig. 4b). The TFs binding to
these regions included SMC3 and RAD21, which are
components of the cohesin complex. The enhancer re-
gion in the 1 kb region downstream from rs1476679 was
activated in 63 tissues and cell lines including a brain tis-
sue (Fig. 4a and Additional file 1: Table S9). These find-
ings suggested that rs1476679 and rs7364180 might be
involved in the formation of chromatin loops via CTCF
which could regulate the expression levels of eQTL
genes in cooperation with nearby enhancer regions.

rs1476679 spatially contacts many eQTL genes via CTCF-
mediated chromatin loops
To provide further insight on how rs1476679 and
rs7364180 may have an effect on eQTL genes through
chromatin higher-order structures, we performed the fol-
lowing analyses: (1) investigation of whether rs1476679 and
rs7364180 displayed long-range chromatin interactions; (2)
evaluation of whether the SNPs and their eQTL genes
spatially contacted each other through CTCF-CTCF inter-
actions; and (3) examination of whether RNA polymerase
II (RNAPII) bound upstream of the eQTL genes interacting
with the SNPs.
First, we investigated chromatin loops formed by

rs1476679. To this end, we applied the fourSig method
[37] to the TCC data from the SK-N-SH and U-251 MG
cell lines. We found that the chromatin loops extended
approximately ±500 kb from rs1476679 (Fig. 5a). We an-
alyzed publicly available data and validated this extensive
interacting region through chromatin interaction ana-
lysis using paired-end tag sequencing (ChIA-PET),
which is experimental method used to identify chroma-
tin loops, in the 3D Genome Browser [51] (Additional
file 3: Figure S1). The identified chromatin loops were
located within 5 kb of the transcription start sites (TSSs)
of 15 eQTL genes associated with rs1476679 (15 out of
23 genes = 65.2%), suggesting that rs1476679 spatially
contacted many of the eQTL genes through long-range
chromatin interactions.

Previous eQTL studies of AD have indicated that
rs1476679 was associated with PILRB and GATS gene ex-
pression levels [15, 52]; however, it is not known how
rs1476679 regulates these gene expression levels. To exam-
ine whether rs1476679 contacts promoter regions of these
genes via chromatin loops, we visualized significant chroma-
tin loops with the eQTL genes PILRB and GATS genes,
which were significantly downregulated in the AD hippo-
campus (FDR= 3.49 × 10− 4 for GATS and FDR= 0.015 for
PILRB) or entorhinal cortex, which is affected in the early
stages of AD (FDR= 6.74 × 10− 3 for GATS and FDR= 0.261
for PILRB) (Fig. 5b (upper panel) and Fig. 5c). In particular,
the rs1476679 region significantly interacted with the gene
body of PILRB and the upstream region of GATS in the two
cell lines analyzed (asterisks in Fig. 5b (upper panel)). We
also found chromatin loops with the eQTL gene PILRA
gene. PILRA gene was significantly downregulated in the
AD entorhinal cortex (FDR= 0.021) although not in hippo-
campus (FDR = 0.163).
Next, we investigated whether the chromatin loops be-

tween rs1476679 and PILRA, PILRB and GATS occurred
via CTCF-CTCF interactions, which require binding of
CTCF to each interacting region. To this end, we
determined whether CTCF binds to the PILRA, PILRB and
GATS loci using ChiP-seq data for CTCF in brain tissues or
neuronal cell lines from the ChIP-Atlas database (nine
tissues or cell lines; Additional file 1: S11). Furthermore, we
used DNase-seq data to identify CTCF-binding at DNase I-
hypersensitive sites (DHSs) (i.e., open-chromatin regions)
(31 tissues or cell lines; Additional file 1: Table S11). The
bottom panel in Fig. 5b shows the peak scores for CTCF-
binding sites and DHSs. As expected, we recognized
CTCF-binding sites and DHSs in the rs1476679 region.
Additionally, we found CTCF-binding sites in the gene body
of PILRA and PILRB and upstream of PILRA, PILRB and
GATS. These results suggested that rs1476679 spatially in-
teracts with PILRA, PILRB and GATS via CTCF.
Besides CTCF various other TFs were found to bind

to the enhancers in the rs1476679 region and the region
1 kb downstream (Fig. 4a), suggesting that these TFs
could act on promoter regions of PILRA, PILRB or
GATS located in the rs1476679-interacting regions. To
assess this hypothesis, we looked for RNAPII-binding
promoter regions upstream of PILRA, PILRB and GATS,
in the rs1476679-interacting region, using ChIP-seq data

(See figure on previous page.)
Fig. 4 AD SNPs with eQTL effects are often located at protein-binding sites. a, b Cumulative bar graph of the chromatin state across 127 tissues
or cell types (upper panel) and ChIP-seq tracks (bottom panel) around rs1476679 (a) and rs7364180 (b). Three representative chromatin state
groups of the cumulative bar graph are depicted according to the color legend. The chromatin state names are shown in parentheses (see
details in Methods). Details of all 25 chromatin state names are described in Additional file 1: TableS3. Grey bars in ChIP-seq tracks represent peak
clusters of transcription factor (TF) occupancy. The color intensity of the bars is proportional to the level of TF occupancy. Green bars represent
motif sites for the corresponding TFs. These ChIP-seq tracks were generated from the UCSC genome browser (https://genome.ucsc.edu/). c A
schematic representation of a chromatin loop based on CTCF binding
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for RNAPII in brain tissues or neuronal cell lines from
the ChIP-Atlas database (10 tissues or cell lines, Add-
itional file 1: Table S11). By combining the ChIP-seq
data with the DNase-seq data mentioned above, we
identified two regions upstream of PILRB and GATS that
included both RNAPII-binding sites and DHSs, indicat-
ing that these two regions are active promoter regions in
neuronal cell lines (Fig. 5b (bottom panel)). However, we
did not find those signals in the region upstream of
PILRA. The presence of active promoters in two regions
upstream of PILRB and GATS was consistent with esti-
mations based on histone modifications, although a pro-
moter in the region upstream of PILRA was ambiguous
(Additional file 3: Figure S2). The RNAPII-binding sites
of GATS and PILRB and the interacting regions were 2
kb~ 7 kb apart and did not overlap (Fig. 5b (upper panel)
(see Discussion). Taken together, our results suggested
that the enhancers near rs1476679 approached the pro-
moter regions of PILRB and GATS via CTCF-CTCF
interactions.
We visualized significant chromatin loops with the re-

gion 100 kb downstream of rs1476679 to search for
other candidate eQTL genes affected by chromatin loops
from rs1476679 (Additional file 3: Figure S3A). We
found that rs1476679 interacted with a region within ap-
proximately 6 kb of the TSS of the NYAP1 (neuronal tyro-
sine-phosphorylated phosphoinositide-3-kinase adaptor 1)
gene (Additional file 3: Figure S3B), which showed a strong
eQTL effect with rs1476679 (p-value = 1.16 × 10− 11 in
adipose subcutaneous tissues in the GTEx database) and
was significantly upregulated in the AD hippocampus
(FDR= 1.35 × 10− 4) although not in the entorhinal cortex
(FDR= 0.294) (Additional file 3: Figure S3C). CTCF binding
sites and active promoter peaks were found in the region
upstream of NYAP1 although their peaks did not overlap
with the interacting regions (Additional file 3: Figure S3B,
bottom panel) (see Discussion). These results suggested that
rs1476679 affects NYAP1 expression via CTCF-CTCF
interactions.
Taken together, our results from the chromatin

higher-order structure analysis showed that rs1476679

spatially contacted several eQTL genes via chromatin
loops and that rs1476679 likely affects PILRB and GATS,
which were reported as the eQTL genes of rs1476679 in
previous studies, through enhancer-promoter interac-
tions. These enhancer-promoter interactions were sup-
ported by bindings of various TFs near the rs1476679
region and bindings of RNAPII in upstream of PILRB
and GATS.

The impact of rs7364180 on many of its eQTL genes may
be indirect
Finally, we used a similar analysis to identify chroma-
tin loops formed by rs7364180. We found that
rs7364180 significantly interacted with CCDC134 and
its adjacent genes MEI1 and SREBF2 (Additional file
3: Figure S4A); however, no long-range chromatin in-
teractions with the other eQTL genes were identified.
These results suggested that rs7364180 does not dir-
ectly influence the expression levels of most of its
eQTL genes. However, SREBF2 showed strong eQTL
effects with rs7364180 in several brain tissues (Add-
itional file 3: Figure S4B). To examine the genes that
are regulated by SREBF2, whose product is a TF, we
used TRRUST, which is a TF-target interaction data-
base based on text mining and manual curation [53].
This analysis showed that SREBF2 regulates 20 genes
that are significantly associated with AD (FDR =
1.60 × 10− 6) (Additional file 1: Table S12 and S13).
Therefore, many of the eQTL genes identified for
rs7364180 may be indirectly affected by the change in
SREBF2 expression.

Discussion
Previous GWASs have found AD-candidate SNPs, how-
ever, how these AD SNPs act to the pathogenesis is little
known. In this study, we attempted to uncover those
functions, considering epigenetic effects from chromatin
higher-order structure. We confirmed our hypothesis
that many non-coding AD SNPs are located in en-
hancers and affected the expression levels of surround-
ing genes. We also investigated chromatin higher-order

(See figure on previous page.)
Fig. 5 rs1476679 spatially contacts many eQTL genes via CTCF-mediated chromatin loops and affects their expression levels. a Chromatin
interactions of the rs1476679 locus as determined by TCC experiments. Red and blue lines represent significant chromatin interactions from
rs1476679 in SK-N-SH and U-251 MG cells, respectively. b Zoom-in region of the rs1476679 locus. The upper panel indicates chromatin
interactions of the s1476679 locus. The orange and green bands indicate gene bodies on the positive and negative strands, respectively. Gene
symbols in red indicate the eQTL genes of rs1476679. Asterisks indicate chromatin interactions of the rs1476679 locus with the GATS, PILRB, and
PILRA genes. In the bottom panel, the color plot indicates the peak scores from ChIP-seq data for CTCF or RNA polymerase II (RNAPII) and DNase-
seq data showing DNase I-hypersensitive sites (DHSs). Each row in the colored plot represents different brain tissues or neuronal cell lines (18
experiments (rows) including nine tissues or cell lines based on CTCF ChIP-seq, 21 experiments including 10 cell lines based on RNAPII ChIP-seq,
and 82 experiments including 31 cell lines based on DNase-seq; Additional file 1: Table S11). c GATS, PILRB, and PILRA expression levels in the
hippocampus and entorhinal cortex from GSE5281. Boxes represent the interquartile range between the first and third quartiles and median
(internal line). Whiskers denote the lowest and highest values within 1.5 times the range of the 1 first and third quartiles, respectively;
dotsrepresent GATS, PILRB, and PILRA expression levels in each sample
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structure with the aim of revealing direct interactions
between the AD SNPs and eQTL genes through TCC
experiments. We report the following findings: (1)
nearly 30% of non-coding AD SNPs are located in en-
hancers; (2) the eQTL genes of the non-coding AD
SNPs within enhancers are associated with Aβ forma-
tion, synaptic transmission, immune responses, and AD
status; (3) rs1476679 and rs7364180 are associated with
a particularly large number of eQTL genes; and (4)
rs1476679 spatially interacts with many eQTL genes via
chromatin loops.
We showed that the DEGs in the cerebellum were

not significantly overlapped with the eQTL genes in the
independent two datasets (Table 2). The cerebellum in
AD does not present neurofibrillary tangles, which are
intracellular aggregations of hyperphosphorylated tau
protein [54] and has ever been often used as a reference
brain region in AD studies [55, 56]. However, recent
studies have shown that the cerebellum is influenced by
AD pathologies. Studies of functional MRI have re-
ported network-based degeneration in the cerebellum
of AD patients [57, 58]. Additionally, a comprehensive
proteome study suggested that the cerebellum is af-
fected by different pathways compared to the other
brain regions [59]. Our above result may reflect the
specificity of the cerebellum.
Our findings revealed that rs1476679 is not only found in

the enhancer but also directly interacts with eQTL genes
through chromatin loops. In addition to PILRB and GATS,
which were reported in previous studies [15, 52], we found
NYAP1 to be a candidate eQTL gene affected by rs1476679
via a chromatin loop. NYAP1 regulates neuronal morpho-
genesis [60]. A recent large-scale GWAS of AD identified an
SNP around NYAP1 [10] and we found NYAP1 to be upreg-
ulated in the AD hippocampus. Thus, NYAP1 may be
related to AD pathology.
Our TCC experiments showed that rs7364180 inter-

acts with CCDC134 and its adjacent genes, MEI1 and
SREBF2. Although chromatin interactions with other
eQTL genes were not identified, we found that SREFB2,
which is a TF, regulates the expression of 20 genes sig-
nificantly associated with AD. In addition, previous stud-
ies have shown that SREBF2 controls brain cholesterol
synthesis and is involved in diabetes, which is associated
with an increased risk of AD [61, 62], and that AD
model mice overexpressing SREBF2 show Aβ accumula-
tion and neurofibrillary tangle formation [63]. Overall,
these findings suggest that rs7364180 might exert its ef-
fect on AD-associated genes, at least in part, indirectly
via SREBF2.
rs1476679 and rs7364180 are located in CTCF-binding

sites. CTCF is a regulator of chromatin topology that
regulates the boundaries of TADs [43, 44, 64, 65]. Muta-
tions in CTCF-binding sites are associated with diseases

[19, 66]. For instance, in frontotemporal lobar degener-
ation, which belongs to the group of neurodegenerative
diseases that includes AD, a SNP in a CTCF-binding site
modifies the surrounding chromatin conformation and
spatially regulates the expression level of a causative
gene, TMEM106B, leading to neuronal death [66]. These
reports support the hypothesis that the disease risk asso-
ciated to rs1476679 and rs7364180 are due to epigenetic
effects occurring via chromatin loops.
We found 19 SNPs in enhancer regions for which TF

binding was confirmed by ChIP-seq data and that were
associated with at least one eQTL gene (Table 3). Of
them, rs4147929 in the ABCA7 intron was identified
through IGAP GWAS [8]. The enhancer including the
ABCA7 locus was activated in immune cells, such as mono-
cytes, B cells, and T cells. ABCA7 is highly expressed in hu-
man monocytes that induced into macrophages [67].
Additionally, the expression level of ABCA7 is also high in
human microglia [68]. The monocytes-derived macrophages
and microglia response to immune responses and have
phagocytic activities. The epigenetic data that we used in
this study did not include them from microglia, however,
epigenetic status between the monocytes and microglia may
similar. This suggests that the ABCA7 locus rs4147929
could have the eQTL effects in microglia and could affect
pathology in brain regions.
Our study has several limitations. First, the interactions

between the SNP and the eQTL genes were shown using
only the TCC method. Second, the RNAPII-binding sites
of GATS, PILRB, and NYAP1 did not overlap with the
interacting regions. In TCC, an interacting DNA pair is
fragmented with a restriction enzyme and then becomes a
chimeric DNA fragment after ligation. Both ends of this
fragment are sequenced by pair-end sequencing. The re-
sults from pair-end sequencing show the proximal region
that spatially contacted each other. Therefore, interacting
regions are concentrated on the cut site of a restriction
enzyme and do not necessarily overlap with regulatory re-
gions such as promoters. We must analyze more precise
chromatin interactions to prove our results.

Conclusions
In conclusion, multi-omics data analyses, including
analyses of histone modifications, eQTL associations,
protein binding, and chromatin higher-order structure
data, suggested mechanisms by which non-coding AD
SNPs identified in AD GWASs may confer disease risk.
The main novel finding of this investigation is the
eQTL mechanisms identified between rs1476679 at the
ZCWPW1 locus and its eQTL genes through chromatin
interaction analysis. In future studies, we need to com-
pare postmortem human brains from AD patients with
those of normal healthy individuals to clarify the details
of chromatin higher-order structure in AD.
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