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Background: To ensure safe consumption of gluten-free products, there is a need to

understand all sources of unintentional contamination with gluten in the food chain. In

this study, ryegrass (Lolium perenne), a common weed infesting cereal crop, is analysed

as a potential source of gluten-like peptide contamination.

Materials and Methods: Ten ryegrass cultivars were analysed using shotgun

proteomics for the presence of proteins from the prolamin superfamily. A relative

quantitative assay was developed to detect ryegrass gluten-like peptides in comparison

with those found in 10 common wheat cultivars.

Results: A total of 19 protein accessions were found across 10 cultivars of

ryegrass for the protein families of PF00234-Tryp_alpha_amyl, PF13016-Gliadin,

and PF03157-Glutenin_HMW. Protein and peptide homology searches revealed that

gliadin-like peptides were similar to avenin and gamma-gliadin peptides. A total of

20 peptides, characteristic of prolamin superfamily proteins, were selected for liquid

chromatography mass spectrometry (LC-MS) with multiple reaction monitoring (MRM).

Only two of the monitored peptides were detected with high abundance in wheat, and all

others were detected in ryegrass. Glutenin and alpha-amylase/trypsin inhibitor peptides

were reported for the first time in ryegrass and were noted to be conserved across the

Poaceae family.

Conclusion: A suite of gluten-like peptides were identified using proteomics that

showed consistent abundance across ryegrass cultivars but were not detected in wheat

cultivars. These peptides will be useful for differentiating wheat gluten contamination from

ryegrass gluten contamination.

Keywords: wild grass, cereal, ryegrass, gluten, wheat, proteomics, LC-MS/MS

INTRODUCTION

Gluten proteins are the most abundant proteins found in commercial cereal grains, including
wheat, barley, rye and oats (1). Consumption of these proteins will trigger gluten-related disorders
(GRD) in∼100 million people globally (2, 3). At least six GRDs (4) have been described; these may
be autoimmune, allergic, or neither and are caused by a mix of environmental and genetic factors
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(4, 5). Coeliac disease (CD) is the most recognised GRD, which
is currently diagnosed based on serology and small intestinal
biopsies and is estimated in 0.7–1.4% of the global population
(2). Affected individuals are genetically susceptible to generate
an autoimmune inflammatory response in the small intestine
when exposed to gluten proteins. Long-term exposure results in
chronic intestinal inflammation and villi degradation for these
individuals (6).

The only treatment for GRDs is to avoid the intake of trigger
proteins, i.e., commit to a life-long gluten-free diet (GF-diet),
although this is far from simple or easy. Complications arise
through the difficulty in avoiding gluten-containing additives,
inadvertent gluten intake, and food contamination. Gluten is
frequently included in nongrain-based items such as sausages,
salad dressing, imitation meats, and even some medications
(7, 8). Therefore, the GF-diet mainly consists of fruits, vegetables,
legumes, meat, seafood, nuts, dairy and bakery products, which
include GF cereals or pseudocereals, such as rice, corn, quinoa
and millet (9, 10). Nevertheless, these products may contain
hidden gluten due to unintentional contamination through the
food supply chain.

Cross-contamination within the food supply chain can
happen at different stages, such as production, milling, export
and retail. There are multiple possibilities from the moment the
grain is grown until the GF-flour is packed, including agricultural
co-mingling through crop rotation, storage and transport. Some
studies provide examples in the contamination of GF-oats with
gluten-containing cereals during harvest (11–13). One further
aspect in this regard concerns the contamination of GF products
due to weeds growing in the field, a topic that is under-
researched. Weed management in crops is a challenging task.
Farmers spend thousands of dollars each year in an effort to
control weed invasion; however, this outcome is not always
completely accomplished, and farmers must deal with weed seed
contamination, which can become a serious problem for GF-
cereals and other crops that are supposed to be free from gluten,
such as pulses (14).

One of the most common weed seeds found in cereal samples
is ryegrass (genus Lolium) (14). This grass is the most common
weed infesting cereal grain fields in Australia and has small
dense seeds that are difficult to eliminate during automated
grain cleaning (14, 15). Ryegrass belongs to the same Poaceae
grass family as wheat and other gluten-containing crops, wherein
the storage proteins primarily comprise gluten-like proteins.
Ryegrass has been subjected to Western blotting followed by
liquid chromatography mass spectrometry/mass spectrometry
(LC-MS/MS) analysis, demonstrating that it contains proteins
with structural similarity with gluten proteins (15).

Herein, a combination of discovery and targeted proteomic
analyses were undertaken to confirm the presence of gluten-like
proteins in ryegrass cultivars. A targeted LC-MS/MS assay was
developed and used to assess relative levels of target peptides
across 10 ryegrass cultivars and 10 wheat cultivars to identify the
differences in peptide abundance patterns and to identify possible
ryegrass-specific peptide markers.

This study investigates whether gluten contamination can
potentially originate from sources other than traditional cereal
grains, such as field contaminants. Understanding the possible

origins of gluten contamination and establishing identification
and quantification methods for these new protein species could
help to provide a more accurate characterisation of food and
assure food safety for the population affected by GRDs.

MATERIALS AND METHODS

Sample Material
Grain samples from 10 ryegrass and 10 wheat cultivars
were obtained (Supplementary Table 1) from the Australian
pasture collection and Australian Winter Cereals Collection
(Tamworth, Australia). All samples were manually inspected
to exclude foreign seed contamination. Flour samples were
obtained by milling with a Metefem Hungarian Mill (model
FQD2000, Hungary).

Protein Extraction and Digestion
Methods were performed according to the study of Bose
et al., with minor changes (16). Flour (20mg) was weighed
(four replicates of wheat and three replicates of ryegrass) and
mixed with 200 µL of 55% isopropanol and 2% dithiothreitol
(IPA/DTT). Samples were vortexed and sonicated for 5min
and then incubated on a thermo heating mixer block (Thermo
Scientific) at 300 rpm at 65◦C for 45min. The mixtures were
centrifuged for 15min at 20,800 ×g, and the supernatants were
transferred to Protein LoBind Tubes (Eppendorf). The protein
content was quantified via Bradford assay, and 200 µg of protein
was loaded onto 10-kDa molecular weight cut-off (MWCO)
filters (Millipore, Sydney, Australia). Aliquots were adjusted to
200 µL with UA buffer (8M urea in 0.1M Tris-HCl, pH 8).
The filter content was washed two times with 200 µL UA buffer
followed by centrifugation at 20,800 × g for 15min at room
temperature (RT).

Alkylation of cysteines was performed by the addition of 100
µL of 50mM iodoacetamide (in UA buffer) and incubation in
the dark at RT, with 300 rpm shaking for 20min. Samples were
centrifuged for 15min at 20,800 × g and then washed with 200
µL UA buffer and centrifuged again, as previously described.
Flowthrough was discarded and the buffer was changed to 50mM
AmBic (ammonium bicarbonate, pH 8.0) by washing the filters
two times with 200 µL of this digestion buffer followed by
centrifugation. Filters were transferred to fresh collection tubes.
Protein digestion was achieved by adding 200 µL of trypsin
(Promega, Wisconsin, USA) prepared as 200µg/mL in 50mM
AmBic (pH 8.0) containing 1mMCaCl2 and incubated overnight
in the dark at 37◦C with 300 rpm shaking. Sample filters were
centrifuged at 20,800 × g for 15min, followed by two washes
with 200 µL of AmBic (pH 8.0) and centrifugation. Filtrates
were evaporated to dryness in a Savant SpeedVac concentrator
(Thermo Scientific, USA). Peptides were reconstituted in 0.1%
formic acid to a protein concentration of 1 µg/µL for LC-
MS/MS analysis.

Mass Spectrometry and Protein
Identification
Liquid chromatography mass spectrometry was performed using
an Ekspert nanoLC415 (Eksigent, Dublin, CA) coupled to a
TripleTOF R© 6600 mass spectrometer (SCIEX, Redwood City,
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CA, USA). The specifications of the acquisition parameters have
been previously described (15, 16).

Discovery data was generated for 10 ryegrass cultivars, and
the spectra were searched against the Poaceae grass family subset
of the UniProt database (version 2021/01) appended with the
common repository of adventitious proteins. The database from
a higher taxonomic group was used due to poor representation
of the Lolium perenne proteome (748 nonredundant protein
sequences). The UniProt UniRef 100 redundancy reduction was
applied to remove Poaceae proteins with 100% sequence identity,
leading to a total of 1,953,474 protein sequences.

ProteinPilot v5.0.3 software (SCIEX) encompassing the
Paragon and ProGroup algorithms (17) was used to identify
peptides, infer proteins, and generate false discovery rate (FDR)
reports. Results from discovery analysis were curated using an
in-house script (git-hub/Sophia-0061) (18). To ensure quality in
the identification of gluten proteins and peptides, the following
curation parameters were applied: 1% FDR or 99% peptide
confidence, requisite tryptic and semi-tryptic peptides, up to
two missed cleavages, and variable modifications of glutamine
to pyro-glutamic acid, carbamidomethyl cysteine, and oxidation
of methionine.

Protein summaries (Supplementary Data 1) were analysed
to identify proteins of interest, i.e., gluten proteins. In this
regard, a protein family (Pfam) search was performed that
encompassed searching for three specific domains: Gliadin
(PF13016), Glutenin_HMW (PF03157), and Tryp_alpha_amyl
(PF00234). The Pfam search was performed using profile
hidden Markov models 3 (HMMER3) (19). Protein and peptide
homology searches were performed using the BLAST algorithm
and Peptide Search tool available at UniProt2, respectively.

Proteins that contained gliadin, glutenin_HMW, and
Tryp_alpha_amyl domains were selected for targeted assay
development. These protein sequences were gathered into
a FASTA file that was used to construct a table of peptide
multiple reaction monitoring (MRM) transitions using Skyline
Software (MacCoss Lab Software, Washington, USA) (20).
MRM transitions were determined for each peptide. Peptides
were selected for MRM based on the following criteria: (1)
tryptic or semi-tryptic; (2) identified with 95% confidence; (3)
unmodified or common modifications only; and (4) high peak
signal intensity. Transitions for each selected peptide were
prioritised from the acquired discovery data, including precursor
ion (Q1) and fragment ion (Q3) m/z, and rolling collision energy
(Supplementary Data 2). In total, 20 peptides were selected for
MRM experiments. Four semi-tryptic peptides were included;
their fully tryptic versions were not included in the final MRM
due to insufficient evidence in the discovery data. Three MRM
transitions were monitored per peptide based on the intensity
and lack of interferences.

Digested peptides were separated with a Shimadzu Nexera
UHPLC (Rydalmere, Australia) and analysed with a 6500
QTRAP mass spectrometer (SCIEX), as described previously
(15, 16). Relative quantitation was achieved using scheduled

1https://github.com/Sophia-006/FDR_proteins_peptides.git
2Uniprot.org

MRM scanning experiments with a 60-s detection window for
each MRM transition with retention time as determined in
preliminary MRM experiments and a 0.6-s cycle time. Peaks
were integrated using Skyline, wherein all three transitions were
required to coelute at the same retention time (min) with a
signal-to-noise ratio (S/N) > 3. The peak areas for the three
monitored MRM transitions were summed. The mean, SD,
and co-efficient of variation (CV) were calculated for technical
replicates for each peptide (Supplementary Data 3). Batch and
injection order effects were removed from the data bymonitoring
external standards interspersed with the unknown samples while
retaining the differences between ryegrass and wheat samples.

Graphs were generated in the R statistical computing
environment using the ggplot package (21) and Morpheus3

(Broad Institute, Cambridge MA, USA).

RESULTS

Gluten Protein Identification Yield From
Shotgun Proteomics
Ten varieties of L. perenne were studied
(Supplementary Table 1) to confirm the suspected presence of
gluten in this species. For the identification of gluten proteins,
high-resolution data acquisition and database searching was
performed using a UniProt database from a higher taxonomic
group belonging to the family Poaceae. The total number
of proteins identified with 99% confidence between the 10
varieties of ryegrass varied between 160 and 316 (Figure 1A).
Additionally, peptides discovered with tryptic digestion varied
between 205 to 503 (Figure 1A).

Next, a protein family domain search was performed for each
of the cultivars with the aim to find proteins containing domains
characteristic of gliadin, glutenin_HMW, and tryp_alpha_amyl
domain families. The results revealed that between three to
eight candidate proteins were found for each of the cultivars
(Supplementary Data 4). A total of 19 protein accessions were
found among the 10 varieties of ryegrass. A table showing
positive identification of proteins representing each domain
family across the varieties is provided in Supplementary Data 4.
For the tryp_alpha_amyl-domain containing protein family
(Figure 1B), the candidate protein with the highest number
of identification occurrences was UniProt accession C3TX90
(present in nine varieties), followed by proteins T1WIP3 (present
in six varieties) and A8VZG4 (present in three varieties).
The lowest number of identification occurrences were for
A0A0P0Y6A6 (present in two varieties) and for proteins D7F5I5,
Q84VT9, and T1WI30 (present in one variety). The gliadin-
domain containing protein family (Figure 1B) was represented
by the proteins G8ZCU8 (present in all the varieties) and I4EP61
(present in six varieties). Further gliadin-domain containing
members were detected between one and three varieties
(I4EP57, F2X0K8, I4EP62, J9QGY5, B6DQD5, Q84U17, F2X322,
and B6UKP4). The glutenin_HMW-domain containing protein
family (Figure 1B) was the family with the lowest representation

3https://software.broadinstitute.org/morpheus/
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FIGURE 1 | (A) Number of proteins (purple) and peptides (green) detected at 1% FDR (99% confidence) for 10 ryegrass cultivars. (B) Proteins identified with the

protein family search (Pfam) that belong to three specific families: PF00234-Tryp_alpha_amyl, PF13016-Gliadin, and PF03157-Glutenin_HMW. The size of the circle

represents the number of identification occurrences among 10 cultivars of ryegrass.

with two candidate proteins, H6UQP6 and X5CHT6, detected in
one ryegrass variety.

Of note, these domains could represent multiple protein
types due to the mixed nature of gluten-type proteins,
i.e., families which comprise a range of proteins that have
the Tryp_alpha_amyl domain or the gliadin-domain are not
necessary α-amylase/trypsin inhibitor proteins or gliadins.
As such, additional protein and peptide homology searches
were performed to determine the full-length homology of
these proteins.

Gluten proteins tend to have conserved regions, and further
bioinformatic analysis is necessary to determine which peptides
could function as peptide markers to differentiate between
grass species. As a result, candidate proteins and peptides were
subject to searches to identify non-ryegrass orthologues, i.e.,
to determine the potential for these peptide sequences to be
observed in additional species. In consideration of the limitations
of mass spectrometric detection, search settings included leucine
and isoleucine equivalence (isobaric amino acids) and a requisite
C-terminal arginine or lysine (trypsin cleavage site).

Results of the searches are shown in Table 1, and a
detailed table specifying the species within the tribe identity
match can be found in Supplementary Table 2. Peptides
SQILQQSSCQVMR (G8ZCU8), CPAIHSVVQAIILQK
(I4EP61), QFLVQQCSPVAEVPFLR (I4EP61), and
QQAQFEGMR (I4EP57) were found to belong exclusively to
avenins present in oats, while peptides QQCCQQLAQIPQQLR
(F2X0K8) and APFASIVASIGGQE (F2X322) belong to gamma-
gliadins that are present in wheat. An additional gamma-gliadin
peptide, APFASIVAGIGGQYR (B6DQD5), was found in species
of the Triticeae tribe.

Two peptides, QQCCQQLAQIPEQSR and
SQMLQQSSCHVIR, from the protein J9QGY5, which is a

low molecular weight glutenin (LMW-GS), belong exclusively to
the wild grass species Dasypyrum villosum of the Triticeae tribe.
HMW glutenin (HMW-GS) peptides DVSAKCRPVAVSQVAR,
ELQESSLEACRQVVDQQLAGR, and QLQCERELQESSLEACR
(X5CHT6) were moderately conserved and found across species
of the Triticeae tribe. The peptide DGSFYPGEATPPQQLQQR
(H6UQP6) was exclusively found in Elymus libanoticus, a species
that belongs to the Triticeae tribe.

Peptide EGMEVFPGCR (T1WIP3) was found exclusively in
the species Elymus grandis (Triticeae); peptide LTAASVPAVCK
(T1WI30) was found in several species of the Triticeae tribe.
The peptide LLQQQLNPCR (A8VZG4) was found in an α-
gliadin sequence of species Dasypyrum hordeaceum (Triticeae).
For A0A0P0Y6A6, which presented protein homology to a
lipid-transfer protein, the conserved peptide TACNCLK was
found in species of families Poaceae, Fabaceae, Asteraceae,
among others; however, the peptide CGVSIPYTISPSIDCSR was
exclusively found in species of rice of tribe Oryzeae. The two
peptides DPYYEQCPMRK and SDLYGPNLQGEVTMLMER
(C3TX90), from a puroindoline-like protein were found
exclusively in Brachypodium sylvaticum of tribe Brachypodieae.
Peptide QLSQIAPQCR (D7FSI5), characteristic of puroindolines
and hordoindolines, was present in several species of the
Triticeae tribe.

Gluten-Like Peptide Quantification in
Wheat and Ryegrass
Peptides characteristic of gluten-like proteins were selected for
LC-MRM-MS analysis. Based on the results obtained from
homology searches, 20 peptides from 13 proteins were measured
with a relative quantitative analysis (Supplementary Data 5).
The selected peptides were measured in 10 cultivars of perennial
ryegrass (L. perenne) to determine the abundance of gluten
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TABLE 1 | Protein and peptide homology search results.

Peptide sequence Protein accession Protein family

domain

Protein homology

(from BLAST)

Peptide search 100%

identity match (Tribe)

SQILQQSSCQVMR G8ZCU8 PF13016 Avenin Aveneae

CPAIHSVVQAIILQK I4EP61 PF13016 Avenin Aveneae

QFLVQQCSPVAEVPFLR I4EP61 PF13016 Avenin Aveneae

AFALQALPAMCDVYVPPHCSVA I4EP61 PF13016 Avenin Aveneae

QQAQFEGMR I4EP57 PF13016 Avenin Aveneae

QQCCQQLAQIPQQLR F2X0K8 PF13016 Gamma-gliadin Triticeae

APFASIVASIGGQE F2X322 PF13016 Gamma-gliadin Triticeae

APFASIVAGIGGQYR B6DQD5 PF13016 Gamma-gliadin Triticeae

QQCCQQLAQIPEQSR J9QGY5 PF13016 LMW-glutenin Triticeae

SQMLQQSSCHVIR J9QGY5 PF13016 LMW-glutenin Triticeae

DVSAKCRPVAVSQVAR X5CHT6 PF03157 HMW-glutenin Triticeae

ELQESSLEACRQVVDQQLAGR X5CHT6 PF03157 HMW-glutenin Triticeae

ELQESSLEACR X5CHT6 PF03157 HMW-glutenin Triticeae

QLQCERELQESSLEACR X5CHT6 PF03157 HMW-glutenin Triticeae

DGSFYPGEATPPQQLQQR H6UQP6 PF03157 HMW-glutenin Triticeae

RCCDELSAIPAYCR Q84VT9 PF00234 Trypsin inhibitor Triticeae

LQCVGSQVPEAVLR T1WIP3 PF00234 Dimeric alpha-amylase inhibitor Triticeae

EGMEVFPGCR T1WIP3 PF00234 Dimeric alpha-amylase inhibitor Triticeae

LLQQQLNPCR A8VZG4 PF00234 Alpha-gliadin Triticeae

LTAASVPAVCK T1WI30 PF00234 Dimeric alpha-amylase inhibitor Triticeae

TACNCLK A0A0P0Y6A6 PF00234 Nonspecific lipid-transfer protein Highly conserved. Families:

Poaceae, Fabaceae, Asteraceae

CGVSIPYTISPSIDCSR A0A0P0Y6A6 PF00234 Nonspecific lipid-transfer protein Oryzeae

DPYYEQCPMRK C3TX90 PF00234 Puroindoline-like protein Brachypodieae

SDLYGPNLQGEVTMLMER C3TX90 PF00234 Puroindoline-like protein Brachypodieae

QLSQIAPQCR D7FSI5 PF00234 Puroindoline, Hordoindoline Triticeae

Peptide sequence, protein accession and protein family are specified. Protein homology refers to all protein types where the peptide was found. Peptide search results refer to all tribes

where the peptide was found with a 100% identity match.

candidates. At the same time, these same peptides were measured
in 10 wheat varieties to compare the abundance between these
two species, aiming to discover peptides that can differentiate
ryegrass from wheat.

The heatmap (Figure 2) shows the logarithmic relative
abundance of the measured peptides across 10 ryegrass cultivars
(n = 3) and 10 wheat cultivars (n = 4). The complete Euclidean
linkage method was used for hierarchical clustering, which shows
clear stratification of ryegrass and wheat. Protein family domain
membership for each protein is also specified within the graph.
The analysis revealed the peptides measured by LC-MRM-MS
in ryegrass cultivars had low abundance or were not detected
in wheat.

Relative Quantitation of Gluten Proteins
Across Ten Cultivars of Ryegrass
Except for the peptides mentioned in the section Gluten-
like peptide quantification in wheat and ryegrass above, the
remaining peptides were only quantified in ryegrass. Their
summary MRM peak area results are shown in Figures 3–
5 according to their protein family domain membership.

The biological variation between cultivars is presented in
Supplementary Data 6.

Results for the gluten-like peptides of family PF13016
Gliadin domain-containing proteins (akin to avenin-like
proteins and gamma-gliadins) are shown in Figure 3.
Peptide SQILQQSSCQVMR (Figure 3A) from protein
G8ZCU8 showed high variability across ryegrass cultivars
with the highest abundance in the cultivar Victorian.
Peptide QQAQFEGMR (Figure 3B) from protein I4EP57
showed variability among all cultivars of ryegrass with a
biological co-efficient of variation (CV) of 32%. Peptide
AFALQALPAMCDVYVPPHCSVA (I4EP61) varied across
the ryegrass cultivars and showed high values; however,
CPAIHSVVQAIILQK and QFLVQQCSPVAEVPFLR (I4EP61)
(Figure 3C) showed lower values but were consistently found
among all ryegrass cultivars, with a biological CV of <20%.
The peptide QQCCQQLAQIPQQLR (Figure 3D) from
protein F2X0K8 shows moderate variance across the cultivars,
showing higher values for Dobson and Victorian. Peptide
APFASIVASIGGQE from F2X322 (Figure 3E) was consistent
across all ryegrass cultivars showing a CV of 20%. Peptide
APFASIVAGIGGQYR from protein B6DQD5 was variable
among ryegrass cultivars and was higher in cultivars Expo
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FIGURE 2 | The Heatmap and hierarchical clustering show the relative abundance of the peptides representing two major groups detected across 10 ryegrass

cultivars (n = 3) and 10 wheat cultivars (n = 4). The colour in each cell represents the log (peak area) of each peptide monitored (red = max value, blue = min value,

grey = NA). The column to the right indicates the protein family membership for the peptides (orange = PF00234-Tryp_alpha_amyl family, blue = PF13016-Gliadin,

green = PF03157-Glutenin_HMW).

and SF Hustle. From protein J9QGY5, two peptides were
measured (Figure 3G): QQCCQQLAQIPEQSR was not only
more abundant but also more variable across cultivars and
was higher in the Dobson cultivar and SQMLQQSSCHVIR
was in lower abundance but was consistent (CV <25%) across
ryegrass cultivars.

Figure 4 shows the quantitation of peptides from proteins
belonging to the family PF03157 HMW-glutenin. Peptides
belonging to two proteins, namely X5CHT6 and H6UQP6,
were measured. Three peptides were quantified from
protein X5CHT6, each showing high variability across the
cultivars. Peptide DVSAKCRPVAVSQVAR showed higher
abundance in Kingston, Platinum, Roper and SF Hustle;
peptide ELQESSLEACRQVVDQQLAGR was highest in
abundance in Dobson, Excess and SF Hustle, while peptide
QLQCERELQESSLEACR was the highest in Victorian
(Figure 4A). The second HMW glutenin, protein H6UQP6,
was quantified using peptide DGSFYPGEATPPQQLQQR with
low biological variance across cultivars with a CV < 15%
(Figure 4B).

The detection of peptides from PF00234 Tryp_alpha_amyl
domain-containing proteins are shown in Figure 5; these
proteins were also shown to have homology to gluten-
like proteins (Table 1). One peptide EGMEVFPGCR was
observed to be variable across ryegrass cultivars. This
peptide is found in protein T1WIP3, a dimeric alpha-
amylase inhibitor (Figure 5A). Peptide LLQQQLNPCR was
variable across ryegrass cultivars and is present in protein
A8VZG4, which is an α-gliadin (Figure 5B). Another
peptide LTAASVPAVCK showed variable abundance
with high levels in cultivars Roper and Victorian. This
peptide is found in protein T1WI30, a dimeric alpha-
amylase inhibitor (Figure 5C). Peptide RCCDELSAIPAYCR
(detected as protein Q84VT9, a trypsin inhibitor) showed

good signal intensity but varied across the ryegrass
cultivars (Figure 5D).

DISCUSSION

Ryegrass (genus Lolium) has been identified as one of the most
challenging weeds for cropping systems due to its ability to resist
herbicides, consequently affecting different farming practises
(22). Furthermore, preliminary investigation of ryegrass proteins
has revealed its potential as a source of gluten contamination (15,
23, 24). In this regard, an isolation and purification method for
the prolamin fraction of ryegrass grains, which was named loliin,
was established as early as the 1930s (23). This study preceded
the study of Shewry in 1986, who characterised prolamins from
different grasses, including L. perenne, and established homology
of ryegrass γ-prolamins to those from wheat, barley and rye.
More recently, Colgrave et al. revealed the reactivity of ryegrass
prolamins to the anti-gliadin antibody and identified possible
antigenic proteins through LC-MS analysis of gel-separated
proteins (15).

Herein, we report the identification of prolamin super-
family peptides in ryegrass cultivars and their quantitation
when compared with wheat, with the aim to measure
differences in peptide abundance and identify potential
peptide markers of ryegrass contamination. To this end, grain
proteins from 10 cultivars of diploid perennial ryegrass
(L. perenne) were processed to enrich for seed storage
proteins and measured by LC-MS/MS in the search for
gluten-like sequences.

Shotgun proteome measurement and database searching were
used for the initial discovery of gluten-like protein sequences.
The protein search database comprised the public sequences of
the Poaceae family proteins from UniProt, a higher taxonomic
group for wheat and ryegrass representing diverse genetic
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FIGURE 3 | Relative quantitation expressed as multiple reaction monitoring (MRM) peak area for peptides from proteins of the family PF13016 across 10 cultivars of

Lolium perenne. Data are presented as the mean ± SD (n = 3) with one to three peptides from each protein. (A) Avenin protein (G8ZCU8); (B) Avenin (I4EP57); (C)

Avenin (I4EP61); (D) Gamma-gliadin (F2X0K8); (E) Gamma-gliadin (F2X322); (F) Gamma-gliadin (B6DQD5); and (G) LMW-glutenin (J9QGY5).
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FIGURE 4 | Relative quantitation of glutenin peptides across the 10 varieties of L. perenne from proteins of the family PF03157. Data are presented as the mean ± SD

(n = 3) with one to three peptides from each protein. (A) HMW-glutenin (X5CHT6); and (B) HMW-glutenin (H6UQP6).

variations. Previous proteomics studies in L. perenne have used
a different database approach where Brachypodium distachyon
sequences were searched to successfully characterise drought
response in the leaves from this grass (25); because of the focus on
this compartment, no gluten-like proteins were identified in this
study. No other studies besides Colgrave et.al. reported proteome
measurement in ryegrass seeds (15).

The discovery strategy herein was complemented by a
protein family domain search identifying three to eight gluten-
like proteins in each ryegrass cultivar (Supplementary Data 4).
This number is lower when compared with the frequency
of gluten proteins identified when searching traditional cereal
grain data (e.g., wheat, rye, barley) against the same Poaceae
subset of the UniProt-KB database, which typically varies

between 5 and 47 gluten proteins (26, 27). However, the
gluten-like protein sequences in ryegrass may differ from
those in wheat and other Poaceae members. Therefore, further
investigation is needed to precisely characterise the prolamins
in ryegrass. Nevertheless, the strategy to determine gluten-
like proteins through detecting the protein family domains
for Gliadin, Glutenin_HMW, and Tryp_alpha_amyl revealed
19 protein accessions representing these families, including: 10
gliadin-domain containing proteins, 2 glutenin_HMW domain
containing proteins, and 7 Tryp_alpha_amyl domain-containing
proteins (Figure 1). Due to a paucity of data (protein sequences)
in the Lolium subset of the UniProt database (748 nonredundant
protein sequences), the identification of gluten-like peptides is
likely not exhaustive and has led to the detection of proteins from
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FIGURE 5 | Relative quantitation of peptides across the 10 varieties of L. perenne from proteins of the Pfam family PF00234. Graphs show the MRM peak area for

each cultivar. Data are presented as the mean ± SD (n = 3) with one peptide from each protein. (A) Dimeric alpha-amylase inhibitor (T1WIP3); (B) Alpha-gliadin

(A8VZG4); (C) Dimeric alpha-amylase inhibitor (T1WI30); and (D) Trypsin inhibitor (Q84VT9).

other species, i.e., orthologous proteins. The implementation of
genomic and/or transcriptomic sequencing efforts would allow
more ryegrass gluten-like proteins to be discovered.

A targeted MRM assay was developed for specifically
measuring peptides found in proteins with homology to gliadins,
glutenins, and ATIs. Prior to measuring these peptides, we
expected that some targets would be detected at high levels in
ryegrass and not in wheat, since target peptides were identified
from ryegrass discovery proteomics. The results of this study
revealed clear differences between the peptide content in ryegrass
and wheat, with peptides predominant in ryegrass, regardless of
belonging to the same family of Poaceae.

Gluten Relative Quantitation and Potential
Markers
Gliadin and HMW Glutenin Family
In this study, nine peptides were identified from seven protein
sequences, characteristic of prolamin proteins, and were
measured by LC-MRM-MS. Six of these proteins belong to
the Gliadin domain containing protein family and one to
the Tryp_alpha_amyl family. Peptide search analysis revealed
that five peptides (SQILQQSSCQVMR, CPAIHSVVQAIILQK,
QFLVQQCSPVAEVPFLR, AFALQALPAMCDVYVPPHCSVA,

and QQAQFEGMR) were primarily detected in avenin
proteins (Table 1, Supplementary Table 2). In ryegrass,
the peptides detected in all cultivars with consistent levels
were QFLVQQCSPVAEVPFLR and CPAIHSVVQAIILQK
(Figure 3C). These peptides are not found in wheat, barley,
or rye; therefore, these peptides are possible markers for
differentiating ryegrass contamination from traditional
gluten-containing grains. However, they are also common
to Avena sp. and thus will not discriminate ryegrass from oats
(Supplementary Table 2). Another peptide, LLQQQLNPCR
(Figure 5B), from protein A8VZG4, a Tryp_alpha_amyl domain
containing protein family member, was present in an α-gliadin
of the species D. hordeaceum of the Triticeae tribe. However,
this peptide may not be an ideal peptide marker due to its lack
of uniform signal. Three peptides (QQCCQQLAQIPQQLR,
APFASIVASIGGQE, and APFASIVAGIGGQYR, Figures 3D–F)
were matched back to γ-gliadin sequences from species of the
Triticeae tribe; interestingly, though these specific peptides were
not detected in the wheat cultivars tested. These peptides showed
variable abundance across the ryegrass cultivars, and although
not detected in the wheat cultivars examined herein, these
peptides will not make ideal markers for ryegrass contamination
due to their presence in known wheat γ-gliadin sequences.
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The nomenclature of prolamin super-family proteins is
diverse depending on the cereal of origin. In wheat, these proteins
are gliadins; in rye, they are secalins; in barley, hordeins, and
oats, they are avenins. The phylogenetic relationship between
prolamin proteins from different species has been demonstrated
with homology comparisons between avenin sequences and
α- and γ-gliadins from wheat, B-hordeins from barley, and
γ-secalins from rye (28–30). Herein, we showed that ryegrass
has gliadin-like peptides that share a certain level of similarity to
avenins and γ-gliadins. Moreover, this agrees with a comparative
genomic study that revealed conserved genetic maps in terms of
orthology and collinearity in the lineage of the Triticeae (wheat),
Aveneae (oat), and Poeae tribes (ryegrass) (31–33), although
phylogeny studies place Lolium closer to Avena than to Triticum
and Hordeum (34–37).

The other fraction of prolamins is constituted by glutenins,
which are present as high molecular weight (HMW) and low
molecular weight (LMW) subunits that join to make multimeric
proteins held by disulphide bonds (1). Immune reactive epitopes
have also been reported for HMW and LMW glutenins (38–43).

In this study, seven peptides were measured from three
glutenin-like protein sequences. None of these peptides have
been reported previously in ryegrass (15). Two peptides
QQCCQQLAQIPEQSR and SQMLQQSSCHVIR (Figure 3G)
from protein J9QGY5 (Gliadin-domain containing protein
family) were found exclusively in LMW-GS of the species
D. villosum of the Triticeae tribe. Both peptides were
experimentally detected in ryegrass but not in wheat; the
peptide SQMLQQSSCHVIR showed consistent levels across
the ryegrass cultivars. Five peptides were characteristic of
HMW-GS. These included four peptides (ELQESSLEACR,
DVSAKCRPVAVSQVAR, ELQESSLEACRQVVDQQLAGR,
and QLQCERELQESSLEACR, Supplementary Figures 1C,D,
Figure 4) matching to protein X5CHT6. These were determined
to be conserved within the Triticeae tribe and had variable
abundance within the analysed ryegrass cultivars. The
peptide ELQESSLEACR (Supplementary Figures 1C,D)
was highly abundant in the wheat cultivars. Peptide
DGSFYPGEATPPQQLQQR was found consistently in ryegrass
samples and was not detected in the wheat extracts; it was
exclusively found in a protein sequence from E. libanoticus,
which is a wild species of the Triticeae tribe.

Two peptides characteristic of LMW glutenin
(QQCCQQLAQIPEQSR and SQMLQQSSCHVIR)
and one peptide characteristic of HMW glutenin
(DGSFYPGEATPPQQLQQR) are found within Triticeae tribe;
however, they were not present in wheat protein sequences. As
such, these sequences may be candidate peptides to differentiate
wheat and ryegrass. Nevertheless, this study reports candidate
glutenin peptides for the first time in ryegrass cultivars.

Tryp_Alpha_Amyl Family
Alpha-amylase/trypsin inhibitor proteins are not considered as
gluten proteins; however, recent research suggests that some
GRDs are not triggered by gluten proteins but by other types
of proteins with similar structures, including ATI proteins (44,
45). These ATI proteins are involved in plant defence; however,

they also activate the innate immune system and trigger pro-
inflammatory cytokines (46–49). It is believed that ATIs can affect
individuals with a sensitive type of GRD (46, 47).

ATI proteins were identified in this study, and diagnostic
peptides were measured by LC-MS. The strategic approach
consisted of searching peptides characteristic of proteins with
the protein family domain PF00234, which lead to the initial
recognition of several proteins and peptides; however, a deeper
analysis using protein and peptide homology searches revealed
that some of these peptides were found in other members
of the PF00234-domain containing proteins, namely nsLTPs
and puroindolines. Ultimately, four peptides characteristic
of ATI proteins were measured from three target proteins.
Two peptides (LQCVGSQVPEAVLR and EGMEVFPGCR,
Supplementary Figures 1A,B, Figure 5A) from protein T1WIP3
were conserved for species of the Triticeae tribe, which coincides
with the quantitative measurements showing a higher abundance
in the wheat cultivars. Peptide LTAASVPAVCK (Figure 5C) from
the protein T1WI30 had variable abundance across the ryegrass
cultivars and was found in sequences from several species of
the Triticeae tribe. Consequently, these peptides are unlikely
candidates for markers of ryegrass presence. The last peptide,
RCCDELSAIPAYCR (Figure 5D), from protein Q84VT9 showed
high abundance in ryegrass and was not detected in wheat. This
peptide was found exclusively in alpha-amylase/trypsin inhibitor
proteins of species Hordeum vulgare; therefore, it is not present
in wheat databases and is a candidate peptide to differentiate
ryegrass from wheat but not barley.

The results described herein for the identification of ATI
proteins provide evidence for peptide sequence similarity
when comparing ryegrass to protein members of the
Triticeae tribe ATIs, but further analysis, supplemented by
genomic/transcriptomic sequencing efforts, would be needed to
ascertain the extent of protein sequence homology. Principally,
the ATIs targeted herein from ryegrass cultivars may not
necessarily have the same immunoinflammatory properties as
the wheat ATIs that are implicated in GRD. ATIs often differ in
secondary structure, i.e., the number and position of intrachain
disulphide bonds, and may contain different arrangements of
α-helices that can influence the ability to activate the innate
immune response (47).

CONCLUSION

Ryegrass is a common field contaminant with dense seeds and
herbicide-resistant properties. These factors render ryegrass with
the potential to enter the supply chain and be inadvertently
consumed by the general population. This study provides
evidence that gluten-like peptides are present in perennial
ryegrass, thereby highlighting the potential risk of unintentional
consumption of gluten through the cross-contamination of
traditional cereal grains. Indeed, this food safety risk is
underscored by a lack of knowledge around the potential for
the industry standard ELISA assessment to produce inaccurate
information. If these new gluten protein species trigger a Coeliac
response but fail to produce an ELISA signal, then a food
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safety issue may remain unchecked. Conversely, should ryegrass
produce no Coeliac response but a strong ELISA signal, then
foods may not meet safety requirements in error, thereby
presenting an unnecessary challenge for food manufacturers.
Future studies are warranted to explore the immunogenic
potential of these new gluten-like proteins to determine their
presence in nontraditional cereal grains, determine their natural
variation, and deploy methods that can be used to differentiate
ryegrass from wheat.

Through targeted measurement of prolamin super-family
proteins, a suite of peptides were identified that showed
consistent abundance across ryegrass cultivars but were not
detected in wheat. These peptides could potentially be used in
an assay for detecting ryegrass contamination in food products
and differentiating ryegrass from wheat contamination in other
cereal grains or processed foods. The methodology developed
herein could also be applied to determine the extent of ryegrass
presence in commodity grain or after processing into food
ingredients. There are however no studies that have reported on
whether the gluten-like proteins from ryegrass can trigger CD
or other GRDs. Nevertheless, one study revealed cross-reactivity
between ryegrass pollen and wheat endosperm proteins (50).
Future investigation is required to measure the immune reactive
potential of ryegrass and continue this important body of work
that now spans over 90 years. Importantly, further studies are
also required to enhance the genomic resources available for
ryegrass so that species-specific proteins are readily identifiable
rather than relying on sequence variation from related taxa to
identify peptides and proteins. A combination of clinical studies
supplemented by analytical workflows to understand the risk
associated with agricultural co-mingling and dietary exposure are
needed to ensure food safety and avoid the inadvertent failure of
the GF-diet.
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