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DNA methylation patterns are essential in understanding carcinogenesis. However, the
relationship between DNA methylation and the immune process has not been clearly
established—this study aimed at elucidating the interaction between glioma and DNA
methylation, consolidating glioma classification and prognosis. A total of 2,483 immune-
related genes and 24,556 corresponding immune-related methylation probes were
identified. From the Cancer Genome Atlas (TCGA) glioma cohort, a total of 683
methylation samples were stratified into two different clusters using unsupervised
clustering, and eight types of other cancer samples from the TCGA database were
shown to exhibit excellent distributions. A total of 3,562 differentially methylated probes
(DMPs) were selected and used for machine learning. A five-probe signature was
established to evaluate the prognosis of glioma as well as the potential benefits of
radiotherapy and Procarbazine, CCNU, Vincristine (PCV) treatment. Other prognostic
clinical models, such as nomogram and decision tree, were also evaluated. Our findings
confirmed the interactions between immune-related methylation patterns and glioma. This
novel approach for cancer molecular characterization and prognosis should be validated
in further studies.

Keywords: glioma, methylation, immune subtype, prognostic signature, pan-cancer
INTRODUCTION

Glioma, which develops from glial cells, is the most common type of primary central nervous system
tumor (1). Therapeutic options for glioma include surgical resection, radiation, and chemotherapy.
However, the overall survival (OS) time continues to be low.

Molecular markers have been shown to be efficient in predicting prognosis, including
mutational status, mRNA expression, and DNA methylation. Several molecular markers
org November 2021 | Volume 12 | Article 7376501

https://www.frontiersin.org/articles/10.3389/fimmu.2021.737650/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.737650/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.737650/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.737650/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:chengquan@csu.edu.cn
mailto:zhixiongliu@csu.edu.cn
https://doi.org/10.3389/fimmu.2021.737650
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.737650
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.737650&domain=pdf&date_stamp=2021-11-04


Hu et al. Methylation Immune Glioma Signature
(MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF) have
been successfully used for the classification and prediction of
prognosis (2). The immune system plays a crucial role in
antineoplasms (3). Apart from cancer cells, the tumor
mic roenv i ronment (TME) con ta in s va r ious non-
carcinogenic cell types, including endothelial cells, pericytes,
and fibroblasts (4). Characteristically, as tumor grade
increases, patients present with heightened levels of
immunosuppression (5) . A typical human immune
response comprises humoral and cell-mediated reactions
that shield the body against foreign bodies, including
microscopic organisms, infections, and tumors. To
prevent autoimmune responses, various immune cells such
as regulatory T cells, monocytes, and neutrophils are
used to suppress inflammation and maintain self-tolerance
(6–8). Given that all options for managing glioma,
t emozo l om ide chemo the r apy , r ad i o th e r apy , and
cort icosteroids , exhibit immunosuppressive effects ,
therapeutic options should confer less reduced side effects
and clinical complications (3).

DNA methylation patterns are now perceived as heritable
alterations in gene expression and are highly involved in
carcinogenesis (9). A minimally invasive biopsy can improve
diagnosis, treatment measures, and prediction of prognosis in
cancer. Peculiar DNA methylation patterns influence critical
genes of carcinogenesis and progression and inhibit some
tumor suppressor genes (10). Therefore, understanding
epigenetic changes can improve the characterization of
malignancy patterns to predict treatment responses and
prognosis (11). Even though DNA methylation patterns of
specific genes have been reported, the scope of immune-related
gene methylation patterns on glioma and other tumors has not
been clearly established.

This study aims to classify and predict glioma outcomes by
concentrating on the interaction between the immune process
and methylation profile. We sought to identify immune-related
probes and build an immune-related cluster using unsupervised
clustering analysis. Moreover, we performed pan-cancer
analysis to identify a pan-cancer immune pattern to
subdivide cancer among patients. Then, we established an
immune-related prognostic signature, a clinical decision tree
model, and a nomogram to inform on customized therapy
and prognosis.
Abbreviations: AUC, Area Under Curve; CNS, central nervous system; C-index,
concordance index; CDF, cumulative distribution function; DC, dendritic cells;
DCA, decision curve analysis; DEGs, differentially expressed genes; DMPs,
differentially methylation probes; ebGSEA, empirical Bayes Gene Set
Enrichment Analysis; GBM, glioblastoma; GEO, Gene Expression Omnibus;
GO, gene ontology; GSEA, gene set enrichment analysis; IL, interleukin; LGG,
lower-grade glioma; MHC, major histocompatibility complex; NFAT5, Nuclear
factor of activated T cells 5; NK, natural killer; OPRK1, k-opioid receptors 1; OS,
Overall Survival; PAC, Proportion of Ambiguous Clustering; PCA, principal
component analysis; PFS, Progression-Free Survival; RT/PCV, radiotherapy and
Procarbazine, CCNU, Vincristine; ROC, receiver operating characteristic; TGF-b,
tumor growth factor-b; TNFa, tumor necrosis factor-a; SNP, single-nucleotide
polymorphism; TCGA, The Cancer Genome Atlas ; TME, tumor
microenvironment; TNFa, tumor necrosis factor a; ZYX, zyxin.
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MATERIALS AND METHODS

Glioma Patient Data
The schematic presentation of the study is shown in Figure 1.

This study involved a total of 683 glioma samples from
TCGA databases and were retrieved from UCSC Xena TCGA
database (https://tcga.xenahubs.net). RNA-seq data of 587
glioma samples were downloaded from the TCGA database
(http://cancergenome.nih.gov/). Correlative clinical traits and
molecular features were also retrieved from the TCGA
database. Pan-cancer data atlas were downloaded from the
UCSC Xena TCGA database. The Gene Expression Omnibus
(GEO) dataset (GSE48462, GSE61160, GSE36278, GSE30338,
and GSE104293) was obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The platform of the
methylation dataset was Illumina HumanMethylation450
BeadChip (GPL13534).

Construction of Immune-Related Probes
Inclusive immune-related genes (2,483 genes) were retrieved
from the ImmPort database (version: July 2020) (https://www.
immport.org/shared/genelists). Corresponding probes in 450k
chipset annotation file (GPL13534) were matched, after which
24,556 immune-related probes participating involved in the
immune process were eventually selected.

Establishment of Immune-Related
Clusters Based on Immune-Related
Probes Using Consensus Clustering
We used the R package “ConsensusClusterPlus” to perform
unsupervised clustering analysis (12). A total of 683 glioma
samples accompanied by 24,556 immune-related probes were
divided into different methylation subtypes using K-means and
Euclidean distance as the baseline clustering algorithm and the
similarity measure, respectively. After 1,000 iterations, the
optimal k value was selected using the Proportion of
Ambiguous Clustering (PAC) measure, which had the
lowest PAC.

Identification of Genome-Wide
Methylation Probes
R package “ChAMP” was used to preprocess and analyze the
Illumina Infinium 450k DNA methylation array (13). Probes with
missing values greater than 20% were deleted. Then probes were
filtered by “champ.filter” to remove those with p > 0.01, bead
count <3, noCG start, Single Nucleotide Polymorphism (SNP)
(14), multihit, and those targeting the X and Y chromosomes.
Other missing values were imputed by k-nearest neighbor (KNN)
imputation algorithm. The normalized beta value matrix was
established by “champ.norm” using the Beta MIxture Quantile
dilation (BMIQ) method (15). Differential methylation probes
were detected using “limma” package to calculate the p-value for
differential methylation using a linear model (16). The Benjamini
and Hochberg false discovery rate method was used to reduce the
false positive rate (FDR) when applying multiple comparisons.
Delta beta means the average discrepancy of beta value between
November 2021 | Volume 12 | Article 737650
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two different groups. Adjusted p<0.05 and delta beta>0.2 were
selected as cutoff values for detecting DMPs. Simultaneously,
differentially expressed genes were identified by “limma”
package with 0.5 logFC cutoff and p value <0.05 (17).

Functional Annotations
Gene ontology (GO) analysis of the methylation profile was
performed using “clusterProfiler” package (18). We used the
Benjamini and Hochberg (BH) method to determine the
adjusted p-values, and pathway in which FDR values were
under 0.05 was chosen.

The Empirical Bayes Gene Set Enrichment Analysis
(ebGSEA) was used to identify the exact enriched genes for
Frontiers in Immunology | www.frontiersin.org 3
specific biological terms or pathways (19). This method can
be used to independently perform GSEA, regardless of DMPs
or differentially methylated regions. Moreover, it can be used
to identify significant genes, with the bias of inequality of
CpG number corrected for each gene. GSEA of the TCGA
RNA-seq cohort was estimated using the “clusterProfiler”
package (18).

Profiling DNA Methylation Age and
Tumor Infiltration
Based on Horvath’s clock model, we used the “agep” method in
the “wateRmelon” package to predict DNAmethylation age from
normalized methylation b values (19).
FIGURE 1 | Overview of the study design. First, we identified 24,556 candidate immune-related methylation probes. Then unsupervised cluster was used in a 683
TCGA glioma methylation cohort. A five-CpG-based prognostic signature was established and validated in five independent GEO datasets.
November 2021 | Volume 12 | Article 737650
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Tumor-infiltrating immune analysis of the methylation set
was performed using the “EpiDish” package (20). We identified
proportions of a priori known cell subtypes present in a sample
representing a mixture of such cell types. FractionS of eight cell
subtypes (B-cells, CD4+ T-cells, CD8+ T-cells, NK-cells,
Monocytes, Neutrophils, Eosinophils, Neutrophils, and
Eosinophils) were estimated using the Robust Partial
Correlations (RPC) method and whole blood subtypes
reference (21). Meanwhile, the tumor-infiltrating immune
analysis of transcriptome was evaluated using the CIBERSORT
algorithm (22). A total of 22 immune cells are calculated in 1,000
times permutations.

Construction and Validation of a
Prognostic Model
Univariate Cox regression analyses were performed using the
“survival” package with a 0.05 p-value cutoff. Then Random
Forest algorithm was used to rank the top 10 methylation
probes that contribute to prediction. Therefore, the
“randomForestSRC” package was used, and the number of trees
was 1,000. Kaplan-Meier analysis was performed to establish the
best combination of the 1,023 participant model. After selecting
the best combination model, exact coefficients of each probe were
determined by the Principal Component Analysis (PCA) method.
FactoMineR and “factoextra” package contributed to applying
PCA (23). The risk score for each patient after the prognostic
value of each gene signature score was obtained using the formula:
risk score = SPC1i - SPC1j, where i represented the expression of
genes with HR>1, and j the expression of genes with HR<1. Risk
score = 10.52*cg11701471-22.14*cg04314652-21.95*cg04314652-
21.34*cg20332504-24.02*cg08985333. To make the cutoff value
more accurate, we employed the survival cutoff method to
determine the optimal cutpoint that corresponds to the most
significant relation with overall survival. The cutoff point of the
high- and low-risk group in the TCGA cohort was −33.57.
Receiver operating characteristic (ROC) analysis was performed
using “timeROC” package (24). Clinical benefits were estimated
using decision curve analysis and were established by R package
“rmda” (25). Five GEO datasets (GSE48462, GSE61160,
GSE36278, GSE30338, GSE104293) were chosen as validation set.

Identification of Clinical Associated
Risk Model
A nomogram and corresponding calibration curve were
established using the “rms” in R package. Univariate and
multivariate Cox proportional hazard analyses were performed
based on the risk score and clinical factors. After multivariate
Cox proportional hazard analysis, factors with p<0.05 were
chosen to establish the nomogram. Forest plots were
constructed using the “forestplot” and “ggforest” packages.
Recursive partitioning analysis was performed using the
“rpart” and “rattle” packages to construct a survival-related
decision tree and stratify the prognostic risk. Concordance
index (C-index) and ROC analysis were used to evaluate the
predictive values of survival among the different models.
Frontiers in Immunology | www.frontiersin.org 4
Prediction of Radiotherapeutic and
Chemotherapeutic Responses
The TCGA GBM cohort was used to predict patient responses to
radiotherapy. The GSE48462 dataset, which was an Anaplastic
Oligodendrogliomas and Oligoastrocytomas cohort treated with
RT or RT/PCV, was used for the prediction of patient responses to
PCV therapy (26). Samples with Illumina HumanMethylation27k
BeadChip were excluded.

Statistical Analysis
Pearson correlation analyses were performed to establish
correlation coefficients. The chi-square test was used to analyze
count data, while the Wilcoxon rank-sum test was used to
analyze continuous data. Kaplan-Meier survival analysis with
log-rank test was used to assess survival differences between
different groups. Data were depicted using the “ggplot2” package.
The cutoff between high-risk and low-risk was determined by
“surv_cutpoint” function in “survminer” package, and all the
survival curves were visualized by the “survminer” package.
Heatmaps are presented using the “pheatmap” package. All
statistical analyses were performed by R software. p<0.05 was
considered statistically significant.
RESULTS

Identification of Immune-Related Clusters
The overall design of our study is shown in Figure 1. We aimed at
identifying immune-related clusters in the TCGA glioma cohort
(n=683) by utilizing the 24,556 immune-related methylation probes
using the ConsensusClusterPlus package (Table S1). Clinical
information of the TCGA glioma cohort is shown in Table 1.
Clustering results are presented in a cumulative distribution
function (CDF) plot and a delta area plot (Figures S1A, B). The
CDF plot and delta area plot revealed that the optimal k value for
stable distribution was 2. We selected k=2 as the epitome number of
clusters, and the heatmap of the consensus matrix showed
satisfactory discrimination (Figure S1C). Kaplan-Meier survival
analysis revealed that cluster2 had a more favorable prognosis
(p<0.0001; Figure 2A). To elucidate on the immune
microenvironment status between the two clusters, tumor-
infiltrating immune analysis was performed in both the TCGA
methylation set and the expression set (n=587). In the methylation
set, we used the EpiDISH package to evaluate differences in seven
immune cells, including B cells, Natural killer (NK) cells, CD4T
cells, CD8T cells, monocytes, neutrophils, and eosinocytes. Levels of
all the seven immune cells were significantly different (p<0.001), and
cluster2 exhibited a higher enrichment score of B cells, NK cells,
CD4T cells, and eosinocytes. In contrast, cluster1 exhibited a higher
proportion of CD8+T cells, monocytes, and neutrophils
(Figures 2B, S1F). The immune microenvironment difference in
the TCGA RNA-seq cohort using the CIBERSORT algorithm
(Figures S1G). Methylation levels between clusters 1 and 2 were
significantly different (p<2.2e-16), with a higher methylation level in
cluster2 (Figure 2C). Since the different methylation statuses may
November 2021 | Volume 12 | Article 737650
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contribute to biological changes, ebGSEA analysis was performed. It
was found that corresponding genes of DMPs were concentrated in
the cytokine-receptor pathways such as TGF−beta Receptor (TGF-
b), TP53, tumor necrosis factor-alpha (TNFa), and interleukin-2
(IL-2), which implied a strong relationship between glioma tissues
and inflammatory responses (Figure 2D). Furthermore, GO
functional enrichment analysis revealed that corresponding genes
of DMPs were enriched in pathways involving neutrophils, T cells,
B cells, macrophages, and mast cell signaling pathways, implying
that the two clusters had vital differences regarding immune status
(Figures 2E, F).

In summary, the GO functional enrichment analysis and the
association between EpiDISH and CIBERSORT results of the
immune infiltrating microenvironment indicated the abnormal
immune infiltrations in cluster1 might serve as prognostic
indicators for strong inflammatory reactions and poor
overall outcomes.

Analysis of DNA Methylation Age and
Clinical and Molecular Feature
The patients in cluster1 trended to be older than cluster2
(Figure 2G). We identified the DNAm ages in the TCGA
methylation cohort (n=683) using the “wateRmelon” package
and compared them with their chronological ages. Chronological
ages (Wilcoxon, p < 2.2e-16) and DNAm ages (Wilcoxon, p = 5e
−06) were found to be higher in cluster1 than in cluster2.
Furthermore, the correlations between chronological ages and
DNAm ages were significantly high (Pearson, R=0.607),
Frontiers in Immunology | www.frontiersin.org 5
indicating that epigenetic age analysis might contribute to
glioma patients’ prognostic prediction (Figure 2H).

Moreover, we evaluated gender, histology, IDH, 1p/19q, and
MGMT distributions between the two clusters. Histology, IDH,
1p/19q, and MGMT were found to be significantly distributed
(Pearson’s chi-squared test, p<0.001). However, no evidence was
found for gender associations between the two clusters
(Figure S2A).

We also employed the survival differences considering the
types of gliomas with the cluster. In details, cluster1 enjoyed
worse prognosis than cluster2 in GBM cohort (p = 0.013) and in
LGG cohort (p < 2e-16). LGG cohort possessed higher survival
possibilities than GBM cohort in cluster1 (p < 0.0001) and in
cluster2 (p = 0.048, Figure S2B).

These results suggest that there is a difference in epigenetic
age and clinical traits.

Differentially Methylated Probes and
Differentially Expressed Genes in the
Two Clusters
Then, we compared global patterns between the two clusters in
the TCGA glioma methylation and expression sets. In the
methylation set, package “ChAMP” was used, and 56886
DMPs were identified from Illumina Infinium 450k DNA
methylation data of 683 samples according to the cutoff of
Delta beta>0.2 and p value<10^-5. Compared to cluster1,
55,186 DMPs were upregulated, while 1,700 DMPs were
downregulated (Figure 3A). At most, 5,964 DMPs were
TABLE 1 | Clinical and genetic characteristics of patients after clustering.

GBM LGG TOTAL

Cluster1 Cluster2 Cluster1 Cluster2 Cluster1 Cluster2
(N=146) (N=7) (N=104) (N=426) (N=250) (N=433)

Gender
Female 60 (41%) 1 (14%) 45 (4%) 163 (38%) 105 (42%) 164 (38%)
Male 80 (55%) 5 (71%) 49 (47%) 211 (50%) 129 (52%) 216 (50%)
Missing 6 (4.1%) 1 (14.3%) 10 (9.6%) 52 (12.2%) 16 (6.4%) 53 (12.2%)

Age (years)
<52 31 (21%) 5 (71%) 42 (40%) 292 (69%) 73 (29%) 297 (69%)
>66 48 (33%) 0 (0%) 14 (13%) 17 (4%) 62 (25%) 17 (4%)
52–66 61 (42%) 1 (14%) 38 (37%) 65 (15%) 99 (40%) 66 (15%)
Missing 6 (4.1%) 1 (14.3%) 10 (9.6%) 52 (12.2%) 16 (6.4%) 53 (12.2%)

IDH
Mutant 2 (1%) 7 (100%) 8 (8%) 423 (99%) 10 (4%) 430 (99%)
WT 135 (92%) 0 (0%) 96 (92%) 0 (0%) 231 (92%) 0 (0%)
Missing 9 (6.2%) 0 (0%) 0 (0%) 3 (0.7%) 9 (3.6%) 3 (0.7%)

pq
Codel 0 (0%) 0 (0%) 1 (1%) 171 (40%) 1 (0%) 171 (39%)
Non-codel 143 (98%) 7 (100%) 103 (99%) 255 (60%) 246 (98%) 262 (61%)
Missing 3 (2.1%) 0 (0%) 0 (0%) 0 (0%) 3 (1.2%) 0 (0%)

MGMT
Methylated 56 (38%) 6 (86%) 40 (38%) 397 (93%) 96 (38%) 403 (93%)
Unmethylated 79 (54%) 0 (0%) 64 (62%) 29 (7%) 143 (57%) 29 (7%)
Missing 11 (7.5%) 1 (14.3%) 0 (0%) 0 (0%) 11 (4.4%) 1 (0.2%)

Radiation therapy
Yes 108 (74%) 7 (100%) 70 (67%) 226 (53%) 178 (71%) 233 (54%)
No 17 (12%) 0 (0%) 21 (20%) 164 (38%) 38 (15%) 164 (38%)
Missing 21 (14.4%) 0 (0%) 13 (12.5%) 35 (8.2%) 34 (13.6%) 35 (8.1%)
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located on chromosome 1, and at least 492 DMPs were located
on chromosome 21 (Figure 3B). The overview of unsupervised
clustering analysis of genome-wide DMPs is shown in the
heatmap. Clinical and demographic features, including
MGMT, IDH with codel subtype, 1p/19q, IDH, sex, age, grade,
histology, and cancer type, are also shown in the
heatmap (Figure 3C).

Differentially expressed genes (DEGs) were identified using
the “limma” package in the expression section, and genes with
log2FC > 0.5 and p < 0.05 were selected (Figure 3D). Global
DEGs and clinical characteristics were visualized by
heatmap (Figure 3E).

Pan-Cancer Analysis of Immune-Related
Methylation Probes
To evaluate the methylation levels of immune-related probes in
other types of TCGA cancers, we applied the unsupervised
consensus clustering method to other 31 cancer types in
TCGA. After selecting optimal k, Kaplan-Meier survival
Frontiers in Immunology | www.frontiersin.org 6
analysis was performed, with the 0.05 significant p-value cutoff.
Finally, eight cancer types, including Stomach adenocarcinoma
(STAD) (p=0.004), Uterine corpus endometrial carcinoma
(UCEC) (p=0.011), Pancreatic adenocarcinoma (PAAD)
(p=0.00018), Acute myeloid leukemia (LAML) (p=0.024),
Thyroid carcinoma (THCA) (p=0.024), Kidney renal clear cell
carcinoma (KIRC) (p<0.0001), Kidney renal papillary cell
carcinoma (KIRP) (p<0.0001), and Skin cutaneous melanoma
(SKCM), were selected (p=0.05; Figures 4A–H). The p-values of
pairwise comparison were also identified (Table S2). This
methylation pattern indicates that further evaluation is required.

Construction of a Prognostic DNA
Methylation Signature for Glioma
To select optimal DNAm markers for glioma patients, we used
24,556 immune-related probes for differential methylation
analysis of 683 TCGA tumor samples by adopting the standard
of Delta beta>0.2 and p value<10^-5. A total of 3,562 probes
were selected. Then univariate Cox regression analysis was
A B

D

E

F G

H

C

FIGURE 2 | Construction and analysis of consensus cluster. (A) Kaplan–Meier survival analysis of the two clusters showing clear separation. (B) Tumor-infiltrating
immune analysis of the two clusters based on TCGA methylation set. (C) Methylation levels of the two clusters. (D) ebGSEA result of the two clusters. (E, F) GO
functional enrichment analysis of the two clusters. (G) Age distribution of the two clusters. (H) Box plot showing the age and DNA methylation age difference
between the two clusters, Scatter plot revealing correlations of the DNA methylation age-age correlation coefficients between cluster1 and cluster2. ***p <0.001.
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performed with overall survival data, and all 3,562 markers were
selected (Figure 5A; Table S3). After univariate Cox regression
analysis, the 3,562 probes were put into machine learning
algorithms, using Random Forest with overall survival profile,
and 10 probes were selected (cg20332503, cg15734706,
cg23505299, cg08015801, cg18443253, cg04314652,
cg11701471, cg07388018, cg00732815, cg08985333)
(Figures 5B, S1D). The 10 probes could form 1,023
combinations (Table S4), and Kaplan-Meier analysis was
performed to establish the best probe combination. First, we
Frontiers in Immunology | www.frontiersin.org 7
contrasted their Log-rank p-values. However, the top 10
signature p values turned out to be close to 0 infinitely, which
meant that their overall survival conditions were significantly
distinct but not comparable. Therefore, we compared chi-
squares (chisq) of each model and a five-probe signature
(cg11701471, cg04314652, cg08985333, cg15734706,
cg20332503) with the highest chi-square was selected finally
(Figure 5C). Profile of the five methylation probes was given
(Table 2). Then, coefficients of the signatures were determined
by PCA (Figure S1E).
A B

D

E

C

FIGURE 3 | Global DMPs and DEGs of the two clusters. (A) Volcano plot. Proportions of hypermethylated and hypomethylated DMPs are shown on top. The
distribution of DMPs’ feature is shown on the right. (B) The manhattan plot of the DMPs. (C) Heatmap of the two clusters based on the TCGA methylation set. High
methylation, orange; low methylation, green. (D) Volcano plot of the DEGs. (E) Heatmap of the twp clusters based on the TCGA RNA-seq cohort. High expression,
red; low expression, green.
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Evaluation of the Signature and Pan-
Cancer Analysis
By dividing the TCGA glioma cohort into high-risk groups
(n=267) and low-risk groups (n=462) using the survival cutoff,
high‐risk patients were short‐lived compared to low-risk patients
(log-rank test p<0.0001) (Figure 5D). Beta values of the selected
probes are presented in the heatmap (Figure 5E). We also
verified the RNA-seq profiles of the five selected probes. Gene
Set Enrichment Analysis (GSEA) revealed that cluster1 exhibited
significant immune processes (Figure 5F). The RNA-seq data of
the corresponding genes were also presented in the heatmap
(Figure 5G). The impact of DNA methylation on gene
expression in glioma was also evaluated. Three of five
corresponding genes (cg15734706 and RARG, cg20332503 and
ZYX, cg08985333 and CIITA) were considered significantly
different between the high-risk group and low-risk group, and
they share the same pattern that they were both hypomethylated
and upregulated genes (Figure S3A–E). We further excavated
the interaction between DNA methylation and gene expression
by conducting Spearman’s rank correlation analysis. It showed
that cg20332503, cg15734706, and cg08985333 exhibited
negative correlation, while cg20332503 (r=−0.5) and
cg08985333 (r=−0.6) showed extremely high correlation
(Figure S3F–J).

Then, we performed ROC to evaluate the predictive value of
the signature, and we found that the area under curve (AUC)
values of 1 to 5 years were all higher than 0.8, with the highest
Frontiers in Immunology | www.frontiersin.org 8
AUC (0.898) at 2 years (Figure 5H). Interestingly, there was a
negative correlation between Progression-Free Survival (PFS)
and risk score (Pearson, R=−0.43, p<0.00001; Figure 5I). The
overall survival exhibited the same pattern with risk score
(Pearson, R=−0.36, p<0.00001; Figure 5J), implying that
patients with lower risk scores have better survival outcomes.

Then, we validated the performance of the signature using pan-
cancer analysis. We downloaded the TCGA Illumina Infinium
450k DNA methylation pan-cancer data from UCSC Xena and
calculated the risk scores. Using survival cutoff, they were
distributed into high-risk groups and low-risk groups. After the
Kaplan-Meier survival test, seven of 31 cancer types were selected:
Skin cutaneous melanoma (SKCM) (p=0.00095), Pancreatic
adenocarcinoma (PAAD) (p=0.00015), Liver hepatocellular
carcinoma (LIHC) (p=0.00013), Thyroid carcinoma (THCA)
(p=0.029), Kidney renal clear cell carcinoma (KIRC) (p<0.0001),
Uterine corpus endometrial carcinoma (UCEC) (p=0.0071), and
Stomach adenocarcinoma (STAD) (p=0.014) (Figures S2C–I).
Pan-cancer analysis revealed a satisfactory prognostic value in
glioma and the other seven cancer types.

Validation of the Signature and Its
Functional Enrichment
To confirm the performance of the signature, five GEO datasets
of glioma were formed as the validation groups; they were
GSE48462 (n=59; p<0.0001), GSE61160 (n=24; p<0.0001),
GSE36278 (n=81; p=0.006), GSE30338 (n=81; p<0.0001), and
A B D

E F G H

C

FIGURE 4 | Eight cancer types showing significant outcomes in TCGA pan-cancer survival analysis using consensus cluster. (A) STAD, Stomach adenocarcinoma.
(B) UCEC, Uterine Corpus Endometrial Carcinoma. (C) PAAD, Pancreatic adenocarcinoma. (D) LAML, Acute Myeloid Leukemia. (E) THCA, Thyroid carcinoma.
(F) KIRC, Kidney renal clear cell carcinoma. (G) KIRP, Kidney renal papillary cell carcinoma. (H) SKCM, Skin Cutaneous Melanoma.
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GSE104293 (n=132; p<0.0001). High-risk group patients
exhibited lower survival outcomes than low-risk group patients
(Figures 6A–E). Moreover, the ROC curve showed a competent
accuracy in each validation set (Figures 6G–J).
Frontiers in Immunology | www.frontiersin.org 9
Then we performed the functional enrichment analysis of the
high-risk and low-risk groups. Both GO enrichment (Figure S2J)
and ebGSEA (Figure S2K) pathways were related to the immune
process and may participate in glioma development.
A B
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I
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J

C

FIGURE 5 | Construction of a prognostic model. (A) Volcano plot showing the selected probes by univariate Cox regression analysis. The horizontal axis
represents log2(HR) (B) Variable importance of 10 probes determined by random survival forest analysis. (C) Top 20 combinations of signatures were
selected after Kaplan–Meier analysis according to the chi-square value. A five-probe signature with the highest chi-square was identified. All 20 signatures
had a significant p-value Kaplan–Meier analysis. (D) Kaplan–Meier analysis of the high-risk and low-risk group. (E) Heatmap of the five selected methylation
probes sorted by risk score. (F) GSEA plots for the enrichment of immunogenic and oncogenic signaling pathways from the GO. (G) Heatmap of gene
expression corresponding to the selected five probes sorted by risk score. (H) ROC curve of the TCGA dataset. (I) The correlation between PFS time and
risk score. (J) The correlation between OS time and risk score.
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FIGURE 6 | Validation of the signature. (A–E) Kaplan-Meier curve of high-risk and low-risk score groups in the GEO cohort. (F) Kaplan-Meier survival analysis of
different treatments on the GSE48462 dataset. Both high-risk and low-risk groups benefited from PCV. (G–J) ROC curve of the GEO dataset. (K) Kaplan-Meier
curve of radiation therapy in the high- and low-risk GBM dataset group of TCGA. (L) Kaplan-Meier curve of radiation therapy in the LGG dataset group of TCGA.
(M) Benefit from RT/PCV treatment in the GSE48462 dataset. (N) ROC curve of the GBM dataset group in TCGA.
TABLE 2 | Five selected methylation probes.

Chr Mapinfo Strand Type Gene Feature Cgi UCSC_CpG_Islands_Name

cg11701471 8 54164051 R I OPRK1 5’UTR island chr8:54163303-54164443
cg04314652 16 69597925 F II NFAT5 TSS1500 shore chr16:69599437-69600736
cg15734706 12 53614080 F I RARG 1stExon island chr12:53613716-53615103
cg20332503 7 143081287 R II ZYX Body shelf chr7:143077469-143079169
cg08985333 16 10970960 F II CIITA TSS200 shore chr16:10972782-10973305
Frontiers in Immunolog
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5’UTR, 5′ untranslated region; TSS200, −200 base pairs upstream of the Transcription Start Site; TSS1500, between −200 and −1,500 base pairs upstream of the Transcription Start Site.
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GBM Patients Present Favorable Clinical
Benefits to Radiotherapy
What is interesting regarding data of the training set is that GBM
patients, regardless of risk scores, benefited from radiotherapy.
The GBM high-risk group patients who had been administered
with radiotherapy exhibited better survival outcomes (483 days
median OS time) than those who did not (64 days median OS
time; p=0.00093; Figure 6K). Moreover, the low-risk GBM
group exhibited some clinical benefits from radiotherapy (579
days median OS time than 19 days median OS time, p<0.0001;
Figure 6K). However, in the LGG group, patients receiving
radiotherapy exhibited worse clinical outcomes (2,235 days
median OS time than 2,988 days median OS time, p=0.0042;
Figure 6L). We evaluated the model’s predictive ability in the
GBM cohort by ROC analysis (Figure 6N). These results
revealed better radiotherapeutic outcomes.

High-Risk Group Patients Benefitted From
RT/PCV Treatment
After validating the GSE48462 cohort as the glioma validation set, we
evaluated the prognostic outcomes of radiotherapy and Procarbazine,
CCNU, and Vincristine (RT/PCV) treatment. We found that both
high-risk and low-risk group patients treated with RT/PCVhad better
PFS time than those treated with RT alone (p<0.0001; Figure 6F).
Moreover, 14 (28%) high-risk patients benefited from RT/PCV
treatment, 36 (72%) high-risk patients did not benefit from RT/
PCV treatment, while 9 (100%) low-risk patients failed to benefit
from RT/PCV treatment. There was a significant difference between
the two groups (Chi-square test p<0.05), implying that the high-risk
group rather than the low-risk group exhibited favorable outcomes
from RT/PCV treatment (Figure 6M).

Construction of Clinical-Related Models to
Precisely Demonstrate Risk Stratification
in Glioma Patients
To validate the parameters’ predictive value, we used decision curve
analysis (DCA), and the risk score enjoyed the highest net benefit
compared with age, gender, and grade, indicating that the risk score
of models can be used as the main decision tree parameter
(Figure 7A). Then, a total of 679 patients with detailed clinical
information, including histology, grade, age, gender, status of IDH,
status of pq, status of MGMT, and risk score, were selected for
recursive partitioning analysis with an attempt to establish a detailed
and maneuverable clinical-related model. Age and risk scores were
chosen to finally establish a decision tree model. We selected two as
the number of splits to prune our decision tree model since it had a
relatively simple decision as well as a comparatively low standard
deviation. Four risk subgroups were established based on whether
the risk score was “high” or “low,” together with age distribution. The
low-risk group was identified when the methylation model’s risk
score was low regardless of age. The medium-risk group was
identified when the risk score was high and the patient ages were
lower than 52. Patients with high risk scores and aged between 52
and 66 years old were considered the high-risk group, while patients
that were older than 66 years old were placed in the extremely high-
risk group (Figure 7B). The four-class risk stratification
Frontiers in Immunology | www.frontiersin.org 11
suffered significantly different overall survival outcomes
(p<0.0001, Figure 7C).

To establish an advanced prognostic evaluation model, we
used univariate Cox regression analysis. Several parameters were
passed through to the algorithm, and almost all variables fitted
well (p<0.001) except for gender (HR=1.118, p=0.232;
Figure 7D, Table 3). The multivariable Cox regression showed
that grade, age, gender, IDH, and model were highly significant
independent variables. In contrast, pq and MGMT did not fit
well (Figure 7E). Therefore, we established a nomogram
combined with risk scores and other significant parameters
using the multivariate Cox regression (Figure 7F).

Calibration analysis revealed that 1-, 3-, and 5-year were
significantly contiguous to the ideal 45-degree calibration line,
suggesting that the nomogram had considerable high accuracy
(Figure 7G). Then we evaluated Concordance indices (C-index)
of the three models, and the nomogram had the highest goodness
of fit (0.865, Figure 7H). Moreover, we also compared the three
different models, and 1-year ROC revealed that the nomogram
exhibited the most potent predictive capacity with AUC of
0.937 (Figure 7I).
DISCUSSION

Gliomas are among the most common types of primary tumors
of the central nervous system, and aberrant DNA methylation is
considered the hallmark of cancer tissues, participating in
carcinogenesis, tumor immunology, and recurrence (27). Due
to the contribution of the fast-growing methylation bead chip
technique, it is important to obtain DNA methylation profiles.

DNA methylation in vertebrates happens at position 5′ of the
cytosine ring in CpGs through a covalent obligation of methyl
gathering (28, 29). The loss in DNA methylation, combing the
silenced tumor suppressor genes, is considered a dangerous hallmark
and poor prognosis inmost cancer types (30–33). Our findings are in
tandem with those of previous studies. After clustering, the average
methylation level of cluster1 was significantly lower than that of
cluster2, indicating that cluster1 exhibited a poor prognosis. Kaplan-
Meier survival analysis confirmed this idea because the overall
survival outcomes of cluster1 were impressively lower than cluster2.

Another important finding was the methylation scope of immune
infiltration. We postulated that cluster2 exhibited immunity and
living conditions. All seven immune cells showed a significant
difference, and cluster2 exhibited a higher enrichment score of B
cells, NK cells, CD4T cells, and eosinocytes. In contrast, cluster1
exhibited a higher proportion of CD8+T cells, monocytes, and
neutrophils. This finding is in tandem with those of the work of
other studies. For example, a higher proportion of B cells is associated
with increased immunity, thereby enhancing the antitumor effect
leading to better prognostic outcomes (34). NK cells are the prototype
innate lymphoid cells that fight against microbial contamination and
tumors (35). CD4+T cells can secrete IFN-g, IL-2, and TNFa
cytokines to interfere with tumor development. Cluster2 was found
to have a higher immune score and an ideal OS time, which validated
the previous findings. Meanwhile, functional annotations also
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supported our idea since DMPs were enriched in TGF-b, IL-2,
TNF-a, NK cells, and B cell receptors.

Epigenetic age acceleration is a newmarker for cancer prognosis.
We calculated the epigenetic age of each patient. Although the
average DNAm age of cluster2 was still lower than that of cluster1,
more patients in cluster1 had lower DNAm age than their
Frontiers in Immunology | www.frontiersin.org 12
chronological age. This finding is in concordance with that from
earlier studies that decelerated DNAm age may result in poorer
prognosis (36, 37). The strong correlation between methylation age
and veritable age reveals the stability of the prediction.

We performed an integrative analysis of the TCGA Pan-
cancer tumors based on other 31 cancer types. Eventually, eight
A
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FIGURE 7 | Construction and validation of the clinic-associated model. (A) Decision curve analysis (DCA) for age, gender, grade, and risk score, revealing the risk
score revealed better survival outcomes than the other variables. (B) Patients with risk score and age were used to set up a detailed glioma risk stratification.
(C) Kaplan-Meier survival analysis of the four precise risk subtypes in the TCGA dataset. (D) Forest plot of the univariate Cox proportional-hazards model survival
analysis of various parameters. (E) Forest plot of multivariate Cox proportional-hazards model survival analysis of various parameters. (F) Details of the nomogram.
(G) Calibration curve showing a high accuracy of the nomogram. (H) Comparison of the predictive power of multiple models. (I) ROC curve of the nomogram,
decision tree, and risk score model in 1 year. HR, hazard ratio; CI, confidence interval. *p<0.05; **p<0.01; ***p <0.001.
TABLE 3 | Univariate Cox regression of clinical features.

Variable Coef HR z P CI (lower) CI (upper)

Histology −0.27172 0.76207 −4.90692 9.25E-07 0.683692 0.849434
Grade 1.453439 4.277799 13.59881 4.07E-42 3.469318 5.274686
Age 0.068908 1.071338 12.81726 1.31E-37 1.060108 1.082686
Gender 0.165048 1.17945 1.19585 0.231755 0.899909 1.545825
IDH 2.11895 8.322394 14.78035 1.96E-49 6.283733 11.02247
pq 1.388133 4.007361 6.305825 2.87E-10 2.60303 6.169326
MGMT 1.139027 3.123729 8.330238 8.07E-17 2.389379 4.083773
Risk −1.89371 0.150512 −11.5915 4.55E-31 0.109272 0.207316
Risk score 0.051468 1.052815 16.8548 9.67E-64 1.046533 1.059135
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cancer types were selected. Clustering based on immune-related
methylation probes revealed an important common role of the
immune markers, and the exact immune pattern and pathways
need further evaluation. Moreover, we tested the signature on
other cancers, and the seven cancer types showed affable results.
One unanticipated finding was that LIHC was not concluded in
clustering, but was well-distributed when tested using the
signature. In the meantime, LAML and KIRP were excluded
when tested using the signature. We hypothesized that there is a
general DNA methylation pattern among these cancers. Thus,
more studies are recommended to test this hypothesis.

Univariate Cox regression, Random Forest, and PCA were
performed to construct the best prognostic signatures. To elucidate
on the five probes’ biological roles, we performed GO and GSEA
analysis, and the results were highly associated with immune system
processes. In detail, four negative coefficient probes (gene) were
cg04314652 (NFAT5), cg15734706 (RARG), cg20332503 (ZYX),
and cg08985333 (CIITA). We revealed the impact of DNA
methylation on gene expression in glioma, and three genes
exhibited hypomethylation-upregulated DNA methylation
patterns. Immunological processes of the five genes were identified
to establish the signature mechanism. Nuclear factor of activated T
cell 5 (NFAT5) is involved in neuroinflammation (38), and NFAT5
levels correspond to glioma pathological grade (39). Retinoic acid
receptor g (RARG) belongs to the nuclear receptor superfamily (40),
and elevated RARG levelsmay contribute to an unfavorable outcome
in LAML (41). Zyxin (ZYX) has been shown to enhance the invasion
of hepatocellular carcinoma (42) and oral squamous cell carcinoma
cells (43). Overexpression of ZYX is also involved in invasion and
unfavorable prognosis of GBM (44). CIITA, a key regulator of the
controlling major histocompatibility complex (MHCII) gene, is
regulated by NFAT5 (45). The only positive coefficient probe was
cg11701471 (OPRK1). In previous studies, k-opioid receptors 1
(OPRK1) were shown to suppress lung cancer growth, suggesting
a tumor-suppressive gene (46, 47). In summary, all the negative
coefficient probes are tumor-genesis, and the positive one is tumor-
suppressive. Since a higher risk score indicates poor prognosis, it can
be hypothesized that DNA methylation silences its corresponding
gene expression by hypermethylating CpG islands, shore, and shelf
in the promoter regions or gene body. Previous studies of CIITA and
NFAT5 strengthen the reliability of the signature.

We validated the prognostic signature using five GEO databases
and the TCGA cohort itself. The risk score was associated with
overall OS and PFS time. Moreover, low-risk GBM patients were
more sensitive to radiation therapy. A possible explanationmight be
that radiation therapy activates more antitumor immune cells in
higher immune cohorts, such as regulating dendritic cells (DC).
Regulated DC recognizes and phagocytoses tumor cells and induces
the release of inflammatory factors such as IFN-g, IL-2, and TNFa
from immune cells. Another interesting finding was that LGG
patients enjoyed even worse overall survival time after
radiotherapy. The benefit of radiotherapy in patients with LGG
has long been controversial, and the EORTC 22845 randomized
trial showed that median overall survival was similar between the
radiotherapy and control groups (48). Combined with our findings,
high-dose radiotherapy may lead to contrary effects such as
Frontiers in Immunology | www.frontiersin.org 13
neurotoxicity during the management of LGG patients. In the
GSE48462 dataset, we found that in this LGG cohort, 14 (28%)
high-risk patients benefited from RT/PCV, while no low-risk
patients benefited from RT/PCV, suggesting further studies are
needed to evaluate the value of PCV treatment in LGG.

Prediction of prognosis based on epigenetic change is not
comprehensive. First, we confirmed that the risk score was a
reliable predictor of survival through DCA. We further
constructed a decision tree model to improve the risk stratification
accuracy. Several factors were put into the machine learning
algorithm, and the risk score was selected as a major factor, while
age was selected as the secondary factor. The maneuverable decision
tree helps clinicians to conveniently evaluate the patient risks.
Moreover, we developed a complex nomogram model for a more
accurate risk and survival outcome assessment. The nomogram
model exhibited the highest concordance index when compared to
other models and factors. It also exhibited the highest accuracy when
compared to the decision tree and risk score model.

One limitation of our study is that bioinformatic methods
were used for all analyses. Given the complicated DNA
methylation pattern and intricate immune process, more
experiments are needed and there exists abundant room for
further progress in determining the pan-cancer immune pattern.
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