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SUMMARY

Neuropathic pain (NP) is associated with profound gene expression alterations within the nociceptive

system. DNA mechanisms, such as epigenetic remodeling and repair pathways have been implicated

in NP. Here we have used a rat model of peripheral nerve injury to study the effect of a recently devel-

oped RARb agonist, C286, currently under clinical research, in NP. A 4-week treatment initiated 2 days

after the injury normalized pain sensation. Genome-wide and pathway enrichment analysis showed

that multiple mechanisms persistently altered in the spinal cord were restored to preinjury levels

by the agonist. Concomitant upregulation of DNA repair proteins, ATM and BRCA1, the latter being

required for C286-mediated pain modulation, suggests that early DNA repair may be important to

prevent phenotypic epigenetic imprints in NP. Thus, C286 is a promising drug candidate for neuro-

pathic pain and DNA repair mechanisms may be useful therapeutic targets to explore.

INTRODUCTION

The identification of an effective therapy for neuropathic pain (NP) has been challenging owing to three

main factors: first, multiple mechanisms are involved for which no single multifactorial drug has been devel-

oped; second, differences in cellular and molecular mechanisms between animals and humans have

hampered progress; and third, no single ‘‘switch’’ has been identified that could curtail the pathological

cascade and provide a therapeutic target (Borsook et al., 2014; Gereau et al., 2014).

There are two primary features of NP: (1) hyperalgesia, increased pain from a stimulus that usually evokes

pain; and (2) allodynia, pain due to a stimulus that usually does not provoke pain (Jensen and Finnerup,

2014). It appears that there are at least two distinct aspects to the development of these features: periph-

eral sensitization, involving changes in the threshold of peripheral nociceptors including possible sponta-

neous firing, and central sensitization, in which there are changes in the responsiveness at the central syn-

apses relaying nociception, especially in the dorsal horn of the spinal cord. There is still debate about the

importance of central sensitization and whether it relies, for its maintenance, on the peripherally sensitized

input (Meacham et al., 2017).

Although it is generally agreed that there are a profusion of gene expression changes in NP (Descalzi

et al., 2015), the underlying general mechanism by which they are induced is still uncertain. One sug-

gestion is that the underlying cause is an inflammatory reaction to injury (Ellis and Bennett, 2013),

which in turn causes DNA damage (Kelley and Fehrenbacher, 2017). Madabhushi and colleagues (Ma-

dabhushi et al., 2015) have shown that even neuronal activity can be sufficient to induce DNA damage

(double-strand breaks, DSBs), particularly in the promoter region of early response genes, causing

their upregulation, and this, in turn, can alter the expression of late response genes, such as brain-

derived neurotrophic factor (bdnf). Their experiments supported the conclusion that DNA DSB forma-

tion was necessary and sufficient to induce early response gene expression and that DNA repair could

reverse the gene expression. Similarly, Fehrenbacher and her colleagues showed that enhanced DNA

repair could reverse the changes in neuronal sensitivity that they observed (Kelley and Fehrenbacher,

2017).

In terms of cellular responses, converging lines of evidence support that a specific microglia inflammatory

phenotype characterized by the de novo expression of the purinergic receptor P2X4 is critical to the
554 iScience 20, 554–566, October 25, 2019 ª 2019 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:bia.goncalves@kcl.ac.uk
mailto:mmendoza@genoscope.cns.fr
mailto:mmendoza@genoscope.cns.fr
mailto:jonathan.corcoran@kcl.ac.uk
https://doi.org/10.1016/j.isci.2019.09.020
https://doi.org/10.1016/j.isci.2019.09.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.09.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/


induction of core pain signaling, mediated by the release of BDNF, which produces hypersensitivity in noci-

ceptive neuron in the spinal dorsal horn.

It is not understood how this specific spinal microglia phenotype (P2X4R+) that arises during the acute

stage following peripheral nerve injury (PNI) results in imprinting of the chronic and persistent changes

in the spinal nociceptive networks after the acute inflammatory response has subsided (Beggs et al.,

2012; Ulmann et al., 2013). Epigenetic alterations in spinal microglia during the acute inflammatory

response presents a favorable paradigm for the imprinting mechanism driving chronicity of the pain state

(Denk et al., 2016) because of the high transcriptional activity induced by the inflammatory response and

the associated increase in DNADSB (Marnef et al., 2017). Indeed, a wealth of data suggests that the fragility

of actively transcribing loci is intertwined with genomic changes that are linked to altered cellular function

and disease (Alt and Schwer, 2018; Fong et al., 2013; Puc et al., 2017; Sharma et al., 2015; Su et al., 2015).

This raises the question: could this represent a biological switch and thus a therapeutic target, whereby

inducing an increase in DNA repair following PNI would preserve the genomic landscape of the spinal mi-

croglia during acute activation, when high transcriptional activity is expected, and thus provide an effective

way to target NP?

Here we show that a novel drug, Retinoic Acid Receptor (RAR)b agonist, C286 (Goncalves et al., 2019a),

prevents NP by restoring pathways that are chronically altered in the spinal cord (SC) after PNI and that

this is associated with a switch in the spinal microglia P2X4R phenotype via a mechanism dependent on

the breast cancer susceptibility gene 1 (BRCA1). Since the retinoic acid (RA) pathway is highly conserved

between species (Rhinn and Dolle, 2012), our findings support C286 as a plausible impending therapy

for NP and provide evidence that DNA repair mechanisms are disease-modifying therapeutic targets.
RESULTS

C286 Modulates Multiple Pathways Chronically Altered after Spinal Nerve Ligation

RA has been shown to inhibit TNFa and iNOS in reactive microglia (Dheen et al., 2005), and our previous

work shows that stimulation of RARb hampers astrogliosis after spinal cord injury (Goncalves et al., 2015).

We therefore hypothesized that a novel drug RARb agonist, C286, may modulate the inflammatory

response of activated microglia to prevent the onset of the microglia-neuron alterations that underly

NP. Because we specifically wanted to investigate the effect of the drug in P2X4R+ microglia and this

phenotype has been shown to evoke spinal mechanisms of nerve injury-induced hypersensitivity predom-

inantly in males but not in female rats (Mapplebeck et al., 2018), we chose male rats only for this study.

Using an established rat model of NP, L5 spinal nerve ligation (SNL) (Kim andChung, 1992), we assessed the

effect of C286 given orally for 4 weeks on mechanical and thermal pain thresholds over the treatment

period. C286 treatment reversed the hypersensitivity caused by SNL to levels comparable with the preinjury

state (Figures 1A–1E). We next used co-expression analysis of genome-wide RNA sequencing of dorsal

horns isolated from non-injured and L5-SNL rats that had been treated with vehicle or C286 to delineate

pathways that may have a role in the formation of the long-term hyperalgesia-related imprint in the SC (Fig-

ures 1F and 1G). The non-injured tissue was used to establish the normal gene expression with and without

C286, whereas the L5-SNL vehicle-treated tissue served as a platform to identify gene expression patterns

that were induced by the surgery and peripheral lesion and was used as a control to directly compare gene

expression changes that were altered solely owing to the drug treatment. Through analysis of co-expres-

sion paths we identified a variety of genes involved in a broad range of cellular functions, including neural

transmission, cell adhesion, growth cone and synapse formation, and mitochondrial function (Figure 1H).

Among differentially expressed transcripts we identified genes associated with pain-related pathways,

altered in different models of pain, or encoding products interacting with proteins involved in pain-related

pathways (Figures S1 and S2 and Table S1 [related to Figures 1 and 2]. Figure S2 and Table S1 are available

on the Mendeley repository https://doi.org/10.17632/kjvs5vgkbf.1DOI). We observed that C286 upregu-

lates pathways that are compromised in NP: cell adhesion (Patil et al., 2011), growth cone (Hur et al.,

2012), and gap junction (Wu et al., 2012) (Figure S2, https://doi.org/10.17632/kjvs5vgkbf.1DOI) and

downregulates pathways back to non-injured baseline that are upregulated in NP: long-term potentiation

(Ruscheweyh et al., 2011), WNT (Zhang et al., 2013), MAPK (Ji et al., 1999; Jiang et al., 2008; Jin et al., 2003;

Kawasaki et al., 2004; Obata and Noguchi, 2004; Song et al., 2005; Zhang and Yang, 2017), erbB (Calvo

et al., 2011), TRP channels (Moran and Szallasi, 2018), and cAMP (Edelmayer et al., 2014) (Figures 2A, 2B,

and S2 and Table S1, available on the Mendeley repository https://doi.org/10.17632/kjvs5vgkbf.1DOI).
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Figure 1. C286 Modulates Multiple Pathways Chronically Altered after SNL

(A–E) (A) Schematic of experimental paradigm. L5-SNL, spinal nerve ligation; SC L5 ipsi (spinal cord, L5 level ipsilateral to injury) indicates the area where

tissue analysis was carried out and is delineated as a red square in subsequent figures. Measurement of mechanical and thermal sensitivities shown as paw

withdrawal (PW) in grams (g) or seconds (sec), by (B) von Frey filaments, (C) hot plate, (D) cold plate, (E) and Randall Selitto test in vehicle (n= 8) or C286 (n= 8).

Data shown as Mean G SEM. Two-way ANOVA with Pairwise Multiple Comparison Procedures (Holm-Sidak method). **p % 0.01, ***p % 0.001.

(F–H) Gene co-expression analysis assessed in the SC from L5-SNL rats and non-injured rats, treated with vehicle or C286. (F) Differential gene expression

analysis relative to the sample non-injured + vehicle. (G) Differentially expressed genes are classified by their co-expression paths assessed after injury and

injury + vehicle or C286 treatment. (H) Gene ontology analysis performed per co-expression path. The heatmap illustrates the GO enrichment confidence.
Because of their prominent role in the regulation of nociceptive signal perception we focused on theMAPK

and WNT pathways for further analysis.

WNT signaling in the SC stimulates the production of proinflammatory cytokines through the activation of

WNT/FZ/b-catenin pathway in nociceptive neurons (Tang, 2014; Zhang et al., 2013). MAPK is activated in

spinal microglia after PNI and, upon nuclear translocation, activates transcription factors that promote

dynamic nuclear remodeling. This results in the transcription and translation of proteins that prolong

potentiation and decrease the threshold for receptor activation, the molecular underpinnings of clinical al-

lodynia (Wahezi et al., 2015).

TheWNT receptor Frizzled 10 (FZD10) and the death domain-associated protein, Daxx, components of the

WNT and MAPK pathways, respectively, were highlighted by our co-expression analysis owing to the

magnitude of their expression changes between vehicle and C286-treated L5-SNL rats. FZD10 has been
556 iScience 20, 554–566, October 25, 2019



Figure 2. C286 Regulates Inflammatory and DNA Repair Pathways

(A) Genes were classified on the basis of their co-expression behavior over the various conditions. C286 downregulated 165 genes that had been

upregulated by the injury.

(B) GO terms associated to the co-expressed genes are displayed on the basis of their confidence (�10*log10[p value]), red arrows highlight the MAPK and

WNT pathways.

(C) Diagram of experimental design.

(D–G) (D and E) Representative images and quantification of FZD10 (scale bar, 100 mm and 20 mm for higher-magnification insets) and (F and G) of Daxx

expression in microglia (Iba1) and neurons (bIII tubulin) in the SC at the end of the treatment period (scale bar, 50 mm). Two weeks after injury, a sub-set of

vehicle- and C286-treated rats was used for immunohistological analysis (n = 3 per treatment group) and for RT-qPCR (n = 3 per treatment group).

(H–K) (H and I) Levels of P2X4R+ microglia (highlighted by arrows in the merged upper panel, scale bar, 30 mm) and (J and K) BDNF (in neurons and microglia)

in the SC (scale bar, 30 mm).

(L and M) (L) Images showing BRCA1 expression in the same area (insets show higher magnification of BRCA1 in nuclei, scale bar, 100 mm) and (M)

quantification by RT-qPCR.

(N–P) Expression and quantification of BRCA1 and pATM in spinal microglia (scale bar, 20 mm).

(Q and R) Expression and quantification of gH2AX (scale bar, 100 mm).

In E, G, I, K, O, P, and R, data are shown as Mean G SEM of fluorescence intensity (FI) in arbitrary units (a.u.). Student’s t test, **p% 0.01, ***p% 0.001, n = 4

(E and G) or n = 3 (I, K, M, P, and R) per group, five sections per animal).
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shown to be expressed in pain pathways, including dorsal horn neurons (Hu et al., 2009), and Daxx (which is

ubiquitously expressed) has a well-established role in apoptosis but can also participate in numerous addi-

tional cellular functions as a mediator of protein interactions (Lindsay et al., 2008), as a potent suppressor of

transcription (Takahashi et al., 2004), and as a modulator of cargo-loaded vesicles transport, an important

emerging factor in neuron-glia cross-talk during NP (McDonald et al., 2014; Shiue et al., 2019). Immunohis-

tochemistry confirmed downregulation of FZD10 and Daxx protein levels by C286 (see Figures 2C–2G).
C286 Regulates Inflammatory and DNA Repair Pathways

Inflammation can be a common trigger of MAPK andWNT pathways (Roubert et al., 2017), and hence their

downregulation by the agonist at 28 days post injury could indicate an earlier resolution of the inflammatory

state. A subtype of purinergic receptor, P2X4R, regulates microglial activation (Ulmann et al., 2013), and its

upregulation in spinal microglia has been proposed as an important inflammatory switch that is necessary

and sufficient for subsequent pain hypersensitivity, acting via BDNF release and subsequent uptake by the

nociceptive neurons in the dorsal horn (Beggs et al., 2012). We therefore assessed the effect of C286 on the

expression of P2X4R in spinal microglia and BDNF in microglia and neurons in the dorsal horn at 14 days

post PNI, a time point that reflects the interphase between the beneficial acute microglia response and the

switch to the perpetuated reactive state that could trigger the chronic pain. We found both to be signifi-

cantly lower compared with vehicle-treated rats (Figures 2H–2K). Similarly, other inflammatory mediators

and growth factors associated with NP, such as NGF, TNFa, and TNFR1 (Amaya et al., 2013), were also

downregulated in the agonist-treated SCs (Figures S3A–S3H, related to Figure 2). We did not find their

mRNAs upregulated at 4 weeks in the vehicle-treated L5-SNL rats, in agreement with other studies in

the same injury model that report only a temporary post-lesion increase in these proteins (de Jager

et al., 2011).

Next, we wanted to ascertain if the switch in the microglia phenotype from predominantly P2X4R+ to

P2X4R� correlated with higher DNA repair efficiency. We reasoned that an increase in DNA repair during

the acute phase of microglia activation (Ellis and Bennett, 2013), when transcriptional changes are occur-

ring during adaptation to the injury, could prevent the occurrence of transcriptional imprints that

contribute to chronic pain. This would favor regaining the non-activated genomic state. The involvement

of the DNA repair protein BRCA1 in spinal microglia after injury has been recently described where an initial

physiological attempt to repair is seen by an increase in BRCA1 expression, but that is not sustained

beyond 72 h post injury (Noristani et al., 2017). A link between BRCA1 and RA signaling has been

highlighted by previous studies; genome-wide analysis suggests a role for BRCA1 in transcriptional co-acti-

vation to RA (Gardini et al., 2014) and RAR/RXR-mediated transcription requires recruitment of the BRCA1

co-repressor C-terminal-binding protein 2 (CtBP2) (Bajpe et al., 2013), which could result in the elevation of

BRCA1 transcription, a mechanism already described for estrogen (Di et al., 2010).

To assess if C286 could be prolonging BRCA1 expression, we measured BRCA1 levels in the dorsal horn by

western blotting (Figures 2L and 2M) and by immunochemistry in spinal microglia and found that C286

significantly increased BRCA1 levels, predominantly in the nucleus (Figures 2L, 2N, and 2O).
C286 Regulates DNA Damage in Microglia via BRCA1 and ATM Pathways

Cellular responses to DNA damage are mediated by an extensive network of signaling pathways. The

ataxia telangiectasia mutated (ATM) kinase responds specifically to DNA DSBs, which are associated

with signal-induced transcriptional changes. ATM can be activated by RA (Fernandes et al., 2007) and

suppresses MAPK pathways via a DSB-induced response whereby MKP-5 is upregulated and dephos-

phorylates and inactivates the stress-activated MAP kinases JNK and p38 (Bar-Shira et al., 2002). We

therefore assessed ATM phosphorylation levels in the SCs and found that C286 significantly increased

pATM in spinal microglia (Figures 2N and 2P). Concomitantly, we observed a significant decrease in

the ATM target and DNA damage marker gH2AX (Sharma et al., 2012) (Figures 2Q and 2R). To

confirm if the modulation of these two DNA repair mechanisms was a direct effect of the agonist

in microglia, we treated lipopolysaccharide-activated microglia cultures with vehicle, C286, an ATM

inhibitor (KU55933) alone, or with C286 and found that C286 significantly increased BRCA1 and

pATM and significantly decreased gH2AX compared with vehicle. Importantly, the effect on pATM

was completely abrogated in the presence of KU55933, suggesting a direct effect on ATM auto-phos-

phorylation (Figures 3A–3H).
558 iScience 20, 554–566, October 25, 2019



Figure 3. C286 Regulates DNA Damage in Microglia via BRCA1 and ATM Pathways

(A) Diagram showing microglia culture conditions and markers assessed.

(B–E) (B and C) BRCA1 and (D and E) gH2AX expression and quantification in microglia cultures.

(F) Diagram showing the experimental design.

(G and H) Expression and quantification of pATM in nuclei in the different culture conditions. Scale bars, 15 mm. Data showMean FIG SEM from three independent

experiments (C and E), Student’s t test, *p% 0.05 and (H) one-way ANOVA with Pairwise Multiple Comparison Procedures (Tukey Test), ***p% 0.001.
BRCA1 Is a Downstream Target of C286 in NP Modulation

To functionally validate the RARb-BRCA1 pathway in pain we used lentiviral transduction of shRNA BRCA1

in our rat model of NP. Treatment with C286 yielded no significant improvement in the pain thresholds

when BRCA1 was ablated (Figures 4A–4C). Confirmation of effective lentiviral transduction was obtained

by immunochemistry (Figures 4D–4F). Further analysis of BRCA1 expression in spinal microglia showed

that this was significantly decreased in LV/BRCA1shRNA + C286-treated rats compared with LV/sc +

C286 (Figures 4G–4I), and the inverse was seen with gH2AX (Figures 4J–4L). In agreement with the pain

behavioral tests, we found that the calcitonin gene-related peptide (CGRP), which contributes to the hyper-

sensitization (Iyengar et al., 2017), was significantly upregulated in the dorsal horn (predominantly laminae

I-III) of LV/BRCA1shRNA + C286-treated rats (Figures 4M and 4N).

To establish if there was a direct link between BRCA1 and themicroglia activation, we assessed the levels of

P2X4R in spinal microglia and found a significant increase in the LV/BRCA1shRNA + C286-transduced rats
iScience 20, 554–566, October 25, 2019 559



Figure 4. BRCA1 Is a Downstream Target of C286 in NP Modulation

(A) Schematic of experimental paradigm.

(B and C) (B) Measurement of thermal and mechanical sensitivities by von Frey filaments (C) and hot plate in vehicle (n = 6) or C286 (n = 6). Data shown as

Mean G SEM. Two-way ANOVA with Pairwise Multiple Comparison Procedures (Holm-Sidak method). ***p % 0.001.

(D) Co-labelling of GFP and Iba1 (scale bar, 20 mm), and GFP and BRCA1 in LVsc + C286- and LVBRCA1shRNA + C286-treated rats (scale bar, 100 mm).

(E–H) (E and F) Western blots and quantification of BRCA1 in L5-SNL rats transduced with LV/SC + C286 (n = 3) or LV/BRCA1shRNA + C286 (n = 3). Student’s

t test. *p % 0.05 (G) Immunohistological confirmation of LV transduction (scale bar, 20 mm), (H) higher-magnification inset shows BRCA1 in microglia in an

LV/Sc + C286-treated rat (scale bar, 10 mm).

(I) Quantification of BRCA1 in microglia.

(J and K) Expression and quantification of gH2AX (scale bar, 20 mm), (L) higher-magnification inset shows gH2AX in microglia in an LV/BRCA1shRNA +

C286-treated rat (scale bar, 10 mm).

(M and N) Expression and quantification of CGRP in laminae I–III of the dorsal horn (scale bar, 100 mm).

(O and P) Expression and quantification of P2X4R (scale bar, 100 mm). Inset shows higher-magnification image (scale bar, 20 mm) Data are shown as

Mean +SEM of FI. Student’s t test, **p % 0.01, ***p % 0.001 (n = 3 per group, 5 sections per animal).
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Figure 5. BRCA1 Influences Inflammatory Mechanisms in NP

(A) Diagram of the experimental design.

(B–G) (B) Immunostaining of spinal microglia and NGF, (D) TNFa, and (F) TNFR1 in LV/sc + C286- and LV/BRCA1shRNA + C286treated rats (scale bars,

30 mm). Quantification of FI for (C) NGF, (E) TNFa, and (G) TNFR1. Data show Mean FI G SEM, Student’s t test, ***p % 0.001 (n = 3 per group, 5 sections

per animal).
(Figures 4O and 4P). This effect was also seen for NGF, TNFa, and TNFR1 (Figures 5A–5G), indicating that

an inflammatory environment was still present in the SC. Concurrent protein expression analysis of BDNF

and the components of the MAPK and WNT pathways (FZD10 and Daxx), which had been modified by the

agonist in L5-SNL non-transduced rats (see Figure 2), showed a significant increase with the suppression of

BRCA1 despite the agonist treatment (Figures 6A–6H).
DISCUSSION

Collectively, we show that C286 generates a ‘‘repair proficient’’ environment that may influence epige-

netic modification of some enhancers in microglia, resetting the transcriptome toward a resting state

after injury and thus reducing the long-term transcription of NP-associated genes. C286 modulates

DNA repair mechanisms involving BRCA1 and ATM in spinal microglia, the former being directly

linked to the P2XR4 phenotype and the development of NP. This supports the concept that transcrip-

tion-induced persistent damage that is inefficiently repaired could chronically alter the epigenetic

landscape, in line with the emerging importance of BRCA1 in neurodegenerative diseases (Mano

et al., 2017; Suberbielle et al., 2015). Current therapeutic strategies generally aim at a single molec-

ular target. These are yielding unsatisfactory results and are thus giving ground to a multifactorial
iScience 20, 554–566, October 25, 2019 561



Figure 6. BRCA1 Is Necessary for C286-Mediated Regulation of Pain

(A) Diagram of the experimental design.

(B–D) (B and C) Immunostaining of spinal microglia for BDNF (scale bar, 50 mm) and its quantification. (D) Western blots of

spinal cords for BDNF. Student’s t test, n = 3 per group, ***p % 0.001.

(E–H) (E and F) Expression and quantification of FZD10 (white arrows show colocalization with Iba1 and black arrows with

bIII tubulin) and (G and H) Daxx in spinal neurons andmicroglia of LV/sc + C286- and LV/BRCA1shRNA+C286-treated rats

(insets show its predominant nuclear localization). Scale bars, 100 mm for E and G. Data show Mean FI G SEM, n = 3 per

treatment group, 5 sections per animal. Student’s t -test, **p % 0.01, ***p % 0.001.
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approach targeting the numerous pathways involved, one possibility being to influence DNA repair

mechanisms (Kelley and Fehrenbacher, 2017). Here we show that C286 has multiple effects on path-

ways that contribute to the chronicity of the neuronal sensitivity and thus might prove a more success-

ful approach for the treatment of NP.

RARb Signaling and WNT/FZD Signaling

We found that the WNT pathway is one of the most significantly downregulated pathways by the agonist.

The importance of the WNT/FZD signaling in signal transduction and synaptic plasticity alterations, which

are essential to SC central sensitization after nerve injury, has been documented before (Zhang et al., 2013;

Zhao and Yang, 2018). It is thought that WNT/FZD/b-catenin signaling contributes to the onset and persis-

tence of pain after nerve injury, through activation of signaling pathways that recapitulate development,

such as axon guidance, synaptic connection, and plasticity in the spinal cord. Spinal blockade of WNT

signaling can inhibit the production and persistence of PNI-induced NP and prevent upregulation of the

NR2B receptor and the subsequent Ca2+-dependent signals CaMKII, Src/Tyr418, pPKCg, ERK, and cAMP

response element-binding protein within the SC pain pathways (Zhang et al., 2013). Curiously, we found

that C286 suppresses WNT/FZD signaling and upregulates pathways involved in regeneration, which are

also important during development. This may seem an incongruence, but we must consider that the

overall biological effect is determined by a network of interacting pathways. WNT is known to interact

with ephrinB-EphB receptor signaling, which also activates various developmental processes of the

nervous system in response to nerve injury (Han et al., 2008; Song et al., 2008) and is thought to contribute

to pain enhancement. These interactions may result in an exacerbation of neurochemical signs within

development pathways that trigger and sustain pain pathways. Therefore, it is likely that theC286-mediated

stimulation of the regeneration and development pathways is quite different, both qualitatively and quan-

titatively, becauseC286 upregulates transcription of these pathways to preinjury levels but not beyond. This

promotes the restoration of homeostasis and prevents activation of pathways that sustain pain.

RARb and MAPK/Daxx Signaling

It is interesting that Daxx showed the highest downregulation within the MAPK pathway. Daxx is asso-

ciated mostly with triggering apoptotic pathways that result in cell death and/or senescence. The

agonist prevented the upregulation of Daxx in response to the injury and concomitantly upregulated

various other pathways that are associated with normal cellular functions: cell-adhesion, mitochondria

function, etc. The counterpart scenario, i.e., the downregulation of these pathways in the vehicle-

treated rats, possibly reflects a state of compromised cellular functions in the SC. Therefore, it seems

that Daxx could be an important contributor to cell fate in PNI-induced NP in the SC.

We found that RARb activation downregulates TNF-a, which is one of the cytokines that induces

phosphorylation and stabilization of Daxx through ASK1 activation. This is essential for activation of

the pain signaling pathways, JNLK and p38 (Chang et al., 1998; Ichijo et al., 1997; Ji et al., 2009).

Thus, it is possible that the marked downregulation of Daxx by C286 is in part a consequence of

the agonist’s anti-inflammatory effect. Similarly, the prevention of the reactive microglia P2X4R pheno-

type could be a direct consequence of a milder inflammatory milieu facilitated by the acute agonist

action. Nonetheless, the overall effect of C286 cannot be justified entirely and solely by an initial anti-

inflammatory effect. If that was the case, then anti-inflammatory treatment would be a successful ther-

apeutic approach. Arguably, it is a combination of different mechanisms directly and indirectly

affecting various intracellular functions: DNA repair, transcription, organelle transport, energy supply,

and secretion of signaling molecules, which contributes to the RARb modulation of NP.

RARb and the Extracellular Matrix

C286 also induced an upregulation of cell adhesion and cell junction pathways. This is noteworthy because

adhesion proteins, which normally build and modify synapses, also participate in different aspects of syn-

aptic and circuit reorganization associated with NP (Dina et al., 2004).

C286 as a Promising Transcriptional Drug

We challenge the dogma that nuclear receptor agonists are unpromising therapeutic targets. Nuclear

receptor signaling has been overlooked as a therapeutic avenue. Although nuclear receptor signaling

regulates many pathways, it is thought that some of these might be detrimental to the cells casting
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doubt on the overall biological effect. However, effective therapies need to be multifactorial, espe-

cially if they are aimed at chronic conditions in which a myriad of cellular functions has been altered.

Retinoic acid modulates transcription and exerts its biological activity via the nuclear receptor RAR/

RXR heterodimers, of which three isoforms have been identified (a,b,g) (reviewed in Maden, 2007).

Each isoform differs in spatial expression and yields different biological responses. In this regard, it

is therefore beneficial to use specific receptor agonists targeted to the particular receptor that will

induce the desired/anticipated effect. Because RXRs are promiscuous receptors and partner with

various other nuclear receptors integrating their signaling pathways (Lefebvre et al., 2010), they are

less attractive as drug targets. We have demonstrated target engagement previously and shown

the upregulation of RARb in response to treatment with specific RARb agonists (Goncalves et al.,

2018, 2019b). Our work illustrates an example of where a nuclear receptor agonist provides an effec-

tive treatment for a chronic condition without induction of detrimental pathways. C286 is currently un-

dergoing a phase 1 trial (ISRCTN12424734) and can rapidly progress to further clinical testing proving

an attractive therapeutic avenue to explore for NP.

DNA Damage Pathways and Future Therapeutic Avenues

DNA damage has recently been proposed to play an important role in transcriptional regulation. Here we

show that it is involved in setting an inflammatory state in spinal microglia that triggers NP. Our results

demonstrate a novel role for BRCA1 in NP. BRCA1 is a DNA repair protein, best known for its association

with breast cancer. We demonstrate that, by increasing DNA repair via BRCA1, NP can be prevented. This

revolutionizes the therapeutic exploration for NP, shifting its focus from targets whose modification pro-

vides symptomatic and temporary amelioration to a more permanent disease-modifying target: DNA

repair. Recovery of normal cellular functions through effective and timely DNA repair might be a successful

prophylactic and/or therapeutic approach that is extendable to other chronic conditions similarly associ-

ated with an inflammatory etiology. Exploring other drugs that, like C286, modulate BRCA1 and identifying

other key DNA repair mechanisms could be a step change in therapeutic development.

Limitations of the Study

This study was conducted in male rats only and as such does not address the sexual dimorphism in pain.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.09.020.
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Figure S1. Transcriptomics analysis of spinal cord samples issued from animals under 

different conditions 

A, Summary of the number of DNA sequenced reads obtained per sample as well as the fraction 

retained after alignment to the Rattus norvegicus reference Genome. B, Boxplots depicting the 

read counts per gene prior or after quantile normalization. C, Volcano plot illustrating the 

fraction of differentially expressed genes (rel. to non-injured + vehicle condition), as defined 

by a two-fold change criterion, and their related confidence (p-value). 

 

Figure S2. Gene Ontology (GO) enrichment analysis on co-expressed genes 

(http://dx.doi.org/10.17632/kjvs5vgkbf.1DOI) 

Considering 3 differentially expressed conditions (non-injured + C286; injured + vehicle; 

injured + C286) and three gene expression states (induced, repressed and non-differentially 

expressed), a total of 26 combinatorial gene co-expression events are theoretically possible. 

Genes were classified on the basis of their co-expression behavior over the various conditions.  

GO terms associated to the co-expressed genes are displayed on the basis of their confidence 

(-10*log10(p-value), as inferred by the DAVID bioinformatics resources (Huang da et al., 

2009). Co-expression path 1 is shown here, all the other paths are available in 

(http://dx.doi.org/10.17632/kjvs5vgkbf.1DOI). 

 

Figure S3. Modulation of TNF, TNFR1 and NGF by C286 

a, Diagram of the experimental design. b-d, Immunostaining and quantification of TNF and 

TNFR1 by IF (scale bars are 100m and 50 m for insets) and by e,f,  RT-qPCR. Student’s t-

test, **p ≤ 0.01, ***p ≤ 0.001, (n= 3 per group).  g, NGF expression in spinal neurons and 

microglia (scale bar is 30m) and h, quantification of total FI. Data shows Mean FI ± SEM. 

Student’s t-test, **p ≤ 0.01, ***p ≤ 0.001, (n= 3 per group, 5 sections per animal). 

http://dx.doi.org/10.17632/kjvs5vgkbf.1DOI
http://dx.doi.org/10.17632/kjvs5vgkbf.1DOI


 

Table S1. Summary of the GO terms for all 20 co-expression paths 

(http://dx.doi.org/10.17632/kjvs5vgkbf.1DOI)   

The p-value is expressed in "-10*log10(p-value)" and for each path it is indicated their 

corresponding status (i.e. [0][1][0] indicated the expression status for [Non-

Injured+C286][Injured+Veh][Injured+C286]). 

 

Transparent Methods 

Rats and animal procedures 

All procedures were in accordance with the UK Home Office guidelines and Animals 

(Scientific Procedures) Act of 1986. Male Sprague Dawleys rats, weighing 220-250 grams 

were used throughout the study. All animal care and experimental procedures complied with 

the Animals (Scientific Procedures) Act, 1986 of the UK Parliament, Directive 2010/63/EU of 

the European Parliament and the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996). Animal 

studies are reported in compliance with the ARRIVE guidelines (Kilkenny et al., 2010; 

McGrath and Lilley, 2015). All surgery, behavioural testing and analyses were performed using 

a randomized block design and in a blinded fashion. Allocation concealment was performed 

by having the treatment stocks coded by a person independent of the study. Codes were only 

broken after the end of the study. 

Animals were housed in groups of three to four in Plexiglas cages with tunnels and bedding, 

on a 12:12 h light/dark cycle and had access to food and water ad libitum. Experimental 

neuropathy was induced by an L5 spinal nerve ligation (Bennett et al., 2003) (L5 SNL-2 week 

analysis; n= 6 per treatment group; L5 SNL- 4 week analysis n= 8 per treatment group; L5 

SNL with lentivirus; n=6 per treatment group). Briefly, rats were anesthetized via 

intraperitoneal injection of 0.25 mg kg−1 medetomidine/60 mg kg−1 ketamine solution, 

following which the vertebral transverse processes were exposed via a small skin incision and 

http://dx.doi.org/10.17632/kjvs5vgkbf.1DOI


 

retraction of the paravertebral musculature. The L6 transverse process was partially removed 

and the L5 spinal nerve was identified, tightly ligated, and sectioned 1–2 mm distal to the silk 

ligature. During the surgery, the rats were placed on a controlled heating pad to maintain 

temperature at 37 ± 1°C. After the surgery, the rats were hydrated with physiological saline (2 

mL, s.c.). Anesthesia was reversed with an intra muscular (IM) injection of 0.05 ml (1 mg/kg) 

atipamezole hydrochloride (Antisedan®; Pfizer Animal Health, Exton, PA). Animals were kept 

in a heated recovery box until fully conscious and analgesia (buprenorphine, 0.01 mg/ kg, 

subcutaneously) was given after suturing and recovery. All the rats survived this surgery. 

For BRCA1 loss of function studies, at the time of the L5 SNL, 5 μl of lentivirus (titer: 

3.67 × 108 TU/ml), either Brca1 Rat shRNA Lentiviral Particle, sequence, 

TACACAGCCTGGTGTCTCTAAGCAGAGTG, or scrambled, sequence, 

GCACTACCAGAGCTAACTCAGATAGTACT (TL709162V, Origene) was injected 

manually into the spinal cord at the level of L5, using a 20 μl Hamilton syringe at 0.5 μl min− 1 

and the needle was left in place for the following 5 minutes to limit diffusion through the needle 

tract.  

 

Drug treatments and tissue processing for in vivo studies 

Rats were treated with vehicle or a novel selective RAR agonist, C286 (Goncalves et al., 

2019a) (synthesized by Sygnature Chemical Services, Nottingham, UK), given by oral gavage 

(po) three times a week for four weeks at 3mg/kg. C286 has a high potency at RAR (similar 

potency to all-trans-retinoic acid) and behaves as a full agonist showing an EC50 of 1.94 nM at 

the mouse RAR receptor and a selectivity for RAR over RAR of 13.4, with selectivity for 

RAR over RAR being 5.6-fold (Goncalves et al., 2019a). 

After defined survival times, animals were killed by terminal anesthetization and transcardially 

perfused with 4% paraformaldehyde, for immunohistochemistry or ice-cold PBS, for mRNA 



 

extraction and Western blotting. The lumbar spinal cords were excised, rapidly removed and 

the tissue corresponding to L5 spinal cord was isolated.  For immunohistochemistry, the tissue 

was post-fixed with 4% PFA for at least two days at room temperature before being embedded 

in paraffin wax. Five m longitudinal or transverse sections cut throughout each block. Sets of 

consecutive sections, comprising the L5 lumbar spinal cord were taken and used for 

immunohistochemical analysis. For mRNA extraction and Western blotting, L5 spinal cords 

were bi-dissected into ipsi and contralateral side to the injury, and tissue was snap frozen in 

liquid nitrogen and kept at -80 0C until further use. 

 

Behavioural tests 

Pain thresholds were measured according to the methods described below. Baseline recordings 

were taken at 1 day prior to surgery and at 1, 6, 9, 16, 23 and 28 days after surgery for L5 SNL 

experiment and at 1, 7, 14, 21 and 28 days for the L5 SNL lentivirus study. 

 

Mechanical thresholds 

von Frey test 

Static mechanical withdrawal thresholds were assessed by applying von Frey hairs (Touch 

Test, Stoelting, IL, USA) to the plantar surface of the hind paw. Unrestrained animals were 

acclimatised in acrylic cubicles (8 x 5x 10 cm) on a wire mesh grid for 60 min prior to testing. 

Calibrated von Frey hairs (flexible nylon fibres of increasing diameter that exert defined levels 

of force) were applied to the plantar surface of the hind paw until the fibre bent. The hair was 

held in place for 3 secs or until the paw was withdrawn in a reflex not associated with 

movement or grooming. Each hair was applied 5 times to both the left and the right paw 

alternately, starting with the lowest force hair. Hairs of increasing force were applied in 



 

sequence, 5 applications per hair. A positive response was recorded when a 40% withdrawal 

response occurred over 5 applications. 

 

Randall-Selitto test 

Mechanical nociceptive thresholds were evaluated using an Analgesy-Meter (Ugo Basile, 

Comerio, Italy).  Rats were gently held and incremental pressure (maximum 25 g) was applied 

onto the dorsal surface of the hind paw. The pressure required to elicit paw withdrawal, the 

paw pressure threshold, in g was determined. An average of three recordings were taken 

separated by at least 5 minutes. 

 

Thermal thresholds 

Hot plate- Hargreaves test 

Briefly, the rats were habituated for 10 minutes to an apparatus consisting of individual 

Plexiglas boxes on an elevated glass table. A mobile radiant heat source was located under the 

table and focused on the hind paw, and the paw withdrawal latencies were defined as the time 

taken by the rat to remove its hind paw from the heat source. The cut-off point was set at 25 s 

to prevent tissue damage. The apparatus was calibrated to give a paw withdrawal latency of 

approximately 15 s in naïve rats. An average of three recordings were taken separated by at 

least 5 minutes. 

 

Cold plate 

Withdrawal of the hind paw in response to painful cold stimulation was assessed using an 

Incremental Hot/Cold Plate (IITC Life Sciences) set at 4±0.1°C. Rats were lightly restrained 

and the hind paw was held with the plantar surface on the cold plate. The latency to withdraw 

the paw was measured to the nearest 0.01secs. To avoid tissue injury, the maximum latency 



 

period permitted was 20 secs. An average of three recordings were taken separated by at least 

5 minutes. 

 

RNA extraction and Sequencing 

Total RNA isolation and RT-qPCR analysis 

Frozen micro dissected spinal cord samples were lysed with Teflon-glass homogenisers and 

QIAshredder columns (Qiagen). Total RNA was isolated with the Qiagen RNeasy® Mini kit. 

The RNA was assessed for purity and quantity using the Nanodrop 1000 spectrophotometer 

and assessed for quality on the Agilent Bioanalyzer 2100.  RNA was reverse transcribed with 

a QuantiTect® Reverse Transcription kit (Qiagen). Levels of BRCA1, TNFα and TNFR1 

expression were quantitated in triplicate, relative to GAPDH and triplicate non-template 

controls for each gene, by RT-qPCR analysis on a LightCycler® 480 instrument with 

LightCycler® SYBR® Green I Master reagent (Roche). Primer pairs used were; BRCA1 F: 

5’-AGGCAAGATCTCGAAGGAACCC-3’; R: 5’-AATCAGGGTCTCTGCTGGAGACTA-

3’; TNFα F: 5’-CTGTGCCTCAGCCTCTTCTC-3’; R: 5’-ACTGATGAGAGGGAGCCCAT-

3’; TNFR1 F: 5’-CCTCTCTCCCCTCGGCTTTA-3’; R: 5’-

CCCGGGTTAGAAAGGCTCAA-3’; GAPDH F: 5’-TGACCTCAACTACATGGTCTACA-

3’; R: 5’-GACTCCACGACATACTCAGCA-3’. RT-qPCR cycling parameters were optimised 

for each gene and were as follows:BRCA1, 400nM Forward and reverse primers, 45 cycles of 

95 °C 15 s; 60 °C 40 s; 72 °C 20 s. TNFα and TNFR1, 500nM forward and reverse primers, 45 

cycles of 95 °C 10 s; 60 °C 20 s; 72 °C 10 s. Amplicons were confirmed by analysis of melting 

peaks and agarose gel electrophoresis. 

 

 

 



 

mRNA Library preparation 

Four hundred ng of intact high quality total RNA (RIN>7.9) from each sample was then used 

as input to generate libraries for RNA-sequencing using the NEBNext Ultra II Directional kit 

(NEB, Cat.no: E7760S) following the manufacturer’s recommendations. This protocol 

involved an initial step of mRNA selection using a poly-A isolation module (NEB, Cat.no: 

E7490) to select for mRNA with a mature polyA tail, followed by fragmentation prior to first 

cDNA synthesis and barcoding second-strand cDNA synthesised with indices for Illumina 

sequencing for final library amplification (10-cycles). The resulting libraries (342-421bp) were 

assessed on the Bioanalyzer 2100 for purity. The NEBNext Library Quant Kit for Illumina 

(NEB, Cat.no: E7630L) was used to calculate the quantity of each library. The quantification 

data was used to pool the libraries in equal molarity prior to performing a QC run on the MiSeq 

(MiSeq Reagent Kit v3 (150-cycle); Cat no: MS-102-3001). Further deep sequencing was 

performed on the pooled library over 2 lanes using a HiSeq4000 (by GENEWIZ) to generate 

roughly 26 million reads per sample. 

 

RNA-Seq Data Analysis 

Samples were aligned to the reference genome (Rattus_norvegicus Rnor_6.0.94) with 

Bowtie2(Langmead and Salzberg, 2012). Aligned sequenced reads per sample were associated 

to annotated genes with HTSeq (https://htseq.readthedocs.io/en/release_0.11.1/count.html), 

followed by an inter-sample quantile normalization to correct for technical differences. 

Differential expression analysis (relative to the samples issued from non-injured and vehicle 

treated animals) has been performed with Deseq2 (Love et al., 2014). Differentially expressed 

genes assessed in various conditions (non-injured +C286; Injured +vehicle; Injured +C286) 

were stratified over three major states (induced, repressed or non-differentially expressed) such 

that a total of 26 hypothetical combinatorial co-expression events were inferred. Among them, 

https://htseq.readthedocs.io/en/release_0.11.1/count.html


 

only 8 appeared as biologically significant situations where the effect of the ligand C286 could 

be inferred (Figure 1G). To support this hypothesis, all combinatorial co-expression events 

were analyzed for Gene Ontology (GO) enrichment (DAVID bioinformatics resources),(Huang 

da et al., 2009) demonstrating relevant enrichment GO terms preferentially in the case of the 

selected biologically selected co-expression paths. 

 

Microglia cultures 

Primary mixed glial cultures were prepared as described previously (Goncalves et al., 2019b).  

Briefly, mixed glial cultures were obtained from the cortices of C57B/6 postnatal mice (P5–

P8). Cultures were maintained at 37 °C (5% CO2/95% O2) in medium containing 15% fetal 

bovine serum (Invitrogen) and 1% penicillin-streptomycin (Sigma Aldrich) for 10–14 days. 

Microglial cells were then harvested by forceful shaking for 1 min by hand and plated on poly-

d-lysine-coated glass coverslips or plastic six-well plates. To obtain reactive microglia, cells 

were treated with 100ng/ml lipopolysaccharides (LPS) for 3hr (Tarassishin et al., 2014) and 

then for another 3 hr with either: vehicle; C286 (10-7 M); KU55933 (Hickson et al., 2004) 

(1M, Abcam, ab120637) or C286 +KU55933.   

 

Immunochemistry and Antibodies 

Immunohistochemistry and cytochemistry were carried out as previously described (Goncalves 

et al., 2005). For the spinal cords: paraffin wax (Pwax) embedded tissues, were first dewaxed 

in xylene and 100% IMS, then heated in citric acid (10 mM, pH = 6), until boiling, then washed 

under a running tap for 5 min. For microglia cultures: cells were fixed for 15 min. with 4% 

PFA. Tissue sections or cells were washed 3x for 5 min each in PBS before incubation with 

primary antibody in PBS-0.02% Tween at 4ºC overnight. Primary antibody was removed by 

washing 3x for 5 min each in PBS. They were incubated in the secondary antibody for 1 hr. at 



 

room temperature (RT) in PBS-0.02% Tween, and then washed in PBS 3x for 5 minutes. 

Antibodies used were: mouse monoclonal anti-βIII tubulin (G7121, Promega, 1:1000); goat 

polyclonal anti-Iba1 (ab107159, Abcam, 1:2,000); chicken polyclonal anti-Iba1 (ab139590, 

Abcam, 1:500); rabbit polyclonal anti-FZD10 (ab83044, Abcam, 1:500); rabbit polyclonal 

anti-BDNF (NBP1-46750, Novus Biologicals,1:1,000); chicken polyclonal anti-GFP 

(ab13970, Abcam, 1:400) mouse monoclonal anti-TNF (ab1793, Abcam, 1:500); rabbit 

polyclonal anti-TNFR1 (ab58436, Abcam, 1:500); rabbit polyclonal anti-NGF 9ab6199, 

Abcam, 1:100); sheep polyclonal anti-CGRP (BML-CA1137, ENZO, 1;500); rabbit polyclonal 

anti-BRCA1 (ab191042; Abcam, 1:50); rabbit polyclonal anti-H2AX (ab2893, Abcam, 

1:5,000); mouse monoclonal anti-pATM (sc-47739, Santa Cruz Biotechnology,1:50) ; mouse 

monoclonal anti-NeuN (MAB377, Millipore, 1:1000); rabbit monoclonal anti-NeuN (#12943, 

Cell Signaling Technology, 1:3000); rabbit polyclonal anti-P2XR4 (APR-024, alomone labs, 

1:20); rabbit polyclonal anti-Daxx (LS-B363, LSBio, 1:50). Secondary antibodies were 

AlexaFluor™ 594, AlexaFluor™ 488 (1:1000, Molecular Probes, Life Technologies) and 

AlexaFluor™ 647 (1:1000, Molecular Probes, Life Technologies). DAPI was used to stain 

nuclei (1 μg/mL, Sigma Aldrich).  

 

Immunochemistry quantification 

Quantification of protein levels by immunofluorescence (IF) was done as previously described 

(Herrmann et al., 2010).  In brief, positively stained areas were quantified as the pixels of 

immunoreactivity above a threshold level per unit area using the Zeiss Zen blue edition 

software. The threshold value was set to include fluorescent positive signal and to exclude 

background staining. Threshold values for a given section and stain remained the same 

throughout the study and the quantifications were done by an operator blinded to the treatments. 

 



 

Confocal microscopy 

Multichannel fluorescence (DAPI–FITC–Texas Red filter set) images were captured using a 

Zeiss LSM 700 laser-scanning confocal microscope. For high magnification images, a 63 x oil-

immersion Aprochromat objective (Carl Zeiss) was used. Settings for gain, aperture, contrast 

and brightness were optimized initially, and held constant throughout each study so that all 

sections were digitized under the same conditions of illumination. Channels were imaged 

sequentially to eliminate bleed-through, and multichannel image overlays were obtained using 

Adobe Photoshop 7.0 (Adobe Systems).  

 

Western blotting 

Spinal cord proteins were isolated from the phenol fraction remaining after QIAzol RNA 

extraction, according to the Qiagen user-developed protocol RY16. Briefly, the phenolic phase 

was treated with ethanol and the proteins precipitated by isopropanol. Protein pellets were 

sequentially washed with 0.3M guanidine-hydrochloride in 95% ethanol and 100% ethanol, air 

dried, then resuspended in 10M urea, 50mM DTT in water. Protein concentrations were 

measured by Coomassie-Bradford assays and proteins were separated by SDS-PAGE from 

20µg aliquots loaded on to 12% (w/v) Bis-Tris polyacrylamide gels. For BDNF analysis the 

separated proteins were blotted to a 0.45µm pore size nitrocellulose membrane (BA85; 

Schleicher and Schuell) with a Trans-Blot SD Semi-Dry Transfer Cell (Bio-Rad Laboratories). 

The membrane was incubated in Odyssey® Blocking Buffer (PBS) (LICOR Bioscience) for 1 

h at RT followed by an overnight incubation at 4°C with the primary antibody in blocking 

buffer. Anti-β-actin antibody was then added, for 1 h at room temperature (RT), after which 

the membrane was washed with PBS containing 0.1%v/v Tween-20 and incubated for a further 

1 h at RT with secondary antibodies in blocking buffer. Finally, the membrane was washed as 

before and simultaneously scanned at 700nm and 800nm using an Odyssey® protein detection 



 

system (LICOR Bioscience). Proteins were quantified using Image Studio Lite software 

(LICOR Bioscience) and normalized against β-actin. For the detection of BRCA1, proteins 

were transferred to a Hybond™-ECL membrane (GE Healthcare). The membrane was cut at 

the 76kD marker and both sections incubated in a blocking buffer consisting of 1% (w/v) BSA 

in TBS-Tween-20 (0.1%, v/v) for 1 h at RT followed by an overnight incubation at 4°C with 

anti-BDNF antibody added to the top section only. The top membrane was washed with TBS-

Tween-20 (0.1% v/v) then incubated with a biotinylated secondary antibody for 1 h at RT, 

washed as before and incubated with ECL™ Western Blotting Detection Reagents (GE 

Healthcare). Proteins were visualised with the BioSpectrum Imaging system (UVP). The lower 

section of the membrane was incubated with a β-actin antibody for 1 h at RT followed by 

washing with TBS-Tween-20 (0.1% v/v) and incubation for a further at 1 h at RT with 

secondary antibodies in blocking buffer. β-Actin was visualised with the Odyssey® protein 

detection system (LICOR Bioscience) as above. Antibodies:  Rabbit polyclonal anti-BRCA1 

(ab191042, Abcam, 1:500); mouse monoclonal anti-BDNF (Ab205067, Abcam, 1:500); Rabbit 

polyclonal anti-β-actin (Ab8227, Abcam, 1:5000); Biotinylated Goat Anti-Rabbit IgG (BA-

1000, Vector Laboratories, 1:500); Alexa Fluor680 (1:5000, Invitrogen) and IR Dye 800CW 

(1:5000, LICOR Biosciences). 

 

Statistical analysis  

Data and statistical analysis comply with the recommendations on experimental design and 

analysis in pharmacology (Curtis and Abernethy, 2015). Data analysis was performed in a 

blinded fashion.  All statistical analysis was performed using Sigma Stat Software (SPSS 

Software Ltd, Birmingham, UK) using unpaired t-tests and one-way ANOVA with Pairwise 

Multiple Comparison Procedures (Tukey Test), or two-way ANOVA with Pairwise Multiple 

Comparison Procedures (Holm-Sidak method) as indicated in the Figure legends. *p ≤ 0.05, 



 

**p ≤ 0.01, ***p ≤ 0.001. Exact p values are shown when p> 0.001. n represents the number 

of biological replicates. Experiments were repeated to ensure reproducibility of the 

observations. No statistical methods were used to predetermine sample size. 

 

Data and Software Availability 

Raw and processed transcriptome datasets are available under the GEO accession number 

(GSE135080) and the Mendeley repository  Mendeley 

Data, v1 http://dx.doi.org/10.17632/kjvs5vgkbf.1DOI . 
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