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Abstract: The aim of this study was to develop a novel ultrathin fibrous membrane with a core–sheath
structure as an antioxidant food packaging membrane. The core–sheath structure was prepared by
coaxial electrospinning, and the release of active substances was regulated by its special structure.
Ferulic acid (FA) was incorporated into the electrospun zein/polyethylene oxide ultrathin fibers to
ensure their synergistic antioxidant properties. We found that the prepared ultrathin fibers had a
good morphology and smooth surface. The internal structure of the fibers was stable, and the three
materials that we used were compatible. For the different loading positions, it was observed that the
core layer ferulic-acid-loaded fibers had a sustained action, while the sheath layer ferulic-acid-loaded
fibers had a pre-burst action. Finally, apples were selected for packaging using fibrous membranes
to simulate practical applications. The fibrous membrane was effective in reducing water loss and
apple quality loss, as well as extending the shelf life. According to these experiments, the FA-loaded
zein/PEO coaxial electrospinning fiber can be used as antioxidant food packaging and will also
undergo more improvements in the future.
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1. Introduction

Food is the essential source of energy for human production and daily life, and its
research and development, production, and transport across the whole industry chain
are closely related to food packaging. Food packaging works in three ways: firstly, to
ensure that the food is not contaminated during transportation; secondly, to ensure the
overall freshness of the food itself; and thirdly, to provide consumers with portability
and convenience [1]. With the fast pace of modern life, people’s demand for prepared
food has changed. As a result, the upgrading of food packaging and the addition of food
components have become the most intuitive ways to improve food storage life [2,3]. The
principles of shelf-life extension are threefold: reducing the rate of oxidation, inhibiting the
growth of food bacteria, and slowing down the process of autonomous respiration [4–6].
Most traditional food preservation technologies on the market are based on increasing cold
chain transport and setting up low-temperature vending areas to extend the food cycle.
Although this method of extending the shelf life of food by lowering the temperature can
be effective, it fails to achieve the desired effect. The overall freshness is greatly reduced by
the constant attack of bacteria and free radicals from outside [7].

Intuitive ways to prolong the shelf-life of food products include the addition of
preservatives in food production and improvements in food packaging. The former is
controversial due to dosage standards and safety issues with preservatives. This has led to
the development of new packaging technologies that incorporate active substances into
food packaging, i.e., active food packaging, which uses active ingredients to react with a
range of substances to preserve the freshness of food [8].
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However, the use of functional active substances must meet food safety standards,
so that the active substance can perform its specific function under safe and ingestible
conditions [9]. The focus of attention is on natural substances derived from plants, including
essential oils and polyphenols [10–12]. Due to their specific chemical structure, the phenolic
substances they contain can react with peroxyl radicals [13].

As a result, essential oils and phenolics have become popular in research. Although
natural essential oils and phenols have the advantage of being non-toxic and safe, they
are unstable and volatile. Therefore, traditional food packaging processing methods can
easily affect their effectiveness and even lead to overall failure. Electrospinning technology,
with its simplicity and room temperature manipulability, makes it possible to encapsulate
natural functional substances into food packaging in the production chain [14,15].

Electrospinning is a top-down technique in which polymer solutions are stretched
into micro- and nanofibers by electrostatic field forces [16–21], often with room temper-
ature operability. It is an easy method for transforming filament-forming polymers into
nanofibers [22–25] and has become one of the most powerful tools in the polymeric en-
gineering field [26–28]. Although electrospun single-component polymer nanofibers can
be exploited directly [29], in most cases the functional ingredients are co-dissolved with
a polymer to form a blended fluid [30–34]. After solidification by electrospinning, the
polymeric nanofibers are endowed with a certain functional application [35–37]. Many new
encapsulation methods were invented alongside the development of electrospinning, such
as coaxial [38,39] and side-by-side electrospinning [40], as well as the electrospinning of
nano suspensions contained in drug-loaded nanoparticles [41].

In 2003, Sun et al. [42] reported a core–sheath structure for coaxial electrospinning,
allowing the polymer to be sequestered into the nanofibers. Coaxial electrostatic spinning
fiber technology has made it possible to modulate the structure to control the rate of release
of active substances [43–48]. The overall technological process is suitable for the expected
release of functional actives from food packaging. Electrospinning is quickly moving
forward to tri-axial, modified tri-axial, side-by-side, and tri-fluid Janus processes [49–54].
Coaxial electrospinning is one of the most popular processes due to its relative simplicity in
implementation, in addition to the usefulness of double-layer core–shell structures [55–57].
Therefore, coaxial electrospinning technology was adopted for this experiment to develop
antioxidant food active packaging [58].

Zein (from corn), used in this experiment, is an alcohol-soluble protein derived from
natural food corn with high thermal stability and biocompatibility [59]. It is considered
promising for use as a conveyor belt for the delivery of functional active substances. The
combination of zein and polyethylene oxide (PEO), a water-soluble polymer with good
compatibility and degradability, can enhance the overall solution’s textile and mechanical
properties [60,61].

Ferulic acid (FA), a phenolic acid with antioxidant properties, is found abundantly in
plants and vegetables [62–64]. FA itself has been shown to have outstanding anti-aging
and anti-cancer properties in pharmacology studies. Due to the reliability demonstrated
by the FDA as well as its stability under UV light [65], FA was used as the functional
substance in this experiment. Niloufar Sharif et al. [66] illustrated the spinnability of ferulic
acid by encapsulating it in hydroxypropyl-beta-cyclodextrin and successfully preparing
electrospinning fibers.

Combining previous studies and the properties of various substances, we chose apple
slices as the experimental object, aiming to investigate the coaxial core–sheath electrospin-
ning functional nanofibers loaded with FA, using zein and PEO as the electrospinning
polymer matrix, to achieve the antioxidant target. The composition and morphology of the
fibers were characterized, and the antioxidant effect was tested.
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2. Experiments
2.1. Materials

The chemical substances, which included ethanol, polyethylene oxide (PEO), and
ferulic acid (FA), were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Zein (from corn) was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan). All chemicals were of analytical grade, and water was doubly distilled through a
purification system.

2.2. Electrospinning Preparation

This experiment was performed using a customized electrospinning system, as shown
in Figures 1 and 2 below. The spinning equipment consisted of high voltage (60 kV/2 mA)
power (ZGF2000, Shanghai Suter, China), two syringe pumps (KDS100 and KDS200, Cole
Palmer, IL, USA), a customized coaxial spinning nozzle, and aluminum foil as a collector.
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Figure 2. Structure of the homemade coaxial spinneret: (a) Diagram of the designed structure of the
coaxial spinneret; (b) coaxial spinneret and the head of the spinneret (bottom-left insert).

The experimental group consisted of two fluids as the core and sheath solutions for
coaxial electrospinning. For the core solution, 3% (w/v) PEO solution was prepared by
adding 3 g PEO to 100 mL of 80% v/v ethanol aqueous solution and stirring with a magnetic
stirrer for 8 h. For the sheath solution, 28% (w/v) zein solution was prepared by dissolving
28 g zein in 100 mL of 80% v/v ethanol aqueous solution and stirring with a magnetic stirrer
for 8 h. Adjusting the content of ferulic acid in the core or sheath solution allowed us to set
up control groups. The detailed parameters are shown in Table 1 below.
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Table 1. Electrospinning processing parameters for the prepared fibers.

Fiber
No.

Electros-
pinning

Voltage
(kV)

Core Fluid Sheath Fluid Collection
Distance

(cm)Polymer Functional
Ingredient

Flow Rate
(mL/h) Polymer Functional

Ingredients
Flow Rate

(mL/h)

F1 Single-fluid 16.5 zein - 0.2 - - - 10
F2 Single-fluid 6 PEO - 0.6 - - - 15
F3 Coaxial 7.5 PEO - 0.6 zein - 0.3 20
F4 Coaxial 7.5 PEO FA (10%) 0.6 zein - 0.3 20
F5 Coaxial 7.5 PEO - 0.6 zein FA (10%) 0.3 20
F6 Coaxial 7.5 PEO FA (15%) 0.6 zein - 0.3 20
F7 Coaxial 7.5 PEO - 0.6 zein FA (15%) 0.3 20

The electrostatic spinning process parameters were progressively optimized through a
series of pre-experiments, including uniaxial and coaxial electrostatic spinning to prepare
zein–PEO fibers. The experimental parameters were a high-voltage power supply set at
7.0 kV; a collection distance of 20 ± 2 cm; a core fluid flow rate of 0.6 mL/h; a sheath fluid
flow rate of 0.3 mL/h; an ambient temperature setting of 25 ± 2 ◦C; and an experimental
relative humidity of 60 ± 5%.

2.3. Characterization of the Experimentally Obtained Fiber Components

The experimentally obtained fiber components were characterized for various proper-
ties. For the Quanta FEG 450 scanning electron microscope (SEM, FEI Co., Ltd., Hillsboro,
OR, USA), we used vacuum evaporation equipment to place the sample on thin layers of
gold. The internal groups of the electrospinning fibers or raw materials were analyzed
using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, Spec-
trum 100). The scan range was set to 450 to 4000 cm−1, and the number of scans was 8.
The physical state of the prepared nanofibers and raw materials was analyzed using X-ray
diffraction (XRD). The angle of incidence 2θ was set in the range of 5–60◦, the voltage was
40 kV, and the current was 30 mA.

2.4. FA Releasability

In order to evaluate the FA release behavior of the nanofibers when exposed to foods
with a high moisture content, the 24 h dissolution concentration profile of FA was studied
using an SHZ-86 water bath thermostatic oscillator.

A conical flask was filled with 125 mL of deionized water and immersed in a water
bath shaker with the temperature set at 25 ± 0.5 ◦C and the speed fixed at 50 rpm. The FA
dissolution test was started when the temperature of the deionized water in the conical
flask and the temperature of the water bath were the same. The FA-loaded fiber membrane
was cut into rectangles weighing 25 ± 0.5 mg and placed in the conical flask. The moment
that the membrane was placed in the conical flask was recorded as the zero moment, and
2.5 mL of solution was removed from the conical flask using a pipette to measure the FA
concentration at equal intervals. At the same time, 2.5 mL of distilled water was removed
from the spare conical flask and added to the conical flask from which the sample solution
had been removed to maintain a constant total volume of solution in the conical flask.

The concentration of FA (F%) in the test solution was calculated using the following
Equation (1):

F% =
Xn × V0 + ∑n−1

i=1 Xi × V
Q0

× 100% (1)

Xn represents the concentration of the nth sample solution taken, Xi represents the con-
centration of the i-th sample solution taken, V represents the volume of solution removed
each time, 2.5 mL, and V0 represents the total volume of solution in the conical flask.

2.5. Analysis of Antioxidant Properties

The antioxidant properties of the preparations were analyzed using the DPPH radical
scavenging method [67–72]. We prepared a DPPH standard solution at a concentration of
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60 mg/L and placed 10 mg of the functional nanofiber membrane in 10 mL of anhydrous
ethanol. A total of 0.1 mL of the sample solution and 2.5 mL of DPPH standard solution
were collected and shaken well in a centrifuge tube for 5 min, 1 h, and 24 h. The absorbance
of the DPPH solution after this reaction was measured at a wavelength of 516 nm, noted as
Asample, and the absorbance of the DPPH standard solution before the chemical reaction
was carried out, noted as Abackground, and the reduction in absorbance of the DPPH solution
was used to determine the antioxidant activity of the reaction fiber (AA%). Equation (2) is
shown below.

AA% =
Abackground − Asample

Abackground
× 100% (2)

2.6. Fruit Preservation

Equal slices of purchased fresh apples were packed in direct contact with the PEO/zein
nanofiber membranes. The apples were divided into five groups; the first group was a
blank control group, and the other four groups were packed using F4, F5, F6, and F7
fibers. The mass of the apple slices was weighed separately at each pre-determined time
point to calculate the weight loss rate to analyze the degree of freshness retention of the
fiber membrane.

Equation (3) for calculating the weight loss rate is as follows:

weight loss rate(%) =
W0 − Wi

W0
× 100% (3)

where W0 is the initial mass of the apple slice and Wi is the mass of the apple slice at the
i-th observation time.

Equal slices of purchased fresh apples were placed in beakers and packaged with
the aid of PEO/zein nanofiber membranes. The nanofiber membrane was cut into 30 mg
pieces, and the packaging process lasted for 8 days at an experimental temperature of
4 ± 1 ◦C. The apples were divided into five groups; the first group was a blank control
group, and the other four groups were packed using F4, F5, F6, and F7 fibers. The content
of benzoquinone, a browning product of apple slices, was measured at each preset time
point to analyze the browning rate.

2.7. Statistical Analysis

The data were statistically analyzed using Microsoft Windows Excel 2019 and Origin-
Lab Origin 2021. Data were expressed as the means ± standard deviations (SD). All
experiments were conducted in triplicate.

3. Results and Discussion
3.1. Coaxial Electrospinning

The compositions of a coaxial system have no essential differences to a traditional
single-fluid process or monoaxial process. Shown in Figure 1 is a diagram of a coaxial
system. The only difference is that two working fluids are simultaneously led to a concentric
spinneret. The spinneret is the most important part in an electrospinning system. It
determines the types of electrospinning processes, the final structure of the resultant
nanofibers, and even the production yields [73].

In our study, a homemade spinneret was designed; a diagram and digital picture are
included in Figure 2. The characteristics of this concentric spinneret include the following:
(1) the core capillary inserts into the shell capillary from an enlarged section of one side
(Figure 2a); (2) the spinneret consists of both polymers and stainless steel (Figure 2b), which
is useful for preventing energy loss to the environment [74] regardless of AC or DC power
supply [75]; (3) the top of the inner capillary slightly projects out of the surface of the shell
capillary, which is useful for a better encapsulation of the core fluid by the shell liquid.
The concentric spinneret had an inner and outer diameter of 0.5 and 1.5 mm, respectively
(Figure 2b).
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3.2. Uniaxial Electrospinning Fiber Morphology

The optimum concentration of the zein solution for spinning was 28%, so all subse-
quent experiments were carried out based on this parameter. The experiments were carried
out by setting four control groups, with 0%, 10%, 15%, and 20% ferulic acid loadings for
the polymer matrix zein. The SEM images obtained are shown in Figure 3 below: when the
zein was not loaded with ferulic acid, the nanofibers obtained had an uneven distribution
of diameters and large fluctuations in the values of individual fiber diameters, whereas
when loaded with ferulic acid, the fibers had a flatter shape and a more uniform diameter
distribution. The overall shape of the fibers increased with increasing ferulic acid loading,
but at 20% ferulic acid loading, the fibers exhibited a beaded morphology.
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Figure 3. SEM images of zein fibers with different ferulic acid loadings: (a) 0% FA; (b) 10% FA; (c) 15%
FA; (d) 20% FA.

As a high ferulic acid loading can lead to the agglomeration of the overall textile
fiber, the ferulic acid loading can alter the overall flow of the zein solution. The images
demonstrated that the fibers were not homogeneously arranged after 20% ferulic acid
loading; therefore, the optimum concentrations of 10% and 15% ferulic acid were chosen
for the subsequent coaxial electrostatic spinning preparation.

3.3. Coaxial Electrospinning Fiber Morphology

The prepared F4 to F7 coaxial electrospinning fibers were characterized as shown in
Figure 4a,c for the coaxial core layer ferulic-acid-loaded fibers and as shown in Figure 4b,d
for the coaxial sheath layer ferulic-acid-loaded fibers. The overall morphologies of the
sheath-loaded fibers indicated a larger diameter, and the surface of the fibers was flatter
and smoother than that of the core-loaded fibers for the same parameter values. The reason
for this change in diameter was that when the sheath layer was loaded with ferulic acid, the
zein structure of the sheath layer solution expanded in volume and therefore increased in
diameter. When the core layer was loaded with ferulic acid, the zein in the sheath structure
wrapped around it, preventing a large change in the overall volume. The decrease in the
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coaxial fiber diameter with increasing ferulic acid loading also indicated that the effect
of increasing the amount of active substance on the volume during the spinning process
was less than the effect of the active substance on the properties of the spinning solution.
The increased ferulic acid content improved the fluid properties of the two layers of the
coaxial electrospinning core sheath, leading to a possible increase in solution viscosity or
an increase in solution conductivity. These changes led to a finer stretching of the fluid at
the tip of the Taylor cone, resulting in a smaller fiber diameter.
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Figure 4. SEM image of coaxial electrospinning fibers loaded with FA: (a) F4 fiber loaded with 10%
FA in the core layer; (b) F5 fiber loaded with 10% FA in the sheath layer; (c) F6 fiber loaded with 15%
FA in the core; (d) F7 fiber loaded with 15% FA in the sheath layer.

Overall, the four groups of coaxial electrospinning fibers had a relatively homogeneous
distribution of diameters and a good overall morphology. This fiber structure facilitated
the subsequent release of ferulic acid and provided a good experimental basis for the
subsequent preparation of antioxidant active packaging.

3.4. Comparison of Two Electrospinning Fibers

The morphological comparison between the uniaxial nanofibers and coaxial nanofibers
is shown in Figure 5a which corresponds to the observation of the uniaxial PEO fiber at
40,000 magnification, and Figure 5b which corresponds to the observation of the coaxial
PEO–zein fiber of at 10,000 magnification. According to the analysis in the previous
subsection, the uniaxial PEO fibers were unevenly coarse and thin, and the surface was not
smooth in a curved and creeping manner, which showed from the side that the uniaxial
electrospinning process of PEO was more unstable. The coaxial electrospinning fibers had
a uniform distribution of diameters and showed a large increase in diameter compared
to the uniaxial fibers. As a result, coaxial electrospinning fibers had a larger fiber surface
area and were more absorbent than the uniaxial electrospinning fibers. This showed that
the coaxial fibers will be more conducive to the release of active substances in functional
food packaging.
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3.5. Analysis of the Internal Components of the Nanofibers

The internal fractions were determined by using Fourier transform infrared spec-
troscopy. The changes in the internal functional groups of the material before and after
preparation were confirmed and the fractions characterized, as Figure 6 shows.
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Figure 6. FT-IR spectra of raw materials and electrospinning fibers.

FA had a large number of characteristic peaks at 1750 to 750 cm−1, which included car-
bonyl vibrations, carbon–carbon double bonds, carbon–carbon single bonds, hydrocarbon
bonds, and carbon–oxygen single bonds. These bonds also had different vibrational forms
reflecting the ordered crystal structure of the FA molecule; characteristic peaks at 1657
and 1519 cm−1 were found in zein polymers, which corresponded to the vibrations of the
carbonyl group and the amino group, respectively. Characteristic peaks at 2875, 1453, 1257,
and 1098 cm−1 were found in PEO, representing the presence of the methyl and carbonyl
groups in PEO.

In the IR diffraction of the uniaxial and coaxial fibers, the characteristic peaks of FA
disappeared despite the presence of the FA active substance. The FA molecules were
distributed as solid dispersions in the nanofibers instead of crystals and showed good
compatibility with the polymer matrix in a more stable bonding. At the same time, the
peaks at 1657 and 1519 cm−1 from pure zein shifted slightly to the left or right in the fibers,
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presumably resulting in hydrogen bonding between FA and the polymer matrix, as shown
in Figure 7, which illustrated a good and stable loading of FA in the fibers and facilitated
the controlled release of the FA active substance.
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3.6. XRD Analysis of Raw Materials and Electrospinning Fibers

XRD is a well-known technique used to characterize crystalline structures [76–79]. In
this study, we used it to characterize the three raw materials, PEO, zein, and FA, as well as
the uniaxial and coaxial fibers. The characterization results obtained are shown in Figure 8.
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Figure 8. X-ray diffraction analysis of raw materials and electrospinning fibers.

A comparison of the three figures showed the presence of several sharp peaks in the
active substance FA, which indicated the presence of a crystalline form. As revealed by
the several sharp peaks in the PEO polymer, PEO had a certain degree of crystallinity. The
absence of sharp peaks in the zein polymer represented its amorphous physical form.
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The observation of the uniaxial and coaxial fibers showed that the overall amorphous
form of the fiber was present. Therefore, it was assumed that the FA actives had lost their
original crystalline structure in the fibers and were only embedded as individual molecules
in the resulting nanofiber polymer chains. The active substance was loaded homogeneously
in the polymer, as revealed by this circumstance. This phenomenon satisfied the concept of
the functional fiber packaging and the controlled release properties of the active substance.

3.7. Preparation of Standard Curves for FA

The standard absorbance/concentration curves of FA were prepared using a UV–Vis
spectrophotometer to measure the absorbance of ferulic acid at different concentrations.
The standard solution of 50 µg/mL of FA was used as the starting point for the preparation
of FA solutions diluted 2-fold, 3-fold, 4-fold, 5-fold, 8-fold, and 10-fold.

Based on the literature review, 322 nm was determined as the maximum absorption
wavelength of FA, and the absorbance of each concentration of the solution was tested at this
wavelength. As shown in Figure 9, a linear fit resulted in the primary linear Equation (4):

A = 0.07362C − 0.32194
(

R2 = 0.99566
)

(4)

where A is the absorbance and C is the concentration of the FA solution. The fitting equation
was used as the basis for the subsequent FA release experiment.
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3.8. Analysis of FA Release Characteristics

The experimental temperature was controlled at 25 ◦C using a water bath thermostatic
remote bed to simulate the process of packaging food products with a high moisture content
and to analyze the dissolution characteristics of FA in distilled water in the F6 and F7 fibers.
The dissolution curves obtained are shown in Figure 10 below.

The core layer-loaded fiber F6 and the sheath layer-loaded fiber F7 had a more pro-
nounced release variability during the first five hours. In the first minute of the dissolution
experiment, the FA release of the F6 fiber was 2.40%, compared to 18.33% for the F7 fiber.
This indicated that the core layer carrier fibers had good burst release arresting properties
and that the ferulic acid encapsulated in the sheath surface was able to precipitate rapidly
under the influence of water molecules, as it was in direct contact with water on the fiber
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surface. A comparison of the overall time to 60% ferulic acid release showed that the core
layer F6 fiber lasted 1.5 h longer than the sheath layer F7 fiber, demonstrating the controlled
release of the core-layer structure.

Polymers 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

 

Figure 10. Analysis of the dissolution curve of FA and its local magnification. 

The core layer-loaded fiber F6 and the sheath layer-loaded fiber F7 had a more pro-

nounced release variability during the first five hours. In the first minute of the dissolution 

experiment, the FA release of the F6 fiber was 2.40%, compared to 18.33% for the F7 fiber. 

This indicated that the core layer carrier fibers had good burst release arresting properties 

and that the ferulic acid encapsulated in the sheath surface was able to precipitate rapidly 

under the influence of water molecules, as it was in direct contact with water on the fiber 

surface. A comparison of the overall time to 60% ferulic acid release showed that the core 

layer F6 fiber lasted 1.5 h longer than the sheath layer F7 fiber, demonstrating the con-

trolled release of the core-layer structure. 

As both fibers have their own characteristics, they have distinct potential applications 

in food packaging. The core layer carrier fiber F6 is more suitable for food packaging 

where sustained effectiveness is required due to its sustained action. The sheath layer car-

rier fiber F7, on the other hand, is more suitable for food packaging that is highly suscep-

tible to rapid oxidation due to its good initial burst. 

3.9. Analysis of the Antioxidant Properties of Nanofibers 

The antioxidant activity of the fibers was reflected using the DPPH radical scaveng-

ing rate. The antioxidant activity of fibers F4, F5, F6, and F7 was studied separately, using 

the solutions of the fibers after dissolution in ethanol as the test sample and adding them 

to the DPPH radical solution to test their radical scavenging ability. 

Figure 11 shows that the antioxidant activity of the fibers in ethanol gradually in-

creased with time. The growth rate of the antioxidant activity of the fibers was faster from 

5 min to 1 h and reached the maximum antioxidant activity at 24 h. In a comparison of the 

antioxidant activity of F4 to F7 when dissolved in ethanol for 24 h, it was observed that 

the antioxidant activity of the fibers increased when the loading of ferulic acid increased 

for the same dissolution time, which proved that a good loading of FA has antioxidant 

properties. 

Figure 10. Analysis of the dissolution curve of FA and its local magnification.

As both fibers have their own characteristics, they have distinct potential applications
in food packaging. The core layer carrier fiber F6 is more suitable for food packaging where
sustained effectiveness is required due to its sustained action. The sheath layer carrier fiber
F7, on the other hand, is more suitable for food packaging that is highly susceptible to
rapid oxidation due to its good initial burst.

3.9. Analysis of the Antioxidant Properties of Nanofibers

The antioxidant activity of the fibers was reflected using the DPPH radical scavenging
rate. The antioxidant activity of fibers F4, F5, F6, and F7 was studied separately, using the
solutions of the fibers after dissolution in ethanol as the test sample and adding them to the
DPPH radical solution to test their radical scavenging ability.

Figure 11 shows that the antioxidant activity of the fibers in ethanol gradually in-
creased with time. The growth rate of the antioxidant activity of the fibers was faster from
5 min to 1 h and reached the maximum antioxidant activity at 24 h. In a comparison of the
antioxidant activity of F4 to F7 when dissolved in ethanol for 24 h, it was observed that the
antioxidant activity of the fibers increased when the loading of ferulic acid increased for the
same dissolution time, which proved that a good loading of FA has antioxidant properties.

When comparing the core-loaded fibers with the sheath-loaded fibers, we found that
the antioxidant activity of the sheath-loaded FA fibers was greater than that of the core-
loaded FA fibers at 5 min of dissolution, while the antioxidant activity of the core-loaded
FA fibers was stronger after 1 h and 24 h of dissolution. This confirmed the theory of the FA
release experiment in 3.8, suggesting that the sheath-loaded FA fibers would dominate the
efficacy in the early stages, while the core-loaded FA fibers would have a greater capacity
for long-lasting effects.

3.10. Contact Fruit Packaging

The apple slices were packed directly in the fiber membrane at room temperature,
and process changes were recorded by observation at a preset time, as shown in Figure 12
below. Groups (a) to (e) were the blank control and the apple slices packed with fibers F4
to F7, respectively.
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Figure 11. Analysis of the antioxidant activity tests on the fibers.
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Figure 12. Contact packaging of apple slices and their appearance: (a) No fiber packaging; (b) F4
packaged group; (c) F5 packaged group; (d) F6 packaged group; (e) F7 packaged group.

No significant changes were observed in all experimental groups between the 0 min
and 20 min stages. At 4 h, the apple slices in the blank group in (a) showed significant
oxidation, with a dull yellow color and light yellow-brown edges. The experimental
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group with the fiber wrap did not show any significant changes, so it was clear that the
prepared nanofiber wrap was feasible for antioxidation applications. When the overall
experiment was carried out at 10 h, the oxidative browning of the apple slices in the blank
group (a) increased, while no significant browning occurred in groups (b) to (e) where
the nanofiber wrapping was used, demonstrating the antioxidant sustainability of the
membranes. A parallel comparison of the four groups with different fiber wraps, F4 and
F6, showed better preservation of the apple slices, confirming the stronger effect of the
core-loaded FA fibers in terms of long-term antioxidant activity. At 23 h, all subjects had
lost their food value.

3.11. The Weight Loss Rate of Contact Fruit Packaging

In order to further analyze the degree of water loss and the ability of the fiber mem-
brane to retain freshness, a quality test of the apple slices was carried out. The weight loss
rate of the apple slices is shown in Figure 13.
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Figure 13. Weight loss analysis of apple slices after contact packaging.

In comparing the blank group with the fiber group, the quality of the blank group
decreased to 53.14% by 23 h, while the apple slices packed in F4 to F7 decreased to 62.63%,
65.52%, 60.56%, and 66.43%, respectively. The overall mass loss and the water loss rate
of the apple slices decreased after the use of fiber packaging. It can therefore be stated
that the prepared nanofibers mitigated the water loss to a certain extent, and the F5 and
F7 fibers showed better experimental results than the F4 and F6 fibers. The presence of
both hydrophilic and hydrophobic amino acids within the maize alcohol protein, with the
majority of hydrophobic amino acids causing the fibers to absorb water but not completely
dissolve the fiber structure, is indicative of the water loss phenomenon.

The experiment therefore showed that the fibers absorbed water in direct packaging,
and their enhanced hydrophobicity slowed the loss of water from the apple slices when
they had absorbed sufficient water. The smooth fibers F5 and F7 had a smaller specific
surface area than the rougher fibers F4 and F6, making them less likely to absorb water and
thus helping to preserve the freshness of the apples.

3.12. Ancillary Fruit Packaging Morphology

As the direct contact packaging caused the fiber membrane to absorb water and
collapse during the experiment, the apple slices were also packaged in secondary packaging
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to verify their long-lasting resistance to oxidation. The apple slices were packed at a
temperature of 4 ◦C for a preset period of eight days without direct contact, and the
changes in the process are shown in Figure 14 below. Groups (a) to (e) are the blank control
and the apple slices packed with fibers F4 to F7, respectively.
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Overall, oxidation was observed in the apple slices over time, while the changes were
more pronounced in the unpacked blank control group. Groups (b) to (e), which were
packed with fiber membranes, showed oxidation from day 6, indicating the presence of
ferulic acid molecules that prevented the oxidation of the apple slices by free radicals by
diffusion onto the food surface. The fiber membranes prepared in this experiment still had
good antioxidant properties in the case of non-contact packaging.

A comparison of the apple slices after direct contact packaging and non-contact
packaging showed that the fiber membranes in contact packaging were highly absorbent,
and therefore, the apple slices showed a faster water loss. The faster water loss and the
drying out of the apple slices might have been due to the small size of the apple slices. The
difference between the preservation time of apple slices at 4 ◦C and at room temperature
was significant, as the lowering of the temperature slowed down the oxidation process on
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the apple slices to a certain extent; on the other hand, the water loss from the apple slices
was delayed. Both the lower temperature and the non-direct contact packaging helped to
preserve the moisture in the apples.

3.13. The Browning Rates of Ancillary Fruit Packaging

After the surface morphology of the apples had been observed, the amount of brown-
ing products was analyzed qualitatively by UV spectrophotometry in order to explore
the degree of oxidation of the apple slices and the ability of the fiber membrane to retain
freshness. The resulting browning rates of the apple slices are shown in Figure 15.
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Due to the inconsistency of oxidation on the apple slices, the distribution of points
after testing was not obvious. Therefore, the amount of browning product obtained was
not consistently representative of the overall oxidation level when sampling the edges of
the sliced apples. After the data obtained were fitted to a Gaussian equation, the fitted
curves were found to be consistent with certain qualitative patterns and experimental
expectations. The overall browning was higher in the blank control group, while the
browning rate increased more slowly in all of the fiber-packed specimens. Of the four
browning curves, the curves for F4 and F6 showed an increase followed by a decrease,
possibly due to the heterogeneity in the degree of oxidation to which the apple slices were
subjected. The heterogeneity may have been due to the fact that the core-loaded FA fibers
released a lower amount of FA in the early stages and therefore did not provide good overall
protection to all parts in the early stages. The increased release of FA over time resulted
in the originally protected areas containing more antioxidant properties and therefore, a
significant difference in the browning rate between the oxidized and unoxidized areas. In
contrast, the curvature of the curves for the F5 and F7 fibers, which had loaded FA in the
sheath layer, was less due to the timeliness of their FA release.

4. Conclusions and Perspectives

In this paper, a new core–sheath structure fiber of zein/PEO/FA was successfully
prepared by coaxial electrospinning technology. The SEM and TEM results showed that the
core–sheath structure of the fibers was smooth and straight in shape, with uniform diameter
distribution. In addition, the component analysis confirmed that the internal structures
of PEO, zein, and FA were compatible. The dissolution analysis showed that the core
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layer drug-loaded fibers had a continuous and stable release of FA, and the sheath layer
drug-loaded fibers had a large initial release of FA. The fibers showed strong antioxidant
activity within 24 h, with a maximum of 44.18% for F6 fibers loaded with 15% FA in the core
layer. In the study of packed apple slices, fiber membrane packaging reduced the weight
loss and browning rate of the apple slices and provided antioxidant preservation. The
core-loaded fibers retained freshness for 10 h under contact packaging at room temperature
and for six to eight days under non-contact packaging at 4 ◦C. Under contact packaging,
the core-loaded fibers retained freshness for longer, while under non-contact packaging, the
sheath-loaded fibers had a greater anti-browning capacity for the whole slices. Therefore, it
could be used as an effective food antioxidant packaging material.

Both active ingredients and polymers that have natural sources are popular in a wide
variety of biomedical applications, such as pharmaceutics and tissue engineering [80–84].
This is because of their greater essential bio-compatibility over synthetic polymers from
chemical reactions [85–87]. In the drug delivery area, new excipients and techniques are
continuously introduced by modern science and technology for developing novel drug
delivery systems [88–90], particularly in the nano era [91,92]. Those strategies can be
similarly exploited for developing novel food and fruit packaging materials for a better
preserving effect. Based on natural macromolecules, the present study offered an example
of strategies to achieve this. There will also be many new possibilities in the future.
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