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Abstract: The coronavirus disease of 2019 (COVID-19) pandemic is currently a global challenge,
with 210 countries, including Indonesia, seeking to minimize its spread. Therefore, this study aims
to determine the spatiotemporal spread pattern of this virus in Surabaya using various data on
confirmed cases from 28 April to 26 October 2021. It also aims to determine the relationship between
pollutant parameters, such as carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2),
and ozone (O3), as well as the government’s high social restrictions policy in Java-Bali. Several
methods, such as the weighted mean center, directional distribution, Getis–Ord Gi*, Moran’s I, and
geographically weighted regression, were used to identify the spatial spread pattern of the virus.
The weighted mean center indicated that the epicenter location of the outbreak moved randomly.
The directional distribution demonstrated a decrease of 21 km2 at the end of the study phase,
which proved that its spread has significantly reduced in Surabaya. Meanwhile, the Getis–Ord Gi*
results demonstrated that the eastern and southern parts of the study region were highly infected.
Moran’s I demonstrate that COVID-19 cases clustered during the spike. The geographically weighted
regression model indicated a number of influence zones in the northeast, northwest, and a few
in the southwest parts at the peak of R2 0.55. The relationship between COVID-19 cases and air
pollution parameters proved that people living at the outbreak’s center have low pollution levels
due to lockdown. Furthermore, the lockdown policy reduced CO, NO2, SO2, and O3. In addition,
increase in air pollutants; namely, NO2, CO, SO2 and O3, was recorded after 7 weeks of lockdown
implementation (started from 18 August).
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1. Introduction

According to the World Health Organization (WHO), the world has been battling the
spread of the coronavirus disease of 2019 or the COVID-19 pandemic since March 2020,
with over 118,319 positive cases and 4292 deaths globally [1]. This virus, which causes
severe respiratory problems, has a high human-to-human transmission rate and requires
technology capable of analyzing and determining its spread pattern [2]. COVID-19 is caused
by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [2]. There are seven
genera of CoV, and SARS-CoV-2 is the seventh member of the human-infecting CoV family.
SARS-CoV and MERS-CoV are responsible for pneumonia, while HCoV-229E, HCoV-
NL63, HCoVOC43, and HCoV-HKU1 cause relatively mild and self-limiting respiratory
symptoms (common cold) [2,3]. Several efforts have been made to control the spread
of this virus at the local, national, and global scale. An example is the implementation
of the lockdown policies, which vary across countries and cities worldwide. However,
the lockdown significantly halted all forms of transport (flights, trains, and automobiles),
factories, shops, markets, and other economic and social activities.

Surabaya, the capital of East Java, has the second largest population in Indonesia with
2,874,314 people [4] and it is the second largest city after Jakarta. It is also included as
the largest metropolitan area in eastern Indonesia, which known as Gerbangkertosusila
(Gresik–Bangkalan–Mojokerto–Surabaya–Sidoarjo-Lamongan) [5]. Surabaya is also the
economic, commercial, industrial, and educational hub of East Java and Indonesia’s eastern
region [5]. The National COVID-19 Task Force (Satuan Tugas (Satgas)) revealed on 20 June
that East Java had the largest number of confirmed COVID-19 deaths, with a total of 12,074
deaths. According to the Satgas of East Java, the city of Surabaya had the highest number
of deaths in the province, with a total of 1382 deaths [6].

By 9 April 2020, the pandemic had spread to all provinces in Indonesia, and on
24 June 2020, over 500 cases were confirmed in almost every region [7]. According to
the information posted on Lawan’s website, [8] the Surabaya city area recorded 64,547
confirmed cases of COVID-19 on 26 August 2021.

Presently, the Indonesian government has made a series of policies to prevent the
spread and transmission of the coronavirus from one community to another. These policies
include global scale social restrictions (PSBB), micro PPKM, implementation of Java-Bali
community activity restrictions (PPKM), and vaccination. Subsequently, the Indonesian
Ministry of Health also issued guidelines in the subsequent development of the pandemic,
which provided recommendations based on data adjustments to economic and social
activities in the community through the contact-tracing mechanism. The delta variant
in Indonesia was first detected in April 2021, and it is more transmissible with a greater
possibility of causing severe symptoms [9]. WHO declared this variant as the fastest and
most sensitive strain ever, with significant infectious strain, and capable of “picking up”
the most susceptible individuals [6]. This is particularly troubling to those who have not
been fully or completely vaccinated, as well as those with weak immune response systems.

A regional spatiotemporal understanding of COVID-19 is critical to provide insight
into how the pandemic occurred and its continued growth and decline [10–12]. Previous
studies by Purwanto et al. [10] demonstrated that it is important to determine the spatial
and temporal resolution of the STC model because it affects the detailed information on the
endemic/epidemic, and it is important for the hotspot analysis results. Al-Kindi et al. [11]
also used the spatiotemporal assessment to determine the virus spread in Oman for
2 months. The study demonstrated that the directional pattern of COVID-19 cases has
moved from the northeast to the northwest and southwest, increasing the total affected
area over time. The results also demonstrated that the virus distribution is higher in the
most densely populated areas. COVID-19 spatiotemporal characteristics and trends need
to be considered when scheduling the reopening of activities within a state or location [12].

The virus spread can be caused by several factors, asides from the spatial variable. A
study by Hassan et al. [13] demonstrated the spatial relationships between COVID-19 cases
and several variables, such as air pollution, geo-meteorological, and social parameters.
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The study found a significant robust relationship between those variables in cities with
significant positive cases. In addition, the correlation finding suggests that long-term bad
air quality may aggravate the clinical symptoms of the disease [14].

Despite the severe impacts of lockdown on people’s social life, global mobility, and
economy, it temporarily improved environmental conditions. For instance, based on
satellite images, many media reported a decrease in air pollution globally. This was
also found in the study by He et al. and Cadotte [15,16] conducted in some countries.
Broomandi et al. [17] outlined a relationship between lockdowns and air pollution, where a
decrease in road traffic and economic activities reduced the level of carbon monoxide (CO),
nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM10) in Tehran,
irrespective of the unfavorable weather conditions. In contrast, the Ozone (O3) and PM 2.5
concentrations increased.

However, no research has been conducted on the concurrent correlation between spa-
tial, temporal, and air pollution. Therefore, this study aims to (1) assess the spatiotemporal
pattern of COVID-19 using updated daily data recorded for 26 weeks, and (2) investigate
various factors, such as confirmed cases, recovered patients, suspected cases, and air pollu-
tion (CO, SO2, O3, and NO parameters) by conducting geographically weighted regression
(GWR) and ordinary least squares (OLS) regression. It aims to (3) analyze the relation-
ship between air pollution concentrations and COVID-19 cases for 26 weeks, estimated
by Sentinel-5P imagery. This research focused on the Surabaya city as one of the areas
with a high death rate during the delta variant period, according to a WHO report on
23 June 2021 [6]. Therefore, the result is expected to help the Surabaya government create
more appropriate policies and strategies to reduce the virus spread.

2. Materials and Methods
2.1. Study Area

Surabaya is geographically located at 7◦9′–7◦21′ S and 112◦36′–112◦57′ E, with an area
of 52,087 Ha. Its land and sea areas are 63.45% (33,048 Ha) and 36.55% (19,039 Ha) wide and
managed by the government. The area is divided into 154 villages, as shown in Figure S1.
In 2020, the total population recorded was 3,148,939 people, with Wonokusumo and
Romokalisari villages constituting the largest and least, respectively [18]. Figure S2 shows
the population and density of each issue in 2020.

2.2. Dataset

Data were collected from the official website of Satuan Tugas on COVID-19 cases in
Surabaya from 28 April to 26 October 2021. This duration was selected because of the
significant increase in confirmed cases at that timeframe [8]. These data were spatially
linked as administrative boundaries, as shown in Table 1. All spatial data are integrated
into a geodatabase file using ArcGIS (ESRI, Redlands, California). Figure 1 shows a graph
of the additional COVID-19 confirmed cases for each week from 28 April to 26 October
2021 (the first week starts on 28 April and the 26th week ends on 26 October). The spatial
distribution of positive cases per 100,000 populations in each village is shown in Figure 2.
This also indicates the different hotspots during a pandemic as a function of the total
population from each village. Air pollution quality was also analyzed, specifically in
COVID-19 hotspots, using the Sentinel-5P satellite image data to obtain an estimate of
tropospheric concentrations of NO2, SO2, CO, and O3.

2.3. Spatial Analytic Method

The geography information system has several tools used to determine each epidemic
risk’s various spatial statistics, such as distribution, hotspot, orientation, and the trajectory
of spread, etc. Its techniques were used to investigate the spatial variation of the virus,
visualize related information, and track pandemic hotspots spatially during the study
period. Besides, it is necessary to understand the spatial variability of the incidence in
relation to different environmental, sociographic, and demographic variables. It is also



Int. J. Environ. Res. Public Health 2022, 19, 1614 4 of 20

for spatio-temporal prediction of the speed and magnitude of regional transmission in the
near future.

2.3.1. Calculating Geographic Distribution

Calculating geographic distribution (CGD) is a method used to measure the disease
distribution and identify certain characteristics, such as center, direction, and orienta-
tion [11]. Epidemiologist experts use it to track and compare the changes in different
places over time [19]. This study used ArcGIS 1.7 in accordance with the CGD method
to analyze the spatial distribution of COVID-19 in Surabaya. CGD is used by calculating
and tracking the distribution point weekly from 30 June to 24 August 2021. The first step
was conducted to identify the mean center of the additional confirmed cases per week.
It was performed based on the extra information related to daily cases. The second step
was performed to calculate the weighted variation in the distance between each location.
The directional distribution or DD (standard deviational ellipse) tool was used to track the
direction and orientation of the mean center (MC) during the study period. This tool is
mainly determined by average location, dispersion (concentration), and orientation [20].
Directional distribution (standard deviational ellipse) calculates two standard deviations,
one along a transformed axis of maximum concentration (y) and the other along an axis that
is orthogonal to (x) [21]. This ellipse provides the changing trend of COVID-19 over time.

Table 1. The dataset was obtained from BPS, BIG, OSM, and Satuan Tugas (task force)
COVID-19 Surabaya.

No Data Source

1 Population Badan Pusat Statistik Surabaya 2020
2 Population density Badan Pusat Statistik Surabaya 2020

3 Surabaya administrative boundaries
(city and village)

Badan Informasi Geospasial dan Open
Street Map

4 COVID-19 daily data (confirmed,
recovered, suspect)

https://lawancovid-19.surabaya.go.id/ (30
June 2021)

5 Air Pollution (NO2, SO2, O3, and CO) Google Earth Engine (Sentinel-5P)

Figure 1. Graph of COVID-19 cases for 26 weeks in Surabaya.

https://lawancovid-19.surabaya.go.id/
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Figure 2. The peak distribution of confirmed COVID-19 cases per 100,000 populations every week
in Surabaya (complete period figure for 26 weeks can be accessed in Supplementary Figure S3.
(a) 11th Week (7–13 July).; (b) 12th Week (14–20 July.; (c) 13th Week (21–27 July).; (d) 14th Week
(28 July–3 August).; (e) 15th Week (4–10 August).; (f) 16th Week (11–18 August).; (g) 17th Week
(19–24 August).; (h) 18th Week (25–31 August).
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2.3.2. Spatially Integrated Statistics

Moran’s I and the General G test were the geospatial statistical methods used to
analyze the spatial distribution pattern of COVID-19 in this study. Both methods were
used to measure the autocorrelation of spatial data and determine the spatial clustering
of COVID-19 [11]. Spatial data are simply described as highly correlated, assuming the
spatial variables have values close to each other and are conversely defined as independent
or random data when no pattern can be identified to explain its arrangement [22].

In GIS, Moran’s I autocorrelation is used to obtain positive and negative values
indicating a clustering tendency and random distribution pattern [23]. However, other
statistical attributes are the z-score, which quantifies the degree of deviation, such as
dispersion or clustering around Moran’s I scores and p-value. In this context, significant
autocorrelation demonstrates that the value of a variable at a given location depends
on its worth at a neighboring site and vice versa [23]. Typically, the global Moran’s I
value ranges from −1 to 1 and is used to denote a random pattern when close to −1 and
clustering at 1 [24]. According to Prasannakumar et al. [25], Moran’s I is calculated using
the following equation:

I =
N ∑i ∑j Wij(xi − x)

(
xj − x

)
(∑i ∑j Wij)∑j(xi − x)

(
xj − x

)2 (1)

where N denotes the incidence of COVID-19, xi and xj are the variable values in different
locations, x is the average of the variable, and Wij is the weight applied to the comparison
between locations i and j. This distance-based weight matrix is in accordance with the
inverse distance between locations I and j (1/dij).

Similarly, the General G test is another indicator of spatial autocorrelation used to
identify hotspots and local spatial clustering of COVID-19 [11]. The Getis–Ord General G
high/low clustering statistic was used to denote the occurrence of clustering and whether
values are strongly above or below the average. Large positive General G values close to
1 imply that clustered values are higher than average, whereas large negative General G
values close to −1 suggest that they are lower than normal [26]. The Z-score is derived
as the difference between the actual and expected values for General G, divided by the
standard deviation of the expected randomly distributed values [27]. General G is positive,
assuming there are more high values than low, and negative, supposing there are more low
values than high and when both tend to cluster. According to Getis and Aldstadt [28], G is
calculated using the following equation:

G =
∑n

i=1 ∑n
j=1 wijxixj

∑n
i=1 ∑n

j=1 xixj
, ∀j 6= i (2)

where xi and xj are the attribute values for locations i and j, wij denotes the weighted
spatial distance between locations i and j, N is the number of locations, Ji depicts it, and
i and j do not reflect the same feature. The G test usually provides 4 values, namely
the observed and expected General Gs, the Z score, and the p-value [28]. The first step
in analyzing the General G autocorrelation is to evaluate the p-value of these statistics.
Moreover, when small and large, the cases experienced spatial grouping, and random
distribution, respectively. The second step involves discerning the sign of the Z score. The
positive sign indicates that the higher values of COVID-19 cases tend to cluster in the
study domain when the observed General G index is greater than expected. In contrast,
the negative sign of the Z score implies that lesser values tend to be clustered when the
General G index is less than expected [29].

A hotspot analysis (Getis–Ord Gi) is commonly used to determine hotspots in GIS by
providing 2 statistical values, namely Z score and p-value. According to Huang et al. [22]
both statistical values indicate the possibility of the maximum and a minimum number of
COVID-19 cases to have spatial dependence or clustering. Based on the z score, it is evident
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that high or low incidence locations tend to be spatially clustered [22]. Furthermore, every
location considered a significant COVID-19 hotspot demonstrates a high incidence [29].
The number of cases in a specific point, including its neighbors, is compared proportionally
to those at all points in the location. A statically significant positive Z score indicates
high-intensity clustering values, determined when the local count is different from the
expected number. According to Huling et al. [30], a higher Z score indicates more clustering
of COVID-19 incidence (hotspots). On the contrary, a negative and statistically significant
smaller Z score implies more clusters of cold spots.

This study obtains the Gi statistic to analyze the spatial clustering of COVID-19 cases
each week independently from April 28 to 26 October 2021. The Gi statistic is calculated
using the following equation:

G∗i =
∑n

j=1 wijxj − X ∑n
j=1 wij

s

√ [
n ∑n

j=1 w2
ij

(
∑n

j=1 wij

)2
]

n−1

(3)

where N is the incidence, xi and xj are its value in various locations, X is the mean, and
wij is the weight applied to the comparison between locations i and j. The distance-based
weight matrix is in accordance with the inverse distance between locations i and j, which
is 1/dij.

2.3.3. GWR (Geographically Weighted Regression) Model

Geographically weighted regression (GWR) was used to analyze the relationship
between COVID-19 confirmed cases, recovered patients, and suspected cases. The different
epidemic situations and medical resources most likely affect the development of a disease
in a particular area. Therefore, Brunsdon et al. [31] propose a GWR model, which is an
extension of the usual linear regression model by including geographic location data into
the regression parameter, as shown in the following equation:

yi = βi0 + ∑p
i=0 βikxik + εi (4)

where yi is the i-th dependent variable, xik is the k-th independent variable of location i, p is
the total number, and i0 is the intercept parameter at location I, which is the regression
coefficient for the k-th at location and varies with the geographic location; i is the error
value at location i. The spatial weight matrix in this study is calculated using the bi-square
kernel function, as shown in the following equation:

wij = ((1−
(dij

b

)2

)

2

(5)

Furthermore, supposing dij < b, or wij = 0, where b is the bandwidth, the non-negative
attenuation parameter and dij indicates the distance between i-th and j-th observation
points. The bandwidth was calculated by optimizing the cross-validation’s square root
mean prediction error [32].

2.3.4. Ordinary Least Squares (OLS)

Other indicators of the occurrence of COVID-19 besides confirmed cases, recovered
patients, and suspected cases are air pollutants, such as O3, CO, SO2, and NO2, which had
spatial homogeneity data. Unlike GWR, which focuses on tackling spatial heterogeneity
and does not explicitly address spatial homogeneity, the ordinary least squares (OLS) is
often used when the dependent and independent variables do not vary or have spatial
homogeneity [33]. Therefore, the OLS method was used to determine the relationship
between confirmed cases of COVID-19 and air pollutants.
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According to Hutcheson [25], ordinary least regression (OLS) is a generalized linear
model performed in ArcGIS software and used to model the selected variables. This is the
main technique for analyzing data and serves as the basis for several other approaches,
such as the generalized linear model and ANOVA. Therefore, OLS regression is applied
in various fields to the exact code of categorical variables and single or multiple variables
annotations. At the basic level, the relationship between the response (y) and explanatory
variables (x) is represented using the best-fit line, which is predicted, to some extent, by x.
In assessing the model, 6 indicators supported the study feedback needed to determine
whether the analysis was successful, namely model performance, significance, bias, expla-
nation of the variables, Koenker statistics (BP), and spatial autocorrelation [34].

2.4. Air Pollutant Concentration Due to COVID-19

Despite the severe impacts of lockdown on social activities, global mobility, and the
economy, there are reports that it temporarily improved environmental conditions. For
example, it enhanced the air quality of 103 states in India, the most polluted country
globally, with 21 out of the 30 world’s most polluted cities [35]. Furthermore, air pollution
is the largest environmental health risk, with 7 million premature deaths yearly. Moreover,
more than 91% of the world’s population resides in places where air quality exceeds the
World Health Organization’s guidelines [36].

This also causes adverse impacts on the society, economy, and the environment, includ-
ing climate change. It is, in fact, the major public health, environmental, and developmental
challenges of the present generation [37]. Therefore, understanding this temporary im-
provement in the air quality at the planetary scale provides a unique opportunity to study
processes and implications of policy changes in the future. Media reports, primarily based
on satellite images, concern a decrease in air pollution due to the global lockdown and
some recent scientific studies in a few countries [15,16].

The data from the TROPOspheric monitoring instrument (TROPOMI) sensor on the
Sentinel-5 Precursor (Sentinel-5P) was collected and processed in the Google Earth Engine
(Google, Mountain View, CA, USA) [38]. The European Space Agency (ESA) generated the
Sentinel-5P satellite mission to bridge the data gap between the decommissioned ozone
monitoring instrument (OMI) and the scanning imaging absorption spectrometer for atmo-
spheric cartography (SCIAMACHY) onboard satellites Aura and ENVISAT, respectively,
and the Sentinel-5 mission’s expected launch. The primary goal of this mission is to prepare
the space observations for operational monitoring of air quality, ozone, and surface UV
radiation, as well as the climate, by presenting timely atmospheric composition measure-
ments [39]. The TROPOMI sensor onboard the Sentinel-5P satellite is a high-resolution
instrument that provides daily worldwide coverage from ultraviolet (UV) to shortwave
infrared (SWIR) at selected spectral areas. This enables the recovery of important atmo-
spheric elements, such as (NO2), (O3), formaldehyde (CH2O), (SO2), methane (CH4), carbon
monoxide (CO), aerosol, and clouds. Sentinel-5P has a good signal-to-noise ratio, thus it
can be functioned in low-light environments [40].

3. Results
3.1. Hotspot Clustering

COVID-19 cauterization is defined as an attribute value in each village, with red dots
used to denote locations hotspots. The figures estimated by the Gi* statistic show the
virus prevalence based on the weekly data from 28 April to 26 October 2021. The mean
centers of the virus are weighted based on the incidence per Kelurahan for 26 weeks and
marked with green dots. The DD of COVID-19 distribution in the study area was obtained
from 30 June to 24 August 2021, marked by the black ellipse, and calculated using the CGD
method described in Section 2.3.1.

In Figure 3, the outcome is shown weekly from 30 June to 24 August 2021. COVID-19
is at its peak during this 8-week timeframe (30 June to 24 August 2021). This finding
suggests that infection rates fluctuate and that risk patterns may shift over time. The
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eastern and southern Surabaya regions with high infection rates were found based on the
8 weeks of the COVID-19 peak, 30 June to 24 August (Z scores ranged from 1.508 to 7.172
with a confidence interval of 99%). Meanwhile, North Surabaya has been recognized as
a low-infection zone (z-scores ranged from −4.927 to −1.318 with a confidence interval
of 99%).

Figure 3. The peak clustering map of COVID-19 incidence along with its orientation and shift direc-
tions (complete period figure for 26 weeks can be accessed in Supplementary Materials Figure S4).
(a) 11th Week (7–13 July).; (b) 12th Week (14–20 July).; (c) 13th Week (21–27 July).;
(d) 14th Week (28 July–3 August).; (e) 15th Week (4–10 August).; (f) 16th Week (11–18 August).;
(g)17th Week (19–24 August).; (h) 18th Week (25–31 August).

Some urban villages in the north of Surabaya, such as Gunung Anyar, Bulak, and
Kembangan Utara, had fewer infections than others from 30 June to 6 July 2021. However,
these areas were identified as high-risk from 7 to 13 July 2021, with z score higher than 4.06
at a hotspot of 99% confidence. Another example is the urban villages of Sawahan, Balas
Klumprik, Tanah Kali Kewall, Sukolilo Baru, Gading, Jagir, and Kejawan Putih Tambak,
identified as insignificant areas from 7 to 13 July 2021, which changed to high-risk areas
(hotspot—99% confidence) from 14 to 20 July 2021, as shown in Figure 3. This approach
suggests that epidemiologists are able to understand clusters of disease cases assuming the
spatiotemporal characteristics used are considered.
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3.2. Weighted Mean Center (WMC)

Figure 3 used the small green circle to illustrate the weekly changes of COVID-19
incidence in the weighted mean center (WMC) using ArcGIS software, whose purpose
has been stated in Section 2.3.1. Within 26 weeks, the x and y coordinates of the average
COVID-19 center in Surabaya moved many times. Overall, the results of tracking changes
revealed that the center of the COVID-19 outbreak moved randomly over 26 weeks with
a confidence interval < 90% at a z-score of 1.386 and a p-value of 0.165. The COVID-19
average center was initially located at 691203.3693; 9195225.8514 m; however, a change in
the position of WMC occurred over time. For example, on 14 July 2021, WMC was located
at 696771.9754; 9192081.5861 m, and a week later, it shifted to 692970.8866; 9193668.8914 m,
approximately 3 km to the northwest on July 21, 2021, as shown in Table 2. Then in Figure 3,
from August 4 to 18 (6th–8th week), the trend spread moved towards the northeast. This
can be further consideration for policymaking, such as the enforcement of restrictions on
community activities in the northeastern part of Surabaya.

Table 2. Changes in DD from center-weighted mean confirmed cases per 100,000 populations
(incidence) COVID-19 over a 26 weeks study period.

Week Date Length (km) Width (km) Area (km2) Rotation

1 28 April 2021–4 May 2021 4.94367 1.75906 27.32002 64.34984
2 5 May 2021–11 May 2021 5.96700 2.43495 45.64533 104.39636
3 12 May 2021–19 May 2021 6.10525 3.35143 64.28118 95.09706
4 20 May 2021–25 May 2021 5.32776 4.12860 69.10306 96.81598
5 26 May 2021–1 June 2021 7.19094 2.99919 67.75481 73.92413
6 2 June 2021–8 June 2021 8.20458 2.37165 61.13025 104.63646
7 9 June 2021–15 June 2021 6.10076 1.34384 25.75626 49.12235
8 16 June 2021–22 June 2021 10.37618 4.00459 130.54036 123.65276
9 23 June 2021–29 June 2021 3.62656 0.73228 8.34304 62.94312

10 30 June 2021–6 July 2021 5.08497 6.69721 106.98736 42.41460
11 7 July 2021–13 July 2021 5.47192 3.65635 62.85471 120.54456
12 14 July 2021–20 July 2021 3.48135 4.07568 44.57561 9.36094
13 21 July 2021–27 July 2021 5.42577 3.75721 64.04384 90.09924
14 28 July 2021–3 August 2021 7.00457 5.80578 127.75903 100.71435
15 4 August 2021–10 August 2021 7.38358 3.36916 78.15178 102.26742
16 11 August 2021–17 August 2021 7.12187 3.01337 67.42110 59.90758
17 18 August 2021–24 August 2021 3.24594 2.13313 21.75242 120.95107
18 25 August 2021–31 August 2021 10.26110 1.89992 61.24630 96.76604
19 1 September 2021–7 September 2021 7.91130 1.57939 39.25427 93.08196
20 8 September 2021–14 September 2021 7.65780 1.92917 46.41125 78.09290
21 15 September 2021–21 September 2021 5.44430 1.21007 20.69670 48.95904
22 22 September 2021–28 September 2021 1.98095 9.99348 62.19288 139.57942
23 29 September 2021–5 October 2021 1.88549 6.52740 38.66456 33.70470
24 4 October 2021–12 October 2021 0.98472 1.98604 6.14400 143.11851
25 13 October 2021–19 October 2021 1.87011 4.72545 27.76268 177.96124
26 20 October 2021–26 October 2021 0.96843 2.19412 6.67537 0.80506

3.3. Directional Distribution (DD)

Directional Distribution (DD) analysis demonstrated that the trend of COVID-19
cases had shifted randomly from various directions in 26 weeks. Figure 3 and Figure S4
indicated that in 26 weeks, the Ketintang village and its surroundings were vulnerable to
the pandemic. Although the Ketintang village is not significant, this area is a distribution
center for three times in 26 weeks (as shown in Table S1) and a hotspot location with a 99%
confidence interval. The ellipse size indicates that the area is vulnerable to virus spread;
therefore, it can help in policymaking. The smaller ellipse size at the end of the research
period, which is on 26 October 2021, could be influenced by the policies made by the
government, such as the imposition of restrictions on community activities, which came
into effect again on 22 June 2021, and public order complies with government policies. The
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government’s policy to impose restrictions on community activities reduced the spread of
the COVID-19 delta variant.

The ellipse shape that changed size and shifted during the study period demonstrates
the length and width of each ellipse’s axis, rotation, and area, as indicated in Table 2.
In 26 weeks, namely from 28 April to 26 October 2021, the orientation and direction of the
virus spread showed a spatio-temporal trend, which affected the population. Therefore,
the standard deviation of the average center of COVID-19 spread can be determined. For
example, the ellipse area was 131 km2, 11 km wide, and 14 km long on 30 June 2021, while
on 7 July 2021, it changed into 10 km wide, 11 km long, and 92 km2, as shown in Figure 3
and Table 2.

3.4. Spatial Clustering

Moran’s I (z-score) and General Ord G (z-score) autocorrelation are marked in blue, while
Moran’s p-value and General G p-value are in orange, as shown in Figure 4. Morans I and
General Ord G are calculated using spatial integrated statistics discussed in Section 2.3.2.

Figure 4. Spatial autocorrelation graph. (a) p-value and z-score Morans’s I correlation; (b) p-value
and z-score General G correlation.

The p-value and z-score have an inverse relationship where the p-value is close to
0, with a high z-score indicating a cluster pattern. Moran’s I global statistics (Figure 4a)
indicate that the COVID-19 cases in the dataset have a random pattern and are clustered
during the spike in cases from July 7th to August 24th, 2021. The p-value at the peak of
cases, for example between 7 July to 24 August 2021, ranged from 0–0.001, while the z-score
value ranged from 3.111–7.867. This demonstrates that the Moran’s I spatial autocorrelation
is statistically significant with a confidence interval of 99.9%. After the decline in COVID-19
cases in September, the distribution pattern of cases became random with a p-value of
0.139–0.909 and a z-score of −1.235–1.478. The more negative z-score value indicates a
random pattern.

General G statistics (Figure 4b) demonstrate the significant height of the clustered
COVID-19 incidence. The COVID-19 cases in the dataset were high-clustered several times
before the strict social restrictions occurred on 22 July. At the peak of the incidence from
4 August to 14 September, the virus was high clustered with a p-value of 0–0.074 and a
z-score of 0.178 to 4.717, at a confidence interval of 99.9%. After the peak of COVID-19
incidence from 15 September to 26 October, the cases decreased, indicating a random pattern
of p-value—0.142 to 0.673 and z-score—−1.46 to 0.421 with a confidence interval < 90%.
This study demonstrates the significant spatial autocorrelation between villages is positively,
significantly, and spatially related distance from 7 July to 24 August 2021, as shown in
Figure 4. The pattern of COVID-19 became clustered when cases spiked from 7 July to
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24 August 2021, indicating that the disease had spread less rapidly. Meanwhile, the delta
variant infection decreased in Surabaya from September to October.

3.5. Geographically Weighted Regression (GWR)

Three parameters were used to understand the coefficient spatial distribution of
independent variables in the GWR model, discussed in Section 2.3.3 and its correlation
from 28 April to 26 October 2021. The parameters are population density, number of
recovered patients, and suspected in the previous week. The GWR model was studied
to evaluate the heterogeneity of its coefficients in space and predict the spread pattern of
COVID-19 one-week ahead shown in Table 3.

Table 3. Model-fitting results derived from the geographical weighted regression (GWR) demonstrat-
ing the relationship between COVID- 19 incidence (dependent variable) and 3 independent variables,
namely population density, recovery patient, and suspected cases.

Week
Estimated Coefficient Standard Error

R2
Pop_Density Recovery Suspect Pop_Density Recovery Suspect

1 −0.000006 −0.00145 0.5942 0.000004 0.00081 0.0827 0.34
2 −0.000006 1.58807 −0.3376 0.000005 0.44246 0.6092 0.08
3 −0.000006 1.44143 0.7252 0.000007 0.50798 1.1458 0.37
4 −0.000003 0.9533 −0.1323 0.000005 0.46152 0.7389 0.14
5 −0.000012 1.76234 0.435 0.000005 0.50614 0.8879 0.11
6 −0.000008 1.62216 −0.1898 0.000009 0.61543 0.3095 0.32
7 −0.000001 0.23091 −0.2002 0.000007 0.52738 0.174 0.01
8 −0.000008 0.35447 −0.0628 0.000009 0.48646 0.1758 0.01
9 0.00001 −0.00515 0.1042 0.000011 0.77978 0.1664 0.05
10 0.000008 0.07483 −0.3727 0.000014 0.89865 0.3131 0.01
11 −0.000038 3.56064 −2.4404 0.000045 0.75624 3.2563 0.41
12 −0.000644 4.32694 −5.6831 0.000179 0.96196 17.562 0.55
13 −0.000467 1.13803 −1.3819 0.000115 0.30656 2.2285 0.30
14 −0.000347 1.40317 −1.176 0.000143 0.33388 1.2351 0.46
15 −0.000306 0.84206 −6.6564 0.000133 0.38841 13.029 0.43
16 −0.000228 1.87945 −5.2903 0.00011 0.37022 12.44 0.72
17 −0.000129 3.09936 10.063 0.00015 0.62592 18.485 0.68
18 0.00005 3.03727 3.4316 0.000038 0.3922 0.4289 0.89
19 −0.000056 3.83066 4.0997 0.00003 0.60965 0.7658 0.86
20 −0.000035 3.80442 4.3494 0.000015 0.51624 0.6211 0.85
21 −0.000007 4.4022 4.9018 0.000011 0.54769 0.6049 0.88
22 −0.000026 5.63802 5.2415 0.000014 0.73245 0.7864 0.94
23 −0.000014 4.5608 5.9564 0.000008 0.49729 0.6306 0.79
24 −0.000008 4.43153 4.6766 0.000003 0.38015 0.4695 0.76
25 −0.000004 4.37876 4.3851 0.000003 0.42768 0.5624 0.72
26 −0.000006 6.40907 7.2381 0.000004 0.38539 0.7607 0.96

Three parameters, consisting of population density, recovered patients, and suspected
cases, were used by GWR, of which population density had a negative coefficient value.
The recovered patient had a positive correlation, which led to an increase in coefficient at
the end of the study period. Suspected people had a negative correlation initially, which
became positive in the end. Suspected cases are the most influenced variable for COVID−19
incidence, shown by the largest values between other variables. R2 was used to understand
the spatial relationship among these factors, which was weak and strong with correlation
values of 34% and 96% in the three parameters.

The spatial relationship in week 12, the virus peak, demonstrated that three param-
eters had a modest correlation (0.55). This model explained about 55% variation in the
independent variables responsible for its incidence. The higher coefficient values of in-
dependent variables predict a good explanation for the dependent. In suspected people
parameters, which are the most influenced factor, several affected zones were found in the
northeast, northwest, and southwest parts, as shown in Figure 5c. In population density,
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strong influence zones were found in the north part of the city (Figure 5a). Meanwhile, in
recovered patient parameters, strong influence zones were found in the northeast, east and
south parts, as shown in Figure 5b.

Figure 5. Spatial distribution of influence in (a) population density, (b) recovered patient, and
(c) suspected cases in the peak of COVID-19.

3.6. Air Pollution Levels Due to COVID-19 Lockdown

This section aims to assess the air pollutant level of CO, NO2, O3, and SO2 in the tropo-
sphere by employing remote-sensing data. Sentinel-5P image processing performed with
the Google Earth Engine (GEE) resulted in maximum, minimum, and average pollution
concentrations in the troposphere during the 26-week study period, as shown in Figure 6.

Figure 6. Concentration values of (a) Carbon Monoxide (CO); (b) Nitrogen Dioxide (NO2); (c) Ozone
(O3); (d) Sulfur Dioxide (SO2).

Tropospheric pollutant concentrations for 26 weeks, 6 weeks before and 7 weeks after
the COVID-19 lockdown, were also mapped to observe the temporal variation through
remote-sensing data, as shown in Figure 7. All parameters, such as CO, NO2, O3, and
SO2 have the most significant impact on pollution concentration when there is a lockdown
policy. O3 has the highest concentration of 0.11868 mol/m2 versus the other air parameters
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detected throughout the entire region. However, the concentration decreased due to the
lockdown period (June 30) policy and increased after 7 weeks of lockdown implementation
(started from August 18). Figure 8 shows a graph of each pollutant parameter. CO, O3,
and NO have the same trend. Before the lockdown until the lockdown gave a decrease
trend, while SO2 gave a decreasing trend, but not too significant. The trend in all pollutant
parameters increased when lockdown conditions were lifted, which was 7 weeks after the
implementation of the lockdown (starting from August 18).

The highest SO2 concentration of 5.36 × 10-4 mol/m2 was recorded from September
15th to 21th and indicated no spike in COVID−19 cases. Since the lockdown conditions
were lifted (back to the third level from the fourth level) in early September, it was found
that the SO2 has increased considerably 7 weeks after the lockdown was implemented,
which is presented in Figure 7. At the fourth level, transportation capacity was 50%, while
at the third level it was 70%. Meanwhile, the industrial sector at PPKM level 3 may operate
with a maximum capacity shift setting of 50% for each shift, while the industrial sector
at the fourth level can function with a maximum capacity shift setting of 50% for each
shift [41].

Figure 7. Air parameter concentration (CO, NO2, O3, and SO2) in Surabaya: (a) a month before,
(b) next day, and (c) a month after region lockdown.
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Figure 8. Graph correlation of COVID-19 incidence and air parameter based on Sentinel-5P image
processing in GEE per week. (a) NO2 tropospheric concentration, (b) SO2 tropospheric concentration,
(c) CO tropospheric concentration, and (d) O3 tropospheric concentration.

The increase was significantly observed in the southern part of Surabaya and the
city center, which is the main economic activities area. The southern part of Surabaya is
also the main entry point for transportation of other city residents, shown in Figure S5.
Furthermore, the existing lockdown rules minimized human movement, which went back
to normal after the rules were removed. Therefore, industries and transportation that use
coal and motor vehicle fuel increased the sulfur dioxide concentration [42].

The highest O3 concentration occurred in the final week i.e., from October 20th to 26th,
2021, caused by the spread of pollution from industrial activities. The lockdown has been
lifted and industries have resumed its operations in this environment (high O3 period).
This is in accordance with research by [43], which indicate that the increase in ozone is
caused by pollution from the industry; Figure 7 demonstrates that two months after the
lockdown, the northern and southeastern research areas dominated by the industry had
high O3 levels with the highest CO concentration of 3.15 × 10−2 mol/m2 in the final week.
Almost all areas within the center distribution of COVID−19 were contaminated by CO
pollution, which led to the major cause of the distribution center.

Furthermore, an increase in air pollutants, such as NO2, CO, SO2, and O3, was ob-
served after 7 weeks of implementation (started from 18 August), despite a decrease in
verified COVID−19 cases. Because of the decline of COVID-19 instances, the government
decided to relax the lockdown policy guidelines on 24 August. This demonstrates that the
presence of COVID−19 cases, the lockdown policy, and air pollution are all linked.

3.7. Relationship between COVID−19 Incidence and Air Pollutant

The Kriging-interpolation for Sentinel-5P imagery processed using the Google Earth
Engine (GEE) was used to conduct this research. The OLS regression results for all pa-
rameters are shown in Table 4. It was positive with a statistically significant correlation
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between COVID-19 cases and air pollution during the study period. The increasing value
of r between 14 to 28 July depicts results in accordance with the incidence data in Figure 2,
where the largest r value is 0.3331. This is in accordance with the state of the highest
number of COVID-19 cases in that week. These indicate that there may be a connection
between positive cases and fine air pollution (O3, CO, NO2, and SO2) with the greatest
effect by NO2. This relationship is indicated by the large coefficient value of −1199337.944,
obtained in 12th week on 14 July.

Table 4. OLS regression between COVID−19 incidence and air pollution parameters.

Week r R
Coefficient

O3 CO SO2 NO2

1 0.059 0.243 41.078 −115.823 2196.099 −8845.032
2 0.035 0.188 183.530 −9.763 −908.882 −3114.051
3 0.006 0.077 −294.505 21.238 −455.957 −976.079
4 0.069 0.262 114.451 163.894 −774.772 −7748.330
5 0.074 0.272 −148.850 155.290 191.222 −16,298.614
6 0.084 0.289 1564.527 −237.265 1601.451 4634.166
7 0.015 0.123 33.325 119.347 −200.555 −2408.472
8 0.023 0.151 −381.530 −20.501 843.237 7701.886
9 0.011 0.107 −511.875 26.044 −420.067 7561.081

10 0.019 0.137 1464.636 219.159 795.614 2537.760
11 0.103 0.322 4849.546 1036.376 6103.810 −223,496.785
12 0.333 0.577 −31,165.367 4160.563 88,138.945 −1,199,337.944
13 0.123 0.350 27,404.369 −13,248.590 −6139.623 −13,213.022
14 0.070 0.265 2107.077 5268.257 23,460.160 −614,879.134
15 0.235 0.485 6979.684 −4141.370 −43,595.925 −328,846.454
16 0.008 0.092 1472.020 3265.895 3536.649 −336,158.858
17 0.117 0.341 −13,664.796 −481.837 5318.525 −106,384.125
18 0.054 0.233 −4594.035 424.550 4146.287 −24,345.855
19 0.054 0.233 −2347.285 276.720 −462.544 −24,110.595
20 0.021 0.146 452.573 −44.539 −1317.076 14,171.958
21 0.064 0.253 396.631 −310.415 370.013 −15,564.079
22 0.047 0.216 971.238 −222.039 −2481.582 36,013.294
23 0.028 0.166 −741.397 −27.302 1313.003 556.694
24 0.082 0.286 442.884 95.709 −204.715 −4617.635
25 0.040 0.199 −335.258 23.522 −760.015 −636.684
26 0.027 0.166 159.888 88.328 −593.480 3458.184

4. Discussion

This study was conducted using different spatiotemporal and statistical methods,
such as CGD analysis, patterns, clustering, and relationships between variables, which are
relevant in understanding COVID-19 spread in Surabaya from 28 April to 26 October 2021.
The first approach applied involved analyzing the geographic distribution of the virus. The
weighted mean center changed throughout the study phase and was denoted with a small
circle highlighted in green, as shown in Figure 3. The ability to ascertain its weight is critical
for tracking the value of variations associated with an area. The results obtained revealed
dynamic regions that change over time due to the spread of the virus to several communities
in Surabaya. According to [13], several factors can transmit viruses, including air pollution,
geo-meteorological and social parameters. The high number of cases associated with
its spread in Indonesia, especially in East Java, prompted the government to impose a
lockdown policy. Most Indonesians infected with the virus possess the delta variant [44].

The DD trend is used to obtain the COVID-19 ellipse coincides with the affected area’s
population size and density features. Besides, these are partly found in the eastern and
southern parts due to various government activities, residents, and schools located in these
regions. Meanwhile, the northern part is a cold spot not included in the elliptical, swamp,
and coastal areas, which are not dense. All these circumstances have proven that the virus
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spread is based on identifying its spatiotemporal pattern, which is higher in the most
densely populated areas [12].

The Moran’s I result also demonstrated a positive significant spatial autocorrelation
of the virus. The spike in COVID-19 incidence affected the number of positive cases
in several areas in Surabaya, as evidenced by the results of Moran’s I p-value, which is
closer to 0. Spatial data are simply described as highly correlated, assuming likely values
are spatially close to each other [45]. However, the Moran’s I autocorrelation did not
identify whether the distribution pattern was high or low. Therefore, this study applied the
G test and demonstrated a significant positive correlation to validate and identify strong
spatiotemporal patterns in the association between the factor and COVID-19 infection.
Other factors, such as confirmed cases, the number of recovered patients a week prior,
and the number of suspected people in the previous week, were also used to identify the
COVID-19 pattern.

The relationship between air pollution concentrations and the number of COVID-19
cases using OLS did not demonstrate a significant pattern, as indicated in Table 4. At the end
of the study period, the number of cases decreased by the ellipse area due to the narrowing
level of air pollution distribution. The area in the ellipse, which is the distribution center
of most COVID-19 cases, has a low level of pollution and mobilization. This is because
the implementation of lockdown rules was tightened in areas with a high case rate. Areas
without strict social restriction rules experience high vehicle mobilization and air pollution
levels. According to Qin et al. [46], people living in regions with poor air quality are highly
vulnerable to COVID-19 due to the long-term inhalation of toxic pollutants.

5. Conclusions

The COVID-19 data obtained in Surabaya from 28 April to 26 October 2021 used the
spatial CGD, Moran’s I, General-G, Gi* statistics, and the GWR models to conclude that
the delta variant has a significant spatial correlation with the variables. Although Moran’s
global I and G statistics were used to identify strong spatial patterns of the virus regarding
the variables, this approach only considers single-layer distributions at any given time.
This study was able to identify which village demonstrated a high probability of infection
using Gi* hotspot and cold spot analysis. Therefore, future studies need to investigate other
correlations, such as ecological, climatological, and socioeconomic variables, to effectively
determine the relationship between COVID-19 hotspots, cold spots, and population density.
Although the transmission is currently showing a declining trend, the epidemic situation
in eastern and southern Surabaya is difficult. The spatiotemporal analysis demonstrated in
this study suggests that a temporal hazard model based on weekly infection rates led to
a better understanding of changes. The pollutant processing results with the number of
confirmed cases of COVID-19, especially the delta variant, demonstrated a fairly strong
positive correlation value of 0.577 in the third week, which was the highest. Therefore,
COVID-19 is correlated with pollution levels. This study is expected to provide a useful
strategy in improving the infectious disease surveillance system and control intervention
in each affected area for future purposes. GIS was used to map disease incidence against
several parameters, including demographics, environment, geography, and past events, to
understand outbreak origins, spread patterns, and intensity, supporting the implementation
of control, preventive, and surveillance measures.

There are several caveats and inherent limitations in this study. First, Sentinel-5P has a
low geographical resolution compared to village areas, demanding the usage of medium
resolution satellite photography. Sentinel-5, on the other hand, has a unique mission and
sensor for monitoring the troposphere on a city-scale, allowing the researcher to collect
data on O3, CO, SO2, and NO2. Due to the highly dynamic nature of the disease, such as
the highly contagious delta variant, it is necessary to add an analysis of the vaccination rate
in each region to reduce the number of distributions and positive cases. For future studies,
adding vaccination variables for each region can be added to see the rate of infection and
the spread of COVID 19.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph19031614/s1, Figure S1. Village’s Administration of Surabaya as study area, Figure S2.
Population Distribution of Surabaya on 2020, Figure S3. The distribution of confirmed COVID−19 cases
per 100,000 populations every week in Surabaya, Figure S4. The clustering map of Covid−19 incidence
along with its orientation and shift directions, Figure S5. Distribution map of Surabaya Industries.
The red circle (bottom) is called the Gerbangkertosusilo area. It is the entrance area to the Surabaya
and the surrounding area, includes Gresik−Bangkalan−Mojokerto−Surabaya−Sidoarjo−Lamongan,
Table S1. Location of Weighted Mean Center (WMC).
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