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Simple Summary: Near-real-time monitoring of livestock using on-animal sensor technology has the
potential to improve animal welfare and productivity through increased surveillance and improved
decision-making capabilities. One potentially valuable application is for monitoring of lambing
events in sheep. This research reports on the development of a machine learning classification
algorithm for autonomous detection of lambing events. The algorithm uses data from Global
Navigation Satellite System (GNSS) tracking collars, accelerometer ear tags and local weather data.
Overall, four features of sheep behaviour were identified as having the greatest importance for
lambing detection, including various measures of social distancing and frequency of posture change.
Using these four features, the final algorithm was able to detect up to 91% of lambing events. This
knowledge is intended to contribute to the development of commercially feasible lambing detection
systems for improved surveillance of animals, ultimately improving methods of monitoring during
critical welfare periods.

Abstract: In the current study, a simulated online parturition detection model is developed and
reported. Using a machine learning (ML)-based approach, the model incorporates data from Global
Navigation Satellite System (GNSS) tracking collars, accelerometer ear tags and local weather data,
with the aim of detecting parturition events in pasture-based sheep. The specific objectives were
two-fold: (i) determine which sensor systems and features provide the most useful information for
lambing detection; (ii) evaluate how these data might be integrated using ML classification to alert to
a parturition event as it occurs. Two independent field trials were conducted during the 2017 and 2018
lambing seasons in New Zealand, with the data from each used for ML training and independent
validation, respectively. Based on objective (i), four features were identified as exerting the greatest
importance for lambing detection: mean distance to peers (MDP), MDP compared to the flock mean
(MDP.Mean), closest peer (CP) and posture change (PC). Using these four features, the final ML was
able to detect 27% and 55% of lambing events within ±3 h of birth with no prior false positives. If the
model sensitivity was manipulated such that earlier false positives were permissible, this detection
increased to 91% and 82% depending on the requirement for a single alert, or two consecutive
alerts occurring. To identify the potential causes of model failure, the data of three animals were
investigated further. Lambing detection appeared to rely on increased social isolation behaviour in
addition to increased PC behaviour. The results of the study support the use of integrated sensor data
for ML-based detection of parturition events in grazing sheep. This is the first known application of
ML classification for the detection of lambing in pasture-based sheep. Application of this knowledge
could have significant impacts on the ability to remotely monitor animals in commercial situations,
with a logical extension of the information for remote monitoring of animal welfare.
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1. Introduction

There is increased interest in the development of sensing technologies to improve
animal management in the extensive grazing industries [1,2]. Much of the research to
date has been conducted using individual on-animal sensors such as Global Navigation
Satellite System (GNSS) tracking, motion sensors (e.g., accelerometers, inertial monitoring
units, pitch and roll sensors), jaw or bite sensors and physiological sensors [1,3]. In specific
studies of sheep, on-animal sensor technologies have been applied to monitor various
behaviours of interest, either within a particular context (e.g., lambing [4–6]; predation [7];
oestrus [8]) or more generally for basic behaviour recognition [9–13].

In the majority of sensor-based sheep research, single sensor types are applied in
isolation [1]. However, given the number of available technologies and the benefits each
can provide, there is merit in exploring the use of integrated monitoring systems. This is
likely to be particularly valuable when a single sensor is unable to collect all the desired
information, or when the use of multiple sensors improves accuracy. For example, in
work by Spink et al. [14], joint GNSS and accelerometer tracking of Canada geese found
the combination of the two sensor types improved the ability to distinguish behaviours
of interest, compared to GNSS alone. In Dewhirst et al. [15], integration of GNSS, ac-
celerometers and magnetometers improved the accuracy of location and distance travelled
estimates of domestic dogs. The use of integrated sensors has also been explored in cattle
production systems. For example, Barker et al. [16] found integrated local positioning
data and accelerometers could detect changes in dairy cow feeding behaviour associated
with lameness. González et al. [17] also reported on an integrated GNSS and accelerome-
ter behaviour monitoring system, incorporating additional live weight data from remote
weighing systems, to demonstrate the value for beef cattle grazing systems. One key gap in
the literature is the lack of reported use of weather data in an integrated sensor approach.
Weather has obvious implications for animal behaviour [18], particularly in extensive
grazing systems [19], and so its exploration as a component of an overall behavioural
monitoring systems is also warranted.

While the application of sensors in a research context is important, there is growing
interest in the development of these systems for commercial application [20]. In this context,
sensors will require real-time or near-real-time data processing and information transfer
to ensure timely operational decisions [21]. Within this near-real-time requirement sit
additional concepts of online processing and edge computing. Online processing refers
to the analysis of each data point as they become available, with the aim of identifying
the nonconformities as soon as possible after they occur [22]. Edge computing refers to
the capacity to perform some level of processing either at or near the device, without the
reliance of data transfer to the cloud [23]. Although many advances have been made in
near-real-time sensor systems, there are a number of practical challenges associated with
their implementation [24]. For example, data transmission is an extremely power-intensive
activity and selection of data deemed most relevant to analysis may be necessary [25].
Sensor type can also impact on power requirements (e.g., GNSS receivers require significant
amounts of power [26]) and computational requirements can greatly impact the power
supply [24]. Given these limitations, most applications of on-animal sensors, particularly in
a research context, are still conducted using “store-on-board” (SOB) devices, where the data
are saved on the sensor itself and only accessible after the device has been removed [21,27].
In this case, the entire dataset is usually viewed as a whole (known as “offline” processing),
with previously occurring patterns detected after they occur through an examination of
historical data [22]. Although obviously not directly applicable to commercial settings, SOB
devices can serve as a proxy to collect sensor data for later use in simulated online scenarios,
which serve to evaluate the potential for developing commercially viable products.
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One potentially valuable application of sensor technology is for monitoring of par-
turition (lambing) events in sheep. Lambing is a critical period for the ewe and lamb,
with lasting impacts on productivity and welfare [28–30]. Detection of lambing has im-
plications for two key welfare outcomes for the sheep industry. Firstly, it provides an
indication of ewe welfare, particularly if applied to detect abnormal parturition-related
behaviour (e.g., detection of prolapse or dystocia). Secondly, welfare of the newborn can
also be inferred, given experience of dystocia or even selection of an appropriate lambing
site can indicate quality of mothering and early experience of the lamb [29]. Previous
sensor-based research of lambing behaviour has focused on two main technologies: firstly,
GNSS [4–6,31]; secondly, and to a lesser extent, accelerometers [32,33]. These studies have
broadly proven the ability of each sensor type to detect changes in behaviour associated
with lambing. However, the application of these sensors to detect a lambing event under
commercial conditions in simulated “near-real-time” is yet to be explored. This process has
been examined in other livestock industries including calving beef and dairy cattle [34],
farrowing pigs [35,36] and for detection of stress in police horses [37].

In this paper, a simulated online machine learning (ML) classification algorithm for
detection of parturition events in commercial grazing ewes is developed and evaluated. In
this paper, a parturition event is considered to involve both behavioural changes associated
with the onset of lambing, as well as the lamb expulsion itself. SOB data were used as a
substitute for near-real-time sensor data and allowed for sequential processing of each
data point to simulate an online processing scenario. The algorithm uses data from GNSS
tracking collars, accelerometer ear tags and local weather data and hence explores the
benefits of an integrated sensor approach. The specific objectives were to: (i) determine
which sensor systems and features provide the most useful information for lambing de-
tection; (ii) evaluate how these data might be integrated using ML classification to alert
to a parturition event as it occurs. Within this last objective, the concept of adjusting
detection criteria post-classification is explored in the context of applying the model in
situations where false positives are more or less acceptable. This knowledge is intended
to contribute to the development of commercially feasible lambing detection systems for
improved surveillance of animals, ultimately improving methods of monitoring during
this critical period.

2. Materials and Methods
2.1. Location and Animals

Two independent field trials were conducted at a commercial mixed enterprise on
the South Island of New Zealand (43.0◦ S and 173.2◦ E) over consecutive years. Trial One
was conducted from 29 September to 13 October 2017. Trial Two was conducted from
9 September to 23 September 2018. All procedures were approved by the Massey University
Animal Ethics Committee (MUAEC 17/59; MUAEC 18/67).

In Trial One, 40 mixed-age Merino or Merino-cross ewes were selected from the main
commercial flock. Selection was based on ewes having an expected lambing date during
the experimental period (determined via ultrasound scanning as per normal farm practice).
A preliminary analysis of the data from this trial has been previously published [6]. Eight
of the animals used in the development of the model reported in this paper having been
previously used in [6]. However, this does not confound this study as they remain part of
the independent model development cohort and not the validation data set. Furthermore,
in [6], analysis was only conducted using GNSS data, not accelerometer or weather data.
Finally, novel metrics are included in this paper that were not explored in [6], e.g., distance
to closest peer (CP). The experimental paddock was 3.1 ha and provided ad libitum access
to forage and water.

In Trial Two, 39 mixed-age Merino or Merino-cross ewes were selected from the main
commercial flock. Again, selection was based on ewes having an expected lambing date
during the experimental period. Of the 39 animals selected, 12 ewes have been previously
used for development of the ML behaviour algorithms [10] that are applied for prediction
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of animal behaviour in the current study. For this reason, these animals were excluded,
and their data subsequently removed from the validation dataset.

The experimental paddock was 4.4 ha and provided ad libitum access to forage
and water.

Throughout each trial, weather data were collected by an on-farm weather station
for later incorporation into the dataset. Weather data included average air temperature,
average wind speed and average solar radiation recorded hourly. Hourly rainfall was
also recorded.

2.2. Instrumentation

In both trials, experimental ewes were fitted with devices on the morning prior to
study commencement. Each animal was fitted with a GNSS logger (i-gotU GT-600, Mobile
Action Technology Inc., Taiwan) attached to a neck collar and an accelerometer (Axivity
AX3, Axivity Ltd., Newcastle, UK) attached to an ear tag. GNSS loggers were programmed
to obtain locations at 3 min (Trial One) or 2 min (Trial Two) intervals. Accelerometers
were configured at 12.5 Hz and fixed with an orientation of the X-, Y- and Z-axis along the
dorso-ventral (up–down), lateral (side-to-side) and anterior–posterior (forward–backward)
axes, respectively. Both GNSS and accelerometer sensors were selected for use as they
provide distinctly different data. GNSS records periodic location of the animal, while
accelerometer sensors provide a measure of the animals’ movement at a fine scale and high
temporal frequency.

In Trial One, ewes were moved to the experimental paddock after instrument attach-
ment and remained in this location for the entire experiment duration.

In Trial Two, animals were moved to the experimental paddock on Study Day One,
where they remained for the duration of the trial. Due to this gap between sensor attach-
ment and entry to the paddock, valid data recording commenced from 1100 h on Study
Day One.

2.3. Observation

For Trial One, ewes were observed from 630 h to 1230 h and 1530 h to 1800 h (±30 min)
for the entire experimental period (14 days). For Trial Two, observations were conducted
from 0730 h to 1230 h and 1330 h to 1730 h (±30 min) for the entire experimental pe-
riod (15 days). Observations were conducted for the purpose of recording lambing time,
via the use of binoculars. Ewes were also fitted with identification “bibs” with unique
colour/number combinations to allow the observer to differentiate individual ewes from
a distance.

Time of lambing was recorded to the nearest hour where possible. Lambing was
defined as the time in which the lamb was fully expelled. Hour records were rounded
down, i.e., lambing events at 1301 h and 1359 h would both be recorded within 1300 h.
If ewes lambed during the observational period, but the actual birth was not able to be
observed (e.g., if ewes were hidden from view), the hour of birth was recorded within
a maximum 2 h window. If this could not be determined, the record was discarded.
Overnight lambing’s were not observed and were therefore excluded.

2.4. Data Management and Analysis

After each trial, the devices were removed, and data downloaded. GNSS tracking data
were downloaded using the proprietary software (@Trip PC, Mobile Action Technology
Inc., Taipei, Taiwan). Accelerometer data were downloaded using the proprietary software
(OMGUI, Axivity Ltd., Newcastle, UK). All data were processed and analysed using
the statistical software R [38]. Weather data from the on-farm weather station were also
downloaded for the study period. The datasets for each trial were kept separate at all times.
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2.5. GNSS Data

After download, the GNSS data were checked for fidelity. Any locations that had not
been correctly logged (i.e., locations with a latitude and longitude of zero) were removed.
Due to differences in the logging intervals between the trials (3 min Trial One; 2 min Trial
Two), the GNSS data were interpolated to 5 min intervals. This interval was chosen as it
was considered a more reasonable frequency for commercial application where battery
life may be limited [39] and has been previously applied in sheep [4,40] and cattle [41,42].
This process was conducted by interpolating the existing GNSS tracks to a common time
interval (5 min) using the redisltraj function in the R package adehabitatLT [43].

After interpolation, the distance and speed between successive locations were then
calculated [4]. Speeds over 3 m/s were removed because these positions were likely
inaccurate [6]. The distance, time and speed between successive GNSS locations were then
recalculated and a moving window average of speed based on the two locations prior to
and following the point of interest (i.e., five locations in total) were calculated.

To create a measure of the spatial relationship between each ewe and others in the flock,
the distance between each ewe and each of her peers was determined. The straight-line
distance between the GNSS locations for each ewe-pair was calculated using the “Vincenty
(ellipsoid)” method [44]. Once the distance between each ewe-pair was calculated, values
were averaged to calculate the mean distance to peers (MDP). The closest peer (CP; i.e., the
smallest distance between ewes) was also recorded.

To calculate the spatial landscape utilisation of each ewe, the minimum convex poly-
gon (MCP) was calculated for each ewe for every hour of the trial. MCP is a standard
method for home range estimation [45]. To ensure MCP was not overestimated, the GNSS
data were further processed to remove any locations outside of the paddock boundaries +
10 m (mean location error of i-gotU device < 10 m [46]).

2.6. Accelerometer Data

After download, raw accelerometer data were processed according to the methods
outlined in [10,33]. Briefly, a number of features were extracted from the raw X-, Y- and
Z-axis values (see [10] for details). Features were calculated using two epoch lengths
(10 s and 30 s). After feature extraction, previously developed ML algorithms [10] were
used to classify the animal’s behaviours. Classification was conducted in three ways: (i)
detection of specific behaviour (grazing, standing, lying and walking); (ii) detection of
general activity (active or inactive); (iii) detection of posture (prostrate or upright).

2.7. Integrating GNSS, Accelerometer and Weather Data

Following raw data processing, the GNSS and accelerometer data sets were each sum-
marised on an hourly basis and then integrated together with the weather data (Table 1).
These summaries, and the selected features, are discussed in detail in the following sections
(Sections 2.7.1–2.7.3). Hourly summaries were chosen to minimise data processing require-
ments while still allowing for detection at a relatively fine temporal scale. The use of hourly
summaries also reflects previous work [4,6,33]. In the context of simulating a commercially
relevant online model, hourly detection was also thought to represent a reasonable time
frame in which a producer might be made aware and respond to any alerts developed.
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Table 1. Features provided from each sensor type, including the unit of measurement. Derived features are reported as
absolute values per hour. Peer-based features are calculated as the percentage difference between the individual ewe and
the mean of all other ewes in the flock. Temporal features are calculated as the percentage difference between the current
hour and the previous hour (1 h) or 24 h previous (24 h). Features removed due to collinearity are in italics. FNP = Feature
not progressed. NA = Not applicable.

Sensor Type Derived Features Unit Peer-Based Features Unit Temporal Features Unit

Mean speed (MeanSp) m/s MeanSp.Mean % MeanSp.1 h/24 h %
Minimum speed (MinSp) m/s MinSp.Mean 1 - MinSp.1 h/24 h %

GNSS Maximum speed (MaxSp) 2 - FNP 2 - FNP 2 -
Mean distance to peers (MDP) m MDP.Mean % MDP.1 h/24 h %

Closest peer (CP) m CP.Mean 3 - CP.1 h/24 h %
Minimum convex polygon (MCP) % MCP.Mean % MCP.1 h/24 h %

Time spent grazing (Grazing) % Grazing.Mean % Grazing.1 h/24 h %
Time spent lying (Lying) % Lying.Mean % Lying.1 h/24 h %

Accelerometer Time spent standing (Standing) % Standing.Mean 4 - Standing.1 h/24 h %
Time spent walking (Walking) % Walking.Mean % Walking.1 h/24 h %

Time spent active 5 - FNP 5 - FNP 5 -
Posture changes (PC) Count PC.Mean % PC.1 h/24 h %

Average air temperature (AirTemp) ◦C/h NA NA NA NA
Weather data Hourly rainfall (Rainfall) mm/h NA NA NA NA

Average wind speed (WindSp) kph NA NA NA NA
Average solar radiation (SolarRad) w/m2/h NA NA NA NA

1 Removed from analysis due to collinearity with MinSp; 2 removed from analysis due to collinearity with MeanSp (no additional features
calculated); 3 removed from analysis due to collinearity with CP; 4 removed from analysis due to collinearity with S; 5 removed from
analysis due to collinearity with time spent grazing (no additional features calculated).

2.7.1. Features Derived from Prior Research

A number of key features for the GNSS and accelerometer data were selected due to
their performance in previous research [4,6,33] or hypothesised as having potential in an
integrated approach. For the GNSS data, key features were: (i) mean speed (MeanSp); (ii)
minimum speed (MinSp); (iii) maximum speed (MaxSp); (iv) MDP; (v) CP and (vi) MCP.
These features were based on previous work [4,6].

For the accelerometer data, key features were as follows: (i) the proportion of each hour
spent performing mutually exclusive behaviours (grazing, standing, lying and walking);
(ii) the proportion of each hour spent active; (iii) the number of times each individual
changed their posture (i.e., upright to prostrate and vice versa) within an hour. These
features were based on previous work [33].

2.7.2. Peer-Based Features Comparing the Individual to the Flock

Given the gregarious nature of sheep [47], additional metrics were included in the
integrated dataset to allow for concurrent assessment at an individual and flock-level. In
an example outlined in [33], ewe walking behaviour was not only shown to increase at
parturition, but also during periods of normal flock management (e.g., movement between
paddocks). Based on this, it was decided that monitoring at both an individual and flock-
level was necessary, noting that changes in behaviour of a single ewe would more likely
indicate parturition, whereas broader changes to the flock would suggest a whole-flock
change [33]. Thus, additional features were included comparing each ewe’s individual
feature values at a given point in time to the mean value of all other animals at this time.
These features were calculated as a percentage difference from the mean (i.e., percentage
increase or decrease) and denoted “Name.Mean”, where “Name” refers to the feature of
interest (see Table 1 for details).

2.7.3. Temporal Comparison of Features

To enable temporal comparison of features, the percentage increase or decrease in each
feature was compared at key time intervals. Specifically, the percentage change between
the current hour and the previous hour (Hour-1: denoted “Name.1 h”) or the current hour
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and 24 h previous (Hour-24: “Name.24 h”) was calculated. Inclusion of these time-based
calculations was considered important to ensure temporal associations in behaviour were
accounted for in the model. These calculations also allowed for a comparison of each
individual against their own “baseline” to determine if significant changes in behaviour
over time became evident (see Table 1 for details). Due to similarities between some
derived features, a test for collinearity was conducted. Features with a correlation ±0.8
were removed from further analysis (Table 1).

2.8. Development of a Simulated Online Parturition Detection Model Using Machine Learning

ML algorithms are commonly used for pattern recognition and classification tasks [48]
and have been successfully used in sheep behaviour research [9,10,49,50]. This process
involves developing the algorithm with a training dataset and then testing it against an
independent validation dataset.

2.8.1. Training Dataset

Data collected from Trial One were used as the training dataset and will henceforth
be referred to as such. Once collated, the dependent variable on the training dataset was
“labelled” to represent the behaviour state of the ewe (considered a binary state of either
“lamb” or “non-lamb”). The process of labelling was as follows: the hour of birth (Hour 0)
and one hour either side (Hour ± 1) were labelled as “lamb” (3 h in total). This was
done to ensure that those animals that lambed earlier or later within the hour would still
have an adequate representation of “lambing” behaviour included in the training dataset.
Furthermore, the inclusion of multiple “lamb” hours per animal was important to increase
the amount of available training data for this behaviour state for a more balanced dataset.
Conversely, “non-lamb” hours were represented by the 24-h period for the third day prior
to (Day 3) and third day after parturition (Day +3; 48 h in total). Only these days were
selected to reduce the number of “non-lamb” hours in the training dataset. The use of data
from three days prior to and following lambing was based on previous work [6,33], which
suggests that most lambing-related behaviours do not commence until the day before
(Day 1) or day of (Day 0) actual lambing. Balancing of behaviour representation in training
datasets is important to ensure adequate machine learning can take place [51].

2.8.2. Validation Dataset

Data collected from Trial Two were used as the validation dataset and will henceforth
be referred to as such. The process of labelling the validation dataset was different and
intentionally more specific compared to the training dataset. The hour of birth was labelled
as Hour 0 and the hours surrounding Hour 0 were labelled numerically (±x hours) to
represent the temporal association to the parturition event. For ewes where the hour of
birth was known within a maximum 2 h window, the hour of birth was designated as the
middle hour within the window, and the hours either side labelled as per the previous (i.e.,
a window of 1200 h–1400 h would designate 1300 h as Hour 0 (hour of birth), 1400 h as
Hour + 1, etc.). If the middle hour fell on a part-hour, the hour was rounded down (i.e.,
1330 h would round down to 1300 h).

2.8.3. Part A: Simulated Online Parturition Detection ML Development and Evaluation

Support vector machine (SVM) classification was used to detect the binary ewe status
(“lamb” or “non-lamb”). SVMs generate a hyperplane between observations to separate
distinct classes [48], with the aim of maximising the distance between the observations
and the hyperplane [52]. This ML algorithm has become popular in recent years due to its
relative ease of application and high performance in real-world applications [52,53].

Leave-one-animal-out cross validation (LOOCV) was used to train and test the SVM.
This process involved using all but one of the datasets to train the algorithm, with subse-
quent performance evaluation using the remaining dataset. During each training iteration,
the data were pre-processed to “centre” and “scale”. The tuning cost (“C”) parameter was
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also adjusted using a grid-based search. This process was repeated for all animals to enable
selection of the best C value.

Based on the first objective of this study, to determine which sensor systems and
features provide the most useful information for lambing detection, feature selection
was also conducted throughout this training process. To do this, a receiver operating
characteristics (ROC) curve analysis was conducted using the varImp function from the
caret package [54]. This function applies ROC curve analysis to each feature, calculates
the resulting area under the curve and uses this area as a measure of feature importance
between 0 and 100 [55]. Only features with an importance “score” over 75 were retained
for algorithm training to reduce the complexity and computational requirements of the
SVM as this is considered a limiting factor to commercial application. A similar approach
has been reported in [24], where a single feature was incorporated into an online algorithm
to minimise energy consumption. In that paper, the authors state that while including
additional features can improve accuracy, their inclusion should be conducted under a
cost-benefit approach given the computational costs of complex models [24].

Once trained, performance statistics for the SVM were calculated including: Kappa
value, precision, recall (sensitivity) and the Matthews correlation coefficient (MCC). The
Kappa value compares the observed accuracy with random accuracy and is considered
informative in unbalanced samples such as in the current study [56]. Precision and recall are
also useful for unbalanced samples where the focus is on detection of the smaller class [57].
MCC is widely used in bioinformatics for unbalanced classification [58], providing a score
between −1 and 1, where 1 indicates prefect prediction, 0 indicates random prediction
and −1 indicates total disagreement. Precision, recall and MCC were calculated using the
following equations:

precision =
TP

(TP + FP)
(1)

recall =
TP

(TP + FN)
(2)

MCC =
TP× TN − FP× FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3)

where TP, TN, FP and FN refer to true positive (correct classification of “lamb”), true
negative (correct classification of “non-lamb”), false positive (incorrect classification of
“non-lamb” as “lamb”) and false negative (incorrect classification of “lamb” as “non-lamb”),
respectively. Accuracy was not calculated due to the imbalanced nature of the dataset [59].

2.8.4. Part B: Validation of the Parturition Detection Model

Based on the second objective of this study, the final algorithm was applied to the
independent validation dataset to detect the day and hour of lambing. To simulate an online
situation, the first hour where lambing detection occurred was recorded and compared to
the known time of birth. Detection success was assessed across two timeframes: firstly, if it
was within ±1 h of the recorded hour of birth; secondly, if it was within ±3 h of recorded
hour of birth. These two different levels were implemented to make it possible to identify
both pre- and post-parturient behaviours, which are known to change in the hours just
prior to or following lambing [33]. For example, in a study by Arnold and Morgan [60], pre-
lambing maternal interest and behavioural changes associated with parturition were found
to increase most significantly between 180 and 120 min prior to birth. A broader detection
window was also important to allow for the complete length of labour (approximately
65 ± 9 min [61]), and detection of early post-parturient behaviour, such as the tendency
to remain at the birth site for up to 5 h (mean of 2 h) [62]. If lambing detection occurred
within ±3 h of known birth, evaluation ceased, and the model was no longer applied to
that animal. If ewes did not have a correct detection within ±3 h, the evaluation continued
until the known day of birth, after which, further lambing detection was also ceased. This
enabled the evaluation of the likely number of false positives that were generated.
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3. Results
3.1. Data and Lambing Records

A summary of the sensor and lambing records is presented in Table 2. In each year, a
number of devices failed to record data and were excluded. In addition, one ewe prolapsed
during the 2017 trial and was removed from the data set. Ewes that gave birth overnight or
did not give birth during the experimental period were also excluded due to uncertainty of
the exact time of birth.

Table 2. Data and lambing records for the training (Trial One) and validation (Trial Two) datasets.

Training Validation

Animals at trial initiation 40 39
Animals with one or more failed devices 5 6

Complete datasets at trial conclusion 35 33
Excluded datasets 27 1 22 2

Day and hour of birth identified 8 9
Hour of birth known within a maximum 2 h window 0 2

TOTAL 8 11
1 Exclusion based on prolapse (n = 1) or unknown lambing time (overnight or outside of the experimental period;
n = 26); 2 exclusion based on previous use in machine learning (ML) algorithm development (n = 12; [10]) or
unknown lambing time (overnight or outside of the experimental period; n = 10).

3.2. Weather Records

During Trial One (training dataset), temperatures ranged from 3.8 ◦C to 22.3 ◦C and
total rainfall was 85.6 mm. Average daily wind speed was 9.2 km/h with an average gust
speed of 21.7 km/h. Average solar radiation was 104.9 w/m2/h.

During Trial Two (validation dataset), temperatures ranged from 0.7 ◦C to 21.6 ◦C.
Average daily wind speed was 7.1 km/h with an average gust speed of 18.0 km/h. Average
solar radiation was 176.0 w/m2/h. There was no rainfall during this period.

3.3. Part A: Simulated Online Parturition Detection ML Development and Evaluation
3.3.1. Feature Importance

Using the ROC curve analysis (Figure 1), the feature with the highest importance
for differentiation between lambing and non-lambing animals was MDP.Mean (i.e., the
MDP of the ewe compared to the average MDP of all others in the flock, expressed as a
percentage). This was closely followed by CP and MDP (both expressed in metres). These
features are all GNSS-derived. The most important accelerometer-derived features were PC
(hourly number of posture changes), followed by PC.Mean (i.e., PC of the ewe compared
to the average PC of all others in the flock, expressed as a percentage) and PC.24 h (i.e., PC
of the ewe in the hour of interest compared to the same hour in the previous day, expressed
as a percentage). Three weather features (wind speed, air temperature and solar radiation)
were within the top 10 most important features. Hour of the day was not an important
feature for the purposes of differentiation.
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As depicted in Figure 1, it is clear that both GNSS and accelerometer sensors pro-
vide the most useful information for identification of lambing. Specifically, four features
emerged as having an importance “score” over 75 and were retained in the final model:
MDP.Mean, CP, MDP and PC. Although the original objective of the study was to examine
an integrated sensor approach for parturition detection, due to the apparent importance of
the GNSS metrics in the ROC curve analysis, a second SVM was developed at this stage to
examine the benefits of using GNSS data alone.

3.3.2. ML Evaluation

The two SVM models (the integrated SVM and GNSS SVM) were evaluated by LOOCV
using the training dataset from Trial One. The integrated SVM performed slightly better
than the GNSS SVM, with a higher Kappa (0.4), recall (48%) and MCC (0.6) compared to
the single sensor dataset (Kappa: 0.3; recall: 33%; MCC: 0.5). The GNSS SVM demonstrated
a higher precision (83%) compared to the integrated model (71%). Overall, the integrated
SVM demonstrated a higher number of true positives (n = 10) compared to the single
sensor (n = 7 true positives). Based on the performance of the integrated model, and due to
the original objectives of understanding the value of integrated sensor systems, only the
integrated model was selected for later validation using the Trial Two data.

Summary statistics (Table 3) and density plots (Figure 2) were generated for the
training dataset to assist in understanding of the SVM classification process. As shown
in Table 3, lambing animals displayed an increased level of social isolation compared to
non-lambing animals, both in terms of actual distance (MDP) and when this distance was
compared to the mean of the flock (MDP.Mean). This pattern was also evident for CP,
with lambing animals being a mean distance of 8 m from their closest peer compared to
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non-lamb animals at 1.5 m. Frequency of changing posture also increased at lambing (mean
26.2 and 9.7 changes per hour for lambing and non-lambing animals, respectively).

Table 3. Summary statistics for the top four features of the training (Trial One) dataset (determined
by ROC curve analysis).

Features
Lamb Non-Lamb

Mean Min Max Mean Min Max

MDP.Mean (%) 51.3 −3.8 118.9 4.1 −28.6 191.5
CP (m) 8.0 0.6 26.1 1.5 0 11.5

MDP (m) 66.5 37.6 114.4 35.0 9.5 87.5
PC (count) 26.2 6 48 9.7 0 38
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Figure 2. Density plots of the four most important features (determined by ROC curve analysis) for differentiation between
lambing (red) and non-lambing (blue) animals using the training dataset (from Trial One). Features are: (a) MDP.Mean—
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dashed line; non-lambing: blue dashed line). The key characteristics of all features are the higher mean values and wider
distributions when sheep are lambing.

Although all four features are dominant predictors for lambing, there is still some
obvious overlap between the two behaviour states (Figure 2). For example, across all
features, the maximum non-lamb values were consistently higher than the mean lambing
values for each particular feature. This may contribute to inaccuracies in detection and
highlights the potential to further refinement. This is explored further in Section 3.4.
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3.4. Part B: Validation of the Parturition Detection Model

To explore if the integrated SVM could alert for parturition events as they occurred
sequentially over time, the final model was tested against the independent validation
dataset from Trial Two (Table 4). To simulate a near-real-time system where data would
be made available in an incremental fashion, only the first hour of lambing detection was
recorded and compared to the known time of birth. If this initial detection alerted too early
(i.e., false positives before the actual birth event), the model was applied up until the actual
day of birth to determine if later detection of the event would still occur.

Table 4. Application of the integrated support vector machine (SVM) to the validation dataset (Trial Two). Hour of first
alert is expressed relative to the recorded hour of birth. Notations “X” and “X+” indicate the animal meets the criteria.

Animal Hour of First Alert False Positives (Prior to
Actual Lambing)

First Alert within
±1 h (X) or ±3 h (X+)

Early False Positives with
Later Accurate Alert ±3 h Failed (No Alerts ±3 h)

1 −67 1 X
2 −21 6 X
3 0 0 X
4 −1 0 X
5 −43 1 X
6 −114 (4.8 days) 28 X
7 −118 (4.9 days) 3 X
8 −169 (7.0 days) 18 X
9 −1 0 X

10 −56 6 X
11 −68 1 X

TOTAL 64 3 (+0) 7 1

Three animals (from a total of 11; 27%) had the first lambing alert within ±1 h of the
known lambing hour. No additional animals had the first lambing alert within ±3 h. Seven
ewes (64%) had a number of false positives (range: 1–28; mean: 8) prior to correct detection.
One animal (Animal 6) did not have any alerts within ±3 h of known lambing hour. The
closest alerts for this animal were Hour −6 and Hour +4.

While this model was able to alert to all but one parturition event, this high rate
of detection comes at the cost of numerous false positive alerts (n = 64). To explore a
second scenario under which false positives were less acceptable, a simple modification
was applied. This basic change required identification of at least two consecutive “lamb”
hours before an alert was generated. The results of this process are presented in Table 5.

Table 5. Application of the integrated SVM to the validation dataset (Trial Two) with the additional criteria of requiring
identification of at least two consecutive “lamb” hours before an alert was generated. Hour of first alert is expressed relative
to the recorded hour of birth. Notations “X” and “X+” indicate the animal meets the criteria.

Animal Hour of First Alert False Positives (Prior to
Actual Lambing)

First Alert within
±1 h (X) or ±3 h (X+)

Early False Positives with
Later Accurate Alert ±3 h Failed (No Alerts ±3 h)

1 +2 0 X+
2 −20 3 X
3 +1 0 X
4 0 0 X
5 0 0 X
6 −110 (4.6 days) 12 X
7 +9 0 X
8 −141 (5.9 days) 6 X
9 0 0 X

10 −16 1 X
11 +3 0 X+

TOTAL 22 4 (+2) 3 2

Four animals (from a total of 11; 36%) had the first alert within ±1 h of the known
lambing hour. An additional two animals had the first alert within ±3 h of the known
lambing hour (6 in total within ±3 h; 55%). Three ewes had false positives (range 1–12;
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mean 5.5) with an accurate later detection within ±3 h of birth. Two ewes did not have any
alerts occur within ±3 h of birth (Animals 6, 7). For these animals, the closest alerts were
Hour −16 and Hour +5 (Animal 6) and Hour +9 (Animal 7).

Misclassification—Why Is It Occurring?

To further explore reasons for misclassifications and to understand how the SVM
used the data for lambing event detection, the individual datasets of three animals in the
validation dataset were plotted (Figure 3). Lambing alerts and the period of the actual birth
event were also plotted. The three chosen animals represent those that were consistently
correct (Animal 9), consistently incorrect (Animal 6) or had early false positives but were
later correct (Animal 2).
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4. Discussion

This study represents the first reported attempt to integrate data from multiple sensors,
both on-animal systems and weather data, for the purpose of parturition detection in
pasture-based sheep. A number of studies have reported on the relationship between
individual sensors and parturition [4–6,33,63,64]. However, none have attempted to explore
how these data might be used in the context of developing a near-real-time lambing
detection system that might be of value in commercial production systems.

4.1. Feature Importance for Lambing Detection

The four features most important for lambing detection were derived from GNSS
(MDP.Mean, CP, MDP) and accelerometers (PC) and highlight the importance of these
sensor types for lambing detection. Overall, ewes demonstrated an increased level of social
isolation at lambing compared to non-lambing animals (Table 4 and Figure 2). This was
evidenced by an increase in MDP.Mean, MDP and CP and supports published reports
of ewe social isolation at parturition [4,6,65,66]. Increased frequency of changing posture
was also exhibited by lambing ewes, with the mean number of hourly changes increasing
almost 3-fold, from 9.7 to 26.2 (Table 4 and Figure 2). Again, this is consistent with
published literature [61,67], and may indicate the onset of general restlessness associated
with lambing.

Based on previously reported limitations of GNSS behaviour monitoring at an hourly
scale [4,6], the reported importance of many of the GNSS-derived variables was initially
unexpected. In [6], no significant differences in hourly MDP were found in the 12 h
surrounding lambing. However, in the current study, this feature was ranked as the third
most important for discrimination between lambing and non-lambing animals. In addition,
in [6], GNSS was only shown capable of detecting the day but not the hour of lambing,
whereas in the current study, GNSS-derived metrics were amongst the most important
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features identified (Figure 1). This disparity may reflect a difference in the methodologies
of the two studies. In [6], the statistical comparison at an hourly scale was restricted to
only 12 h around parturition. In contrast, in the current study the training dataset used
values at lambing (±3 h) and compared them to non-lambing values collected 3 days either
side of parturition. Indeed, in a second analysis in [6], broader changes in daily behaviour
were found to indicate parturition, including MDP which increased from two days prior
to birth. Thus, it appears that when compared to hours closer in time (as in [6]), there is a
limited capacity to detect broader changes in behaviour that may occur over many days.
Conversely, when behaviour is compared to hours more distant in time (as in the current
study), the behaviour of ewes is detectably different.

In addition to the differences in methodology, the remaining GNSS features applied in
the final model (MDP.Mean and CP) are novel features that, to the best of our knowledge,
have not yet been reported for sheep using GNSS data. As previously noted, given the
gregarious nature of sheep [47], measurements that assess flock-level behaviour change
are important to differentiate individual changes in behaviour from the group. In contrast
to previous literature that does not support the use of GNSS to detect hourly behaviour
changes associated with parturition [4,6], the results of the current study suggests GNSS
has notable monitoring ability, either in isolation or when integrated with an accelerometer.
In the current study, the addition of Mean.MDP adjusts for changes in MDP that are the
result of herd behaviour, which may be impacted by a number of factors, for example
weather [18,66], forage quality [68,69] and social dynamics [70]. It is important to note
that measurements of social activity using on-animal sensors are not limited to GNSS.
Proximity loggers represent another sensor type that can provide this information, often in
a smaller size with lower power requirements [25,71,72]. Referring to commercial platforms
seeking to operationalise this research, it may be worthwhile exploring the substitution
of a proximity sensor for a GNSS. However, this substitution may introduce limitations,
given that it will result in the loss of some key functionality, particularly where the location
data from the GNSS may be critical for the producer to actually respond to a lambing alert
and find a ewe in an extensive landscape.

The reduced importance of accelerometer features in this analysis was also unexpected.
This was particularly true for features related to walking behaviour, which have been pre-
viously reported as a powerful predictor of lambing [33]. The key accelerometer features
identified were those related to posture change (PC, PC.Mean, PC.24 h), although only PC
met the required threshold for inclusion. Given that accelerometers are generally small de-
vices that can be easily applied to an animal [73], their integration into a commercial-grade
device warrants further investigation. It should be noted that the method of detecting PC in
this study required a significant level of data handling prior to the ML classification. More
explicitly, the raw data had to be classified using previously developed ML models [10],
after which hourly summaries of PC could be calculated and applied in the current model.
This was considered to be essential as the actual process of ewes changing their posture
was not adequately observed for ML training [10], and thus classification into two distinct
postures was required before frequency of PC could be determined. Furthermore, classifica-
tion into explicit behaviour allowed for comparison with known changes in parturition and
assisted in the interpretability of the model. However, given the constraints of battery life
and processing power in commercial situations [24], further exploration of posture change
detection should be undertaken. For example, using metrics derived from the raw data
such as movement variation (MV) or standard deviation of an accelerometer axis (SDX;
SDY; SDZ; [9,10]). In previous work [10], MV, SDX and SDY were consistently identified
amongst the most important predictors for classification of behaviour, general activity and
posture. Thus, it is possible that use of these metrics may have similar predictive power
when applied for parturition detection and should be considered in future studies.

The ROC curve analysis found weather features had only moderate importance for
detection of parturition, particularly wind speed, air temperature and solar radiation.
Sheep are known to have two major grazing episodes that are highly correlated to sunrise
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and sunset [74]. Weather is known to disrupt these patterns such as, for example, reduced
grazing range in hot weather [18]. Weather is also known to impact social activity, particu-
larly rising temperature and rainfall, which both result in increased social contact [70]. It is
likely that the findings of the current study reflect the relatively mild weather conditions
experienced, which may not have been extreme enough to have an impact on the ewe’s
behaviour. Despite not playing an important role in the current study, inclusion of weather
features in future models may still be warranted, particularly where more extreme weather
events are experienced.

4.2. Detection of Parturition and Implications for Commercial Application

The use of sensor technology in a commercial environment necessitates the devel-
opment of near-real-time information transfer. As the challenges associated with imple-
mentation are still widespread, SOB devices have been applied in the current study as a
proxy for simulated online application. In the current study, 27% (n = 3) and 55% (n = 6) of
animals had an accurate lambing detection within ±3 h of birth with no prior false posi-
tives, depending on the detection criteria used (i.e., first hour of alert (Table 4) compared
to two consecutive hours of alert (Table 5)). In a real-life scenario, it is unlikely that the
model would automatically terminate as soon as the first alert occurs, instead requiring
direct confirmation (or rejection) from the producer that lambing has (or has not) occurred.
For this reason, inclusion of animals with initial false positives and later accurate alerts
is also reasonable. Based on the latter, the results of the current study are encouraging,
with 91% (n = 10; Table 4) and 82% (n = 9; Table 5) of lambing events successfully detected,
depending on the detection criteria used. The models applied in the current study are not
true real-time detection algorithms, as they require the collection of an entire hour’s worth
of data before summary and detection can occur. However, current methods of lambing
detection are usually based on visual observation, which may increase the risk of mismoth-
ering [28]. Thus, despite not being a true real-time model, successful remote detection of
lambing within ±3 h could significantly increase the efficacy of ewe surveillance and may
be useful for improving both production and welfare outcomes.

When considering the end-use of these models, it is important to understand how
they may be applied in a real-life setting. For example, though the results of Table 4
indicate the ability to detect approximately 91% of birth events within a 3 h window using
the first hour of alert, the high rate of detection was also accompanied by a high rate of
false positives (n = 64). If this were applied directly in a commercial situation, it would
correspond to a large number of false alarms for every correct alert. In situations where the
animals represent a higher economic value (e.g., seed stock breeding animals), an increase
in false positives may be tolerable if all events of interest are identified. In contrast, in most
commercial production systems where the value of individual animals is lower, producers
may prefer to reduce the number of false positives at the expense of potentially missing
some events of interest [75].

As shown in Table 5, inclusion of the simple requirement for two consecutive lambing
alerts decreased the number of false positives from 64 to 22. This scenario also narrowed
the window of detection, with a further one and two animals having the first alert within
±1 h (Animal 5) or ±3 h (Animals 1 and 11), respectively. However, the restriction did
increase the overall failure to detect a lambing event from one (Table 4) to two (Table 5).
Practical application of the latter model might be found in a commercial production
system where individual animal monitoring is less valuable and where refining flock-
scale management brings economic return. For example, a producer may choose to be
alerted when the flock has commenced lambing, applying this knowledge to initiate a
flock-wide physical monitoring program (i.e., visual observation). This may be useful
for flocks without adequate breeding records or if the flock are at known risk of adverse
parturition events such as dystocia and/or prolapse [30]. Another example application
might be the use of flock-level alerts for warning of increased lambing numbers, especially
if the lambing events are occurring during periods of increased predation or adverse



Animals 2021, 11, 303 17 of 22

weather. In the current study, we have modified the model to sit at the end of two extremes
and there is likely a mid-point where the applications are optimised. Exactly how the
model sensitivity should be refined requires ample thought and should be contemplated
in further research. This has also been discussed by Dominiak and Kristensen [75] where
customisation of detection models is advised depending on two things: firstly, the priorities
of the producer; secondly, the purpose of the model application (e.g., cost optimisation vs.
health or welfare improvement).

4.3. Understanding the Limitations and Reasons for Model Failure

A key consideration for successful commercial application, is the ability of a detection
model to generalise across a number of individuals. However, based on the results of
the current study and our understanding of the variability between individual animal
behaviour [47,76,77], this remains a challenge. One of the major limitations of many ML
algorithms is the inability to interpret their internal “rules” used to categorise data [48]. In
the case of the current SVM, although the model has a relatively high accuracy for differ-
entiation between lambing and non-lambing animals, the requirements for classification,
including thresholds and/or the required number of features for alert cannot be easily
determined. To explore the ML models further, three of the animals’ feature traces are
reported in detail (Figure 3). Through this, we can make inferences as to how the ML might
be working and identify potential reasons for model failure.

As an example of an individual animal for which the classification algorithm worked
well, Animal 9 (Figure 3a) shows obvious peaks in the data at the time of lambing, par-
ticularly for CP and MDP. This suggests Animal 9 was distant from the main flock at the
time of parturition (peak CP 8.4 m at Hour 0; peak MDP 194.9 m at Hour + 1). In contrast,
the classification algorithm did not work well for Animal 6 (Figure 3b), and CP and MDP
actually fell at the hour of lambing, suggesting the ewe was not separate from the flock at
this time (peak CP 4.0 m at Hour −3; peak MDP 85.2 m at Hour + 3). Given that isolation
behaviour was evident in the training dataset (Table 3), the ML appears to rely on this
expected behaviour for correct alerts (Animal 9) and hence cannot identify lambing when
this expected behaviour does not occur (Animal 6). This is further supported by the earlier
peaks in CP and MDP for Animal 6 that correspond to early false positives. Of note, given
that the MDP.Mean did not peak for Animal 9 at lambing, it appears that the ML does not
require all three social metrics to increase for an alert to occur.

Examination of the PC feature reveals a similar scenario. That is, for Animal 9
(Figure 3a), an increase in PC behaviour at lambing was evident, and was accompanied by
correct lambing detection. In contrast, Animal 6 (Figure 3b) demonstrated decreased PC
at the time of lambing, which again contributed to the model missing the event detection.
For both Animal 9 and Animal 6, earlier peaks in PC behaviour were evident prior to
parturition. However, for Animal 9, these were not accompanied by peaks in the remaining
features, whereas for Animal 6, the increased PC behaviour was also accompanied by
peaks in social isolation, ultimately resulting in a number of false positive alerts. Thus,
while it appears that the model may not require all three measurements of social isolation
for an alert to occur, the algorithm appears to be sensitive to changes in behaviour when
they occur at the same time as other key fluctuations. Although the introduction of the
stricter detection criteria did reduce these false positives somewhat, it does not mean that
the more “unexpected” patterns of behaviour for individual ewes can be mitigated.

Animal 2 is an example of a ewe that displays early false positives followed by correct
lambing alert. As shown in Figure 3c, false positives were evident on the day prior to
birth (Study Day 7) due to a peak in both CP and MDP. This may reflect variable social
activity of this ewe or it may demonstrate early social isolation and/or a time of birth
site selection or nesting behaviour [29,61]. If this could be isolated, this behaviour could
be used as powerful predictor of impending parturition, providing producers with the
opportunity to act on an alert prior to the event occurring. However, as isolation at
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parturition is inconsistent in domestic sheep [29], the ability to generalise this behaviour
across numerous individuals is unlikely.

4.4. Recommendations for Future Research

In this study, the method of data labelling was fixed for the training dataset between
animals (i.e., Hours ± 1 labelled as “lambing”; 3 h in total). However, as parturient
behaviour is known to vary between animals [76,77], this labelling protocol may have been
too rigid for the natural inconsistencies that exist. Although the impact of labelling protocol
is valid, it should also be noted that the variation in lambing behaviour may also be a
product of normal diurnal changes (e.g., normal grazing patterns). For example, parturition
records in this study were collected at various times throughout the observation period,
depending on when the animals lambed. This means that ewes that gave birth during
the normal peak morning or evening grazing periods were labelled identically (and thus
indistinguishable) to those that lambed during normal periods of resting or rumination.
Given that spatial behaviour is known to change throughout the day [74], it is possible
lambing behaviour in this study is confounded by time itself, thus resulting in higher
variability (and wider density plots) for the lambing day data (Figure 2). In contrast, the
non-lamb data are represented by two 24-h periods, one 3 days prior to lambing and one
3 days after lambing, and thus will naturally contain data that are representative of the
entire diurnal pattern. Further research should be conducted to determine the impact of
the labelling protocol, potentially using detailed individual observations as a method of
identifying the commencement of lambing behaviour. Research should also be conducted
using data from ewes that lamb overnight and on a larger number of animals, to ensure the
patterns in behaviour are consistent across a number of contexts. Finally, further research
should be conducted to determine if the presence of “false positive” alerts prior to lambing
are actually incorrect detections, or simply the identification of earlier onset of lambing
behaviour or the presentation of different patterns of behaviour than previously reported.
The use of this knowledge would also be beneficial to examine in problem-birth events and
warrants further evaluation.

Although this study has presented an adequate method of simulating online parturi-
tion detection, application of this knowledge in commercial systems still requires further
thought. For example, the use of embedded processing and edge computing has been
suggested for commercial application, given the energetic costs of data transmission [24].
However, in the current study, the most valuable features for parturition detection were
those that compared the individual ewe’s behaviour within the wider flock context (i.e.,
MDP, MDP.Mean, CP, PC.Mean) or relative to its own past behaviour (PC.24 h). In the
latter instance, edge computing is valid as previous data could be stored on the device
and used as a comparative metric to current readings. In the former example, however,
comparison with other ewes is necessary and would require transfer of data to a central
repository for parallel processing with all other devices. Given this, future research should
investigate how the data can be condensed prior to transmission and still be useful for
comparison to other ewes.

5. Conclusions

The outcomes support the use of integrated sensor data for ML-based detection of
parturition events and lambing activity in grazing sheep using SOB data as a proxy for
near-real-time detection. This is the first known application of ML classification for the
detection of lambing in pasture-based sheep. Four main features generated from GNSS and
accelerometer data were identified as the most useful for lambing detection: MDP.Mean,
CP, MDP and PC. Using these features, information on ewe social activity and frequency
of changing posture is used to detect if a lambing event has occurred within the previous
hour. Though weather data were not used in the final model, all sensor types were
well represented across the ROC curve analysis, thus highlighting the benefits of sensor
integration. A surprising outcome of the current study was the success of applying the
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GNSS data for parturition detection in isolation, without the added integration of the
accelerometer data. This suggests that application of GNSS over a longer time period and
with novel comparisons to flock-level behaviour are important to adequately represent the
value of this sensor type.

In the current study, the ML models were able to detect lambing events with reason-
able accuracy. This success depended on variation in individual animal behaviour and
highlights the sensitivity of the ML model for detecting a change in key behaviours. Further
research should consider the use of this model (or similar) for detection of adverse lambing
events. This would have significant impacts on the ability to remotely monitor animal
welfare using on-animal sensors and is a logical extension of the information presented in
this paper.
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