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Abstract

Variation in human intelligence is approximately 50% heritable, but understanding of the genes involved is limited. Several
forms of genetic variation remain under-studied in relation to intelligence, one of which is copy number variation (CNV).
Using single-nucleotide polymorphism (SNP) -based microarrays, we genotyped CNVs genome-wide in a birth cohort of 723
New Zealanders, and correlated them with four intelligence-related phenotypes. We found no significant association for any
common CNV after false discovery correction, which is consistent with previous work. In contrast to a previous study,
however, we found no effect on any cognitive measure of rare CNV burden, defined as total number of bases inserted or
deleted in CNVs rarer than 5%. We discuss possible reasons for this failure to replicate, including interaction between CNV
and aging in determining the effects of rare CNVs. While our results suggest that no CNV assayable by SNP chips contributes
more than a very small amount to variation in human intelligence, it remains possible that common CNVs in segmental
duplication arrays, which are not well covered by SNP chips, are important contributors.
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Introduction

A large body of work comparing monozygotic and dyzygotic

twin sets indicates that approximately half of the variation in

human intelligence as measured by standard tests is genetic, with

estimates ranging between 40 and 80% [1,2,3,4,5,6]. Intelligence

is also remarkably tractable and stable, with different groups of

cognitive tests ranking participants very similarly [7]. As is the case

for many other heritable complex traits, however, individual

genetic polymorphisms explaining substantial proportions of

variation in intelligence-related phenotypes have not been

identified despite multiple large-scale studies [8,9,10]. Perhaps

surprisingly given the high heritability of testable intelligence, no

robust or consistent link with any gene has yet been found in

healthy individuals [11].

Prior to the emergence of high-throughput genotyping technol-

ogies, investigation of the genetics of intelligence focused on

particular candidate genes selected on the basis of known aspects

of gene function [12]. While many significant associations were

found by this approach, these results were not replicated by studies

from 2005 onwards that investigated thousands of polymorphisms

across the whole human genome [13,14,15,16,17]. The most

recent genome-wide association studies (GWAS), which have

assayed several hundred thousand common single-nucleotide

polymorphisms (SNPs) in as many as 11,000 people, have also

not consistently identified any SNP significantly associated with

intelligence after false discovery correction, and none which

explains more than a tiny fraction of its inter-individual variation

[8,9,10]. One plausible explanation for the failure of common

SNPs to account for the heritability of intelligence is that a large

number, perhaps many thousands, of genetic variants each

contribute a very small amount [2,8]. Similarly to most other

complex traits, the extent to which this explanation is correct is still

uncertain because other sources of genetic variation including rare

SNPs, microsatellite length polymorphisms, gene-gene and gene-

environment interactions, epigenetic modifications and copy

number variations remain under-explored [18].

Since 2004 genome-wide microarray technology and whole

genome sequencing have revealed that copy number variations

(CNVs), deletions or duplications of sections of DNA as large as

several mega bases, are present in all individuals and are

responsible for a large proportion of normal human genetic

variation, in fact more than SNPs in terms of numbers of variable

nucleotides [19,20,21,22]. Many CNV regions contain genes

related to development and intelligence [23,24,25], and large, rare

CNVs, have often been linked to schizophrenia, autistic spectrum

disorder, and other developmental disorders with associated

intellectual impairment [26,27,28,29,30,31,32]. Determining

pathogenicity of particular CNVs in individuals affected by these

disorders is often difficult or impossible because many variants

increase risk while still being present in healthy controls [33], and

in general the study of rare variants faces the problem that

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e55208



extremely large sample sizes are usually required to demonstrate

statistically significant associations [18]. However, both autistic

spectrum disorder and schizophrenia are significantly associated

with elevated total amounts of rare CNV genome-wide (CNV

burden) [30,31], which can be correlated with phenotype without

large sample sizes.

Body asymmetry, presumably reflecting mild developmental

perturbation, is associated with reduced intelligence in individuals

unaffected by clinically defined developmental disorders [34] and

as many as 80% of mammalian genes are expressed in the brain

[35]. These and other clues suggested the hypothesis that

increased CNV burden may cause a reduction in cognitive ability

in normal individuals, potentially via impaired development of

neuronal structures [36].This was recently tested in 74 otherwise

normal adults meeting criteria for alcohol dependence, and a

significant correlation between IQ score, measured by the

Wechsler abbreviated scale of intelligence [37] and CNV burden,

defined as number of bases deleted in CNVs with frequencies of

5% or less, was found (p = 0.01) [36]. Here we report a failure to

replicate this result in 717 individuals participating in the

Christchurch Health and Development study (CHDS), a birth

cohort consisting of children born in Christchurch New Zealand

within a four-month period during mid-1977.

Common CNVs, i.e. variants with population frequencies

greater than 5%, are also under-studied extensively in relation to

cognitive ability. To our knowledge there is only one published

GWAS, which examined 178 SNPs known to tag common CNVs

in 1250 individuals, and correlated them with 11 intelligence-

related phenotypes [38]. No significant associations were found

after multiple hypothesis correction, but an enrichment of low P

values encouraged further investigation. In addition to our study of

rare CNV burden, we report a GWAS of common CNV regions

versus scores on four different tests of intellectual ability and

academic achievement in the CHDS cohort. We have also not

identified any significant association after multiple hypothesis

correction, providing further evidence that no individual CNV

assayable by SNP-based chips has a substantial effect on

intelligence in normal populations.

Methods

CNV Genotyping and Analysis
CNVs were detected using SNP-based Illumina 660W-Quad

bead chips and called by PennCNV software following standard

QC procedures [39]. Automatic QC of CNV calls was performed

using program filter_cnv.pl from the PennCNV package with

default settings: qcbafdrift (B allele frequency drift) wass set at 0.01

and qcwf (waviness factor) was set at 0.05. At least three

consecutive positive probes were required for a CNV call.

Previously used standards of high individual CNV count,

potentially indicating DNA degradation, are 40 [40] and 80 CNVs

[41]. We used the lower threshold and excluded 137 individuals

with more than 40 CNVs from our GWAS, leaving a sample size

of 586. While the number of excluded individuals was clearly high,

our DNA samples were not generally of poor quality, since they

showed a failure rate of only 14 out of 761 in the SNP-based study

performed on the same chip data, which was the lowest among the

three cohorts used in the study. For the CNV burden tests, we

repeated the analyses using the whole dataset, as well as the filtered

set of 586 individuals, and this had no effect on the results.

Where CNVs overlapped, we used standard modules of the

Plink software package (version 1.07) to define them as identical or

separate, and to assign each CNV a frequency within the dataset.

Following Yeo et al., (2011) [36], we used 5% frequency as the

dividing line between rare and common CNVs. For our GWAS

we merged overlapping common CNVs into regions and scored

these regions as CNV or not CNV in each individual.

Tests of Intellectual Ability
Our test subjects were 723 individuals participating in the

Christchurch Health and Development study (CHDS), a birth

cohort consisting of children born in the Christchurch New

Zealand urban area within a four-month period during mid-1977.

The participants have been assessed at regular intervals using

various biological and behavioural measures [42,43]. Here we

have correlated CNVs with the following four tests of cognitive

ability/academic achievement:

WISC-R total IQ (8–9 years). Child cognitive ability was

assessed at ages 8, 9 years using the revised Wechsler Intelligence

Scale for Children [44]. Assessments were based on four verbal

and four performance subscales administered at each age. The

measure used in the present analysis is the average of the child’s

estimated total IQ scores from each assessment. (Mean

IQ = 104.7, SD = 13.9, range 63–144).

The test of scholastic abilities (13 years). The Test of

Scholastic Abilities (TOSCA) provides a measure of the extent to

which a child exhibits the skills and competencies necessary to deal

with the academic requirements of high school education [45]

(Mean TOSCA score = 36.4, SD = 14.8, range 0–69).

Burt word reading test (18 years). The Burt Word

Reading Test [46] provides a generalised measure of word

recognition ability. The test was administered at age 18, and the

total score calculated based on the number of words correctly

identified. (Mean Burt = 98.2, SD = 12.2, range 26–110).

Overall academic achievement (25 years). On the basis of

participant reports of their educational history and attainment of

qualifications sample members were classified on a 7-point scale

reflecting their highest level of academic attainment by age 25

years [47]. This scale ranged from 1 = no formal qualifications to

7 = attained a university degree. (Mean achievement score = 4.4,

SD, SD = 2.2).

Assessment of cognitive outcomes up to age 13 was limited to

the sub-sample of the cohort resident in the Canterbury region

(approximately 80% of the total available cohort at each age). As a

result the sample sizes assessed on the WISC-R and TOSCA are

somewhat lower than for the measures assessed in young

adulthood.

Alcohol Dependence
At ages 18, 21, 25 and 30 participants were questioned about

patterns of alcohol use/misuse since the previous assessment. As

part of this questioning relevant items from the Composite

International Diagnostic Interview [48] were used to assess DSM-

IV [49] diagnostic criteria for alcohol dependence. Participants

were classified as having alcohol dependence if they met diagnostic

criteria for dependence at any time from age 18–30 years.

Ethical Approval
All phases of the CHDS were subject to ethical approval from

the Canterbury (NZ) Regional Health and Disability Ethics

Committee and all aspects of data collection were with the written

consent of research participants.

Results

In 723 individuals we found a total of 22,249 CNVs with a

mean length of 60,867 base pairs (bp). Locations and genotypes of

all CNVs called can be found in Table S1. We made a division

No Effect of Copy Number Variation on Intelligence
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between rare and common CNVs with a threshold of 5%

frequency. With the rare CNVs, we performed an analysis of total

CNV burden, in terms of number of bases deleted or inserted per

individual, versus scores on four different tests of intellectual

ability. We also performed a GWAS of common CNVs, first

combining overlapping CNVs into CNV regions (CNVRs). There

were 53 CNVRs with greater than 5% frequency in our sample,

and we evaluated the effect of each of these against our cognitive

test scores using Pearson parametric correlation.

Rare CNV Burden Analysis
We first attempted to replicate the results of Yeo et al., (2011)

[36] who found a significant negative correlation between IQ

score and total number of bases deleted in CNVs below 5%

frequency [36]. In our filtered sample, individuals lost an average

of 309,618 bp (SD = 316,857) in 12.15 rare deletions (SD = 6.5).

These numbers are somewhat higher than those in the sample

studied by Yeo and colleagues [36], which likely reflects platform-

specific differences in sensitivity of CNV detection (Ronald Yeo,

personal communication). Table 1 shows the correlations between

selected measures of cognitive ability/academic achievement and

the number/size of rare CNVs in the CHDS cohort. The

measures of ability/achievement were selected to span the age

range from childhood to adulthood and included: 1) the full scale

WISC-R total IQ score assessed at ages 8–9 years; 2) the Test of

Scholastic Abilities (TOSCA) administered at age 13 years; 3) the

Burt Word Reading Test administered at age 18 years; and 4) a

global measure of academic achievement by age 25 years. We

selected these measures from a much broader array of cognitive/

academic outcomes, all of which exhibit the same general

properties in terms of absence of association with CNVs.

For each outcome the table shows the observed Pearson

correlations with three measures of rare CNV status: i) the length

of rare deletions; ii) the length of rare insertions; and iii) the total

number of rare CNVs. The correlations are estimated for each of

three samples: i) the total available gene chip sample assessed on

each cognitive/academic outcome; ii) the sample filtered to

exclude subjects with a high CNV count (over 40 CNVs); and

iii) the subset of the filtered sample who met DSM-IV diagnostic

criteria for alcohol dependence from age 18–30 years. None of

these correlations was statistically significant (P.0.1).

To examine the extent to which the findings may have been

influenced by the inclusion of subjects with moderate or severe

cognitive impairment, we re-analysed the data excluding all

subjects who scored more than two standard deviations below the

mean on the cognitive test measures. The resulting correlations

were negligibly different from those reported in Table 1. Further

analysis of residuals to identify and exclude a small number of

potential outliers also had little impact on the observed pattern of

correlations. In two cases the exclusion of outliers resulted in the

observed correlation increasing to the point of statistical signifi-

cance (p,0.05): these cases involved the correlation of academic

achievement with length of rare deletions (r = .11) and number of

rare CNVs (r = .10) in the sample filtered to exclude those with

high CNV count. These exceptions aside, the correlations

including or excluding outliers were otherwise very similar.

GWAS on Common CNV Regions
Table 2 summarizes our findings from examination of

correlations between cognitive/academic outcomes and the 53

CNVRs with more than 5% frequency in the dataset. The analysis

suggests an almost complete absence of association between the

CNV measures and each outcome. In each case tests of the

distribution of the correlations against a normal distribution using

Q-Q plots and goodness of fit tests showed that the distributions

were consistent with random sampling from a normal distribution

with mean zero.

Overall nine correlations were statistically significant at the

p,0.05 level, no more than would be expected by chance. Five of

these correlations were accounted for by two CNVRs: CNVR50

showed significant positive correlations with three of the four

outcomes, and CNVR17 significant negative associations with two

outcomes. However, after application of a Bonferroni correction

for multiple comparisons only one correlation (CNVR46 and

Table 1. Showing Pearson correlations between measures of cognitive ability and the number and size of rare CNVs.

Measure
WISC-R Total IQ
Score (8–9 years)

Test of Scholastic
Abilities (TOSCA) (13 years)

Burt Word Reading
Test (18 years)

Overall Academic
Achievement (25 years)

Total sample

Length of rare deletions .02 .04 2.00 .02

Length of rare insertions 2.02 2.03 .02 2.03

Number of rare CNVs .03 .05 .01 .02

(N = 567) (N = 527) (N = 697) (N = 717)

Filtered sample excluding those with high (40+) CNV count

Length of rare deletions 2.04 .03 2.00 .03

Length of rare insertions 2.02 2.01 .04 2.01

Number of rare CNVs .02 .04 .04 .06

(N = 462) (N = 431) (N = 566) (N = 581)

Filtered sample meeting criteria for alcohol dependence

Length of rare deletions .09 .10 .04 .01

Length of rare insertions 2.07 2.06 .01 .04

Number of rare CNVs .03 2.02 .04 .06

(N = 64) (N = 56) (N = 83) (N = 87)

*All correlations statistically non-significant (p..10).
doi:10.1371/journal.pone.0055208.t001
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academic achievement, r = .14, p = 0.0005) reached significance

using the Bonferroni corrected p value (p = 0.0009), in association

with overall academic achievement at age 25. Further examination

showed that CNVR46 had negative and non-significant correla-

tions with other cognitive/achievement outcomes, suggesting that

this correlation could easily reflect chance variation in the data.

None of the nominally significant CNVRs overlapped with any

SNP listed as being significant at any level by three previous large

GWAS on cognitive ability [8,9,10]. Locations of the nominally

significant CNVRs and their gene contents can be found in Table

S2. Pseudogenes and genes of unknown function are the most

common gene types involved, and the remainder, including low

density lipoprotein and olfactory receptors, are of no obvious

relevance to cognitive ability.

Reanalysis of the data to exclude potential outliers or those with

moderate/severe cognitive impairment did not substantively alter

these findings. In each case the observed pattern of correlations

was consistent with those reported in Table 2. While a small

number of correlations were nominally significant at p,.05, no

correlation other than that between CNVR46 and academic

achievement exceeded the Bonferroni corrected significance value

(p,.0009).

Discussion

Our findings do not provide strong evidence for an association

between any common CNV region and cognitive/academic

performance scores, and we were unable to detect any effect of

rare CNV burden on these outcomes. Given previous evidence

that CNVs can affect intelligence-related phenotypes, the most

obvious explanation for our negative results is that we didn’t

sample a sufficient number of functional CNVs. In view of the fact

that we couldn’t detect any enrichment of non-significant

correlations, we cannot argue that testing a larger number of

individuals by our methods would reveal significant associations.

However, it is likely that our chip probes missed some important

variants, particularly segmental duplication arrays, as these are not

easily assayable by SNP chips or other standard genotyping

methods [50,51,52]. One example of this is the CNV encoding

repeats of a protein domain of unknown function called DUF1220

on Chromosome 1q21.1 [53]. The size of this duplication array

correlates well with brain size between species [23,54], as well as

within the human population [55,56], but because it has increased

dramatically in copy number during the evolution of the primate

lineage it has too many copies to assay accurately by normal high-

throughput methods. Consistent with the previous published

GWAS of CNV and cognitive measures, which also didn’t identify

any significant associations after false discovery correction [38],

our results encourage focus on these less accessible CNVs.

In general, common variants are expected to have smaller

phenotypic effects than rare ones [57] and CNVs that have been

associated with intellectual and developmental impairment are

predominantly large, rare de novo mutations rather than commonly

segregating alleles [28,29,58]. It’s therefore less clear why we were

unable to replicate the significant association found by Yeo and

colleagues between rare CNV burden and intelligence [36]. Our

much larger sample size suggests that our results should be

considered more reliable, but methodological differences may be

relevant. A recent large twin study reported that heritability of

general cognitive ability increases significantly and linearly from

41% in childhood (9 years) to 55% in adolescence (12 years) and to

66% in young adulthood (17 years) [3], and strong evidence is

emerging that genetics makes a substantial contribution to changes

in intelligence from childhood to old age [59]. Yeo et al., (2011)

[36] tested IQ score at ages ranging between 22 and 55, and our

measures were taken at 8–9, 13, 18 and 25 years, with IQ only

sampled at ages 8–9. It may therefore be that the rare CNVs that

caused the association they found were related to an interaction

between CNV, age and cognitive ability, and future studies should

account for this possibility by including age as a co-factor or

stratifying samples by age group. Although their sample was

restricted to alcohol-dependent individuals, a substantial contri-

bution by alcoholism is unlikely since we found no significant

correlations for the subset of our cohort meeting diagnostic criteria

for alcohol dependence (DSM-IV) [49], albeit with small sample

sizes of 64–87 individuals.

Theoretically, it is also possible that population-specific variants

were involved. However, while our study participants were born in

New Zealand and Yeo et al. (2011) [36] studied North Americans,

the subset of their sample showing the largest association with rare

CNV burden was the 45% classified as Anglo/White, and these

individuals should be more similar to our cohort, the majority of

whom are of British descent, than to other ethnicities in their

sample. Effects of sex also do not explain the discrepancy, since

although Yeo and colleagues [36] sampled 53 males and only 21

females, we found no difference between the sexes in the effect of

CNV burden (data not shown).

In conclusion, our results are in line with previous work showing

that individual common variants assayable by SNP chips do not

have strong effects on cognitive ability, and suggest that total

Table 2. Summarizing the distribution of correlations between measures of cognitive ability/academic achievement and 53
CNVRs.

Cognitive/academic outcome Mean (SD) Correlation Range of Correlations CNVRs significantly associated with outcome

Without Bonferroni correction
(p,.05)

With Bonferroni
correction (p,.0009)

WISC-R Total IQ score (8–9 years,
N = 462)

.005 (.044) 2.088, .113 CNVR50 (r = .11)

TOSCA (13 years, N = 431) 2.000 (.051) 2.110, .114 CNVR5 (r = 2.11); CNVR17 (r = 2.10);
CNVR43 (r = 2.11); CNVR49 (r = .10);
CNVR50 (r = .11)

Burt Word Reading Test (18 years,
N = 566)

2.002 (.041) 2.081, .063

Overall academic achievement
(25 years, N = 581)

.007 (.050) 2.120, .144 CNVR17 (r = 2.12); CNVR46 (r = .14);
CNVR50 (r = .09)

CNVR46 (r = .14)

doi:10.1371/journal.pone.0055208.t002
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burden of rare CNVs is also not a major contributor. There are

currently more promising approaches to elucidating the genetic

component of intelligence. These include larger studies to identify

individual functional rare variants, new statistical methods

allowing evaluation of the effects of agglomerations of common

variants [8], and testing of other under-studied sources of genetic

variation such as promoter microsatellites and segmental duplica-

tion arrays, as well as gene-gene and gene-environment interac-

tions.

Supporting Information

Table S1 All CNV data. Genomic coordinates are HG18.
(XLS)

Table S2 Locations and gene contents of CNVRs
associated with cognitive measures at a nominal level

(P,0.05). No P values were significant after false discovery

correction. Coordinates are HG18.

(XLS)
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