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Abstract Human autoimmune disorders present in various
forms and are associated with a life-long burden of high mor-
bidity and mortality. Many different circumstances lead to the
loss of immune tolerance and often the origin is suspected to be
multifactorial. Recently, patients with autosomal recessive mu-
tations in PRKCD encoding protein kinase c delta (PKCδ)
have been identified, representing a monogenic prototype for
one of the most prominent forms of humoral systemic autoim-
mune diseases, systemic lupus erythematosus (SLE). PKCδ is
a signaling kinase with multiple downstream target proteins
and with functions in various signaling pathways.
Interestingly, mouse models have indicated a special role of
the ubiquitously expressed protein in the control of B-cell tol-
erance revealed by the severe autoimmunity in Prkcd−/−

knockout mice as the major phenotype. As such, the study of
PKCδ deficiency in humans has tremendous potential in en-
hancing our knowledge on the mechanisms of B-cell tolerance.
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Introduction

Protein kinase C δ (PKCδ) is an essential regulator of periph-
eral B-cell development and a critical regulator of immune
homeostasis [1, 2]. The protein was discovered in 1986 [3,
4], and several studies have addressed its structure and bio-
logical functions [5–13]. Complex activation patterns [5, 7–9,
13, 14] and opposing PKCδ functions depending on the acti-
vating stimuli and the investigated model system have been
described [8, 11, 12].

PKCδ is ubiquitously expressed and activated in response
to a broad variety of stimuli. In response to specific stimuli,
several tyrosine residues in PKCδ can be phosphorylated by
different tyrosine kinases (Fig. 1), leading to individual phos-
phorylation patterns and possibly differential activation of
downstream targets. Among its main roles, PKCδ is respon-
sible for the regulation of survival, proliferation, and apoptosis
in a variety of cells including lymphocytes (reviewed in [15])
(Fig. 2).

In 2002, Prkcd knockout mice [1, 2] revealed an essential
role for this kinase in B-cell homeostasis and tolerance. Due to
defective negative selection in germinal centers and autono-
mous B-cell hyperproliferation in the periphery [2],
autoreactive B cells accumulate in these mice. Consequently,
Prkcd knockout mice develop systemic autoimmunity evi-
denced by autoantibodies, immune complex-mediated glomer-
ulonephritis, lymphadenopathy, splenomegaly, and showB-cell
infiltration in several organs and tissues [2].

Autoimmune phenomena arise when mechanisms
preventing immune responses directed against the self-
antigens are impaired [16]. Primary immunodeficiencies
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(PIDs) are caused by inborn defects in different arms of the
immune system and have been described to result in autoim-
mune manifestations [17]. The clinical phenotype of autoim-
mune disorders varies greatly depending on the etiology and
target organs. Systemic lupus erythematosus (SLE) is a het-
erogeneous, complex, and multifactorial autoimmune disease
caused by defects in innate and adaptive immunity [18] and is

characterized by a multifactorial loss of immune tolerance
[16]. Given the phenotype ofPrkcd knockout mice, a potential
role of PKCδ in the pathogenesis of SLE has been proposed.

The effect of germline mutations affecting PKCδ in
humans and its link to systemic autoimmunity had remained
elusive until 2013, when we and others identified human
PKCδ deficiency as a novel PID with severe SLE-like
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Fig. 2 Overview on PKCδ signaling. This figure provides a basic
overview of the receptors and molecules involved in PKCδ activation
and of the described PKCδ activating and inhibitory roles following a
variety of stimuli. Functions of PKCδ in mitochondria are not depicted.
More details are outlined in the text. Structures depicted in pink represent
upstream and those depicted in yellow represent downstream components
involved in PKCδ activation. mTOR: mechanistic target of rapamycin;
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kinase; PYK2: protein tyrosine kinase 2; ERK1/2: extracellular signal-
regulated kinases 1 and 2; NF-IL6: nuclear factor of interleukin 6;
Casp3: caspase 3; STAT1: signal transducer and activator of transcription
1; IFNγ: interferon gamma; PKD1: protein kinase D isoform 1; HDACs:
histone deacetylases
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Fig. 1 PKCδ structure and domains. This figure shows structural domains and phosphorylation sites on PKCδ as well as the localization of important
sequences and the hitherto described PRKCD mutations in humans (modified from atlasgeneticsoncology.org/Genes/GC_PRKCD.html)



autoimmunity [19–21]. The following review provides a de-
tailed summary of PKCδ protein structure and functions and
human PKCδ deficiency.

PKCδ Structure, Activation, Regulation, and Role
in Apoptosis

The family of protein kinase C (PKC) contains serine/
threonine kinases that execute key roles in various cellular
processes, including cell proliferation, apoptosis, and differ-
entiation [22]. PKCδ is a 78 kDa and 676 residues long pro-
tein included in the group called novel PKCs [3, 4, 23]. It is
encoded by the PRKCD gene localized in chromosome 3 in
humans and in chromosome 14 in mice [24]. The kinase is
structurally divided into a regulatory and a catalytic domain
that contains four constant (C) and five variable (V) regions.
The variable region 3 (V3), also called hinge region, separates
the catalytic and regulatory domains of the protein (reviewed
in [15]) (Fig. 1).

The catalytic domain of PKCδ is required for enzyme ac-
tivity and includes the C3 and C4 domains, encompassing
ATP- and substrate-binding sequences, respectively (reviewed
in [15]). The regulatory domain contains two constant regions
(C1- and C2-like) and a pseudosubstrate. The C1 domain of
PKCδ enables its binding to membranes as it contains hydro-
phobic residues that bind diacylglycerol (DAG) and phorbol
12-myristate 13-acetate (PMA) (reviewed in [6]). As a novel
PKC, PKCδ is a calcium-independent, phospholipid-
dependent kinase containing a C2-like domain, which lacks
essential residues that allow conventional PKCs to bind Ca2+

[10, 15]. Situated between the C1- and C2-like domains, the
pseudosubstrate keeps PKCδ in an inactive folded conforma-
tion, blocking access to the substrate-binding pocket
(reviewed in [15, 25]).

A broad variety of stimuli lead to PKCδ activation through
phosphorylation of serine/threonine and tyrosine residues, as
well as proteolytic cleavage into an active fragment [14, 23].
Full kinase activity requires autophosphorylation of Ser-643
(turn motif), phosphorylation of Ser-662 (hydrophobic region)
mediated by PKCζ or mTOR (mechanistic target of
rapamycin), and Thr-505 phosphorylation by PDK1 [8, 9,
13, 14] (Figs. 1 and 2).

Protein activity is also regulated by the phosphorylation of
specific tyrosine residues according to the stimuli employed
(reviewed in [26]) (Fig. 1). In the hinge region, phosphoryla-
tion of Tyr311 and Tyr332 in response to apoptotic agents
enables caspase 3 to cleave PKCδ. The proteolytic cleavage
of PKCδ by caspase 3 generates a 40 kDa catalytic active
fragment capable of translocating to mitochondria and/or nu-
cleus [6, 14, 27] and promoting apoptosis [28, 29]. Apart from
conformational changes after binding of DAG and autophos-
phorylation, activation of PKCδ depends on Ser/Thr

phosphorylation by PDK1 [30]. Also, Src kinase family mem-
bers, PYK2 as well as growth factor receptors phosphorylate
tyrosine residues of PKCδ and modulate its enzymatic activity
[23, 31] (Fig. 2).

In contrast to most other PKC isoforms, PKCδ conveys
proapoptotic signals upon a variety of stimuli not only through
nuclear but also mitochondrial and cytosolic pathways [32].
When activated, PKCδ translocates to the nucleus [33] and,
possibly through JNK signals, promotes proximal regulation
of apoptosis through cytochrome C release, PARP cleavage,
histone phosphorylation [34], and caspase 3 activation.
Nuclear retention can be prolonged and intensified by gener-
ation of the catalytic fragment of PKCδ by caspase 3 [33].
Engagement of apoptosis via the mitochondrial pathway has
been described in response to the diacylglycerol analog PMA
[22]. In brief, PKCδ phosphorylates phospholipid scramblase
3 (PLS3) at the mitochondrial site, subsequently facilitating
mitochondrial targeting of tBid and apoptosis induction [35].

Moreover, in addition to the membrane-bound form of
PKCδ, whose phosphorylation is regulated by DAG accumu-
lation and membrane translocation upon PMA, a tyrosine-
phosphorylated form of PKCδ is also found in the soluble
fraction of cells in response to oxidant stress and display dis-
tinct substrate specificity. This PKCδ form is phosphorylated
by Src family kinases and possesses lipid-independent catalytic
functions, being able to phosphorylate substrates not only on
lipid membranes but also in several compartments of the cell
[36] (reviewed in [14]). Description of this lipid-independent
kinase provides an explanation to PKC-dependent phosphory-
lation of substrates outside membrane compartments such as
myofibrillar proteins in sarcomeres, structures not associated
with lipid membranes [37] (reviewed in [14]).

Although numerous studies have tried to elucidate PKCδ
activation and biological functions, its complex activation pat-
terns and roles in various pathways remains incompletely
understood.

PKCδ Signaling and Functions in Lymphocytes

In B cells, recent evidence suggests a PKCδ-, RASGRP-, and
calcium-dependent ERK signaling as a critical proapoptotic
pathway promoting negative selection [38] (Fig. 2). This path-
way is biochemically distinct from DAG-induced ERK acti-
vation. Moreover, PKCδ phosphorylation and activity plays a
central role in the BCR-signalosome-independent, IL-4-
dependent activation of B cells [39], adding another level of
complexity to the regulation of survival, proliferation, and
apoptosis by PKCδ.

After binding of B-cell activating factor (BAFF) to its
receptor and after B-cell receptor (BCR) stimulation, PKCδ
is phosphorylated at Thr505 [38, 40, 41] involving activa-
tion of the PI3K [41]. In the absence of PKCδ, both tonic
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(ligand-independent) and antigen receptor-induced BCR
signaling is increased [38]. Additionally, a PI3K-/PKCβ-
independent alternative pathway downstream of the BCR is
induced after prestimulation of B cells with IL-4 [42]. In
contrast to the classical signalosome-dependent pathway, it
requires the direct interaction of LYN, inducing phosphor-
ylation of PKCδ at Tyr311 and resulting in increased phos-
phorylation of protein kinase D (PKD) [39]. Downstream
of PKD, histone deacetylases (HDAC) 5 and 7 are phos-
phorylated and excluded from the nucleus, thereby facili-
tating the transcription of genes, which are repressed by
these HDACs [39]. The specific targets of these class IIa
HDACs in B lymphocytes have not been investigated in
detail but include MEF2-dependent promoters [43] playing
a substantial role in B-cell proliferation and survival [44].
In vitro studies demonstrated the interference of HDAC
inhibition with plasmablast differentiation [45]. HDACs
may also be involved downstream of PKCδ in the expres-
sion of CIITAwhich regulates MHC class II expression [46]
(Fig. 2).

In Tcells, PKCδ has a negative role in TCR/CD3-mediated
IL-2 production and in T-cell proliferation with consequent
increased signaling responses in PKCδ−/− T cells [47]. Its im-
portance to ERK pathway signaling in T cells has also been
demonstrated as lack of T-cell PKCδ activity prompts reduced
ERK signaling [48].

Until now, critical roles for PKCδ in regulation of survival,
proliferation, and apoptosis, mainly of B cells, have been rec-
ognized, although more comprehensive studies are still nec-
essary to fully elucidate its complex functions in lymphocytes.

PKCδ Deficiency in Mice

Differentiation and development of lymphocytes in the bone
marrow of Prkcd-deficient mice was reported normal [49].
Also, peripheral T- and NK-cell development seemed unaf-
fected [49]. However, in peripheral blood and secondary lym-
phoid organs, these mice showed an increased frequency of
mature B cells, which could be attributed to autocrine IL-6
driven proliferation [1, 2], since PKCδ negatively interferes
with the production of this cytokine through phosphorylation
of the nuclear factor (NF)-IL6 (2) (Fig. 2).

In consequence, mice with mutations in Prkcd develop
severe humoral autoimmunity, marked by autoantibodies, im-
mune complex-mediated glomerulonephritis, lymphadenopa-
thy, splenomegaly, and B cell infiltrations in kidney, liver,
lung, and salivary glands, respectively [2]. In a hen-egg-
lysozyme transgenic mouse model, it has been shown that
the induction of anergy and thus peripheral tolerance toward
soluble self-antigens was impaired, while the deletion of
antigen-specific B cells by membrane-bound self-antigens
was not affected in the absence of PKCδ [1]. More recently,

Limnander et al. were able to elucidate impaired BCR-
induced apoptosis at the T1 B cell stage as the major mecha-
nism contributing to defective peripheral tolerance and overt
autoimmunity in the absence of PKCδ [38].

Transgenic mice expressing doxycycline-induced domi-
nant negative PKCδ in T cells show reduced ERK pathway
signaling, decreased expression of Dnmt1, and increased ex-
pression of methylation-sensitive genes. Such mice presented
with lupus-like autoimmunity including anti-double-stranded
DNA (dsDNA) antibodies and immune complex glomerulo-
nephritis [48]. Thus, PKCδ deficiency is associated with a loss
of tolerance in peripheral B-cell development and possibly
also increased T-cell activation, causing systemic autoimmu-
nity in these mice [1, 2, 48].

In brief, studies in PKCδ-deficient mice revealed non-
redundant roles for this kinase in B-cell proliferation and pe-
ripheral tolerance as well as in T-cell activation.

PKCδ in Human Systemic Lupus Erythematosus

Systemic lupus erythematosus is mainly an immune complex-
mediated disease characterized by the presence of multiple
autoantibodies including antinuclear antibodies (ANAs). The
loss of immune tolerance in SLE is multifactorial and includes
a breakdown of T- and B-cell tolerance [16]. Given the phe-
notype of Prkcd knockout mice, a potential role of PKCδ in
the pathogenesis of SLE could be proposed. Gorelik et al. [48,
50, 51] postulated that inhibition of PKCδ and disturbed ERK
signaling in T cells are involved in the development of auto-
immunity in active SLE. Reduction of PKCδ phosphorylation
at Thr505 due to oxidative stress and nitration of PKCδ
prompts decreased ERK signaling in T cells of SLE patients,
which leads to reduced DNMT1 activity and hypomethylation
of regulatory sequences of sensitive genes such as LFA1
(encoding CD11a) and TNFSF7 (encoding CD70), therefore
causing T-cell activation and contributing to T-cell autoimmu-
nity. This model was corroborated by the occurrence of drug-
induced lupus by demethylating drugs like hydralazine and
others [52].

Interestingly, comparative network analysis of the
phosphoproteomes of peripheral blood mononuclear cells of
SLE patients versus healthy controls described PKCδ (beside
Src kinases, the NF-kB signaling component RelA and
HDAC1) as one of the genes with the most connections to
other proteins in the altered network of SLE patients and
therefore with significant role in the network stability [53].

In addition, a link between IFN signaling and PKCδ was
established by the association of PKCδ activity with STAT1
activation through Ser727 phosphorylation, which is essential
for the expression of IFN response genes [54, 55] (Fig. 2).
Huang et al. demonstrated that IFN-alpha-induced expression
of IFIT4 requires activation of PKCδ and JNK, as well as
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STAT1 phosphorylation at Ser727 [56]. Thus, a decreased
activity of PKCδ in SLE monocytes may contribute to the
proinflammatory effect ascribed to IL-10 in SLE [57].
However, in conditions with elevated levels of IFN type I
cytokines such as during infections or in autoimmune dis-
eases, PKCδ shows opposite activity, suppressing IL-10 acti-
vation of STAT1 through tyrosine phosphorylation [57].

Given the multiple activities of PKCδ, among others in T-
cell activation and IFN signaling, it is not surprising that an
altered PKCδ function contributes, probably through several
mechanisms, to the complex autoimmunity observed in SLE.

Human PKCδ Deficiency: Genetics and Clinical
Phenotype

In our previous work, we identified a patient (P1) with an
autosomal recessive disorder caused by loss-of-function
splice-site mutation in PRKCD (c.1352 + 1G > A) (Fig. 1),
within the catalytic domain of the protein, whose clinical pic-
ture included antibody deficiency with respiratory tract infec-
tions from the first year of life and immune dysregulation
reminiscent of a CVID-like disease [21]. Partial clinical im-
provement could be achieved with the initiation of immuno-
globulin G substitution at the age of 4 years. Features of im-
mune dysregulation, including autoimmunity and lymphopro-
liferation, initiated equally early in life, with membranous glo-
merulonephritis, generalized enlargement of lymphoid organs,
relapsing polychondritis and antiphospholipid syndrome.
Autoreactive antibodies including ANA could be detected dur-
ing laboratory investigation, while isohemagglutinins were ab-
sent. Important findings in the B-lymphocyte compartment
were progressive reduction of CD19+ cells, impaired class
switch, reduced numbers of memory B-cells, and increased
CD21low B-cells (Table 1).

Since our initial description of PKCδ deficiency in 2013,
five other patients (P2 to P6) from three unrelated kindred also
bearing biallelic mutations in PRKCD have been published
[19, 20, 58] (Table 1). The mutations described were located
in the nuclear localization sequence of PRKCD (c.1840C>T;
p.R614W; P2) [20], inside the activation loop (c.1258G>A;
p.G510S; P3 to P5) [19] or within the regulatory domain
(c.742G>A; p.G248S; P6) [58] (Fig. 1; Table 1). Similar to
our patient, all those mutations led to absence or reduction of
PKCδ expression.

The clinical manifestations of P2were similar to our patient
and he was diagnosed with an autoimmune lymphoprolifera-
tive syndrome (ALPS)-like disease [20]. In the same year, three
PKCδ-deficient siblings (P3 to P5) diagnosed with SLE
were reported presenting with lymphadenopathy,
hepatosplenomegaly, nephritis, and arthritis [19]. In 2015, we
and others described another patient (P6) with erythematous skin
rash accompanied by fever and thrombocytopenia. Physical

examination at that time point revealed partial alopecia,
hyperpigmented skin rash predominantly in sun-exposed
areas, cervical lymphadenopathy, hepatosplenomegaly,
and mild hypotonia [58].

All six hitherto described patients showed symptoms before
the age of 10 years and presented with hepatosplenomegaly,
lymphoproliferation, autoreactive antibodies, and SLE or SLE-
like autoimmunity. Lymphoproliferative features were seen in
five patients from the four kindred (P1 to P4, P6), kidney
involvement was present in four patients from two families
(P1 and P3 to P5), and recurrent infections were observed in
P1 and P2 (Table 1).

Laboratory investigations in all patients revealed the pres-
ence of autoantibodies and mostly unaltered T-cell numbers
and function (Table 1). Only P2 presented with increased
double-negative T cells. P2 also showed severely impaired
NK-cell function, while NK cells from P6 demonstrated mod-
erate decrease in cytolytic activity. Circulating B-lymphocyte
counts were variable among the affected individuals, three out
of six patients showing reduced or progressively reduced
CD19+ cells (P1, P3, and P4). IgG memory B cells were
reduced in the peripheral blood of all the patients, while pre-
dominant B-cell infiltration was apparent in peripheral lym-
phoid organs of two patients with lymphadenopathy and
splenomegaly (P1 and P2). Four out of six PKCδ-deficient
patients presented with nephritis (P1, P3-P5), and two patients
had reduced leve ls of C3 and C4 (P3 and P4) .
Immunoglobulin levels were variable but three patients pre-
sented with elevated IgM levels (P1 and P2, P6) (Table 1).

Additional experiments demonstrated that cells bearing the
PRKCD c.1352 + 1G>A or c.742C>A mutation showed re-
duced expression or activation of the PKC substrate
MARCKS [59]. B cells from P1 (c.1352 + 1G>A) displayed
increased NF-IL6 and IL-6 mRNA levels. B lymphocytes
from P2 (c.1840C>T) showed slightly increased IL-6 and in-
creased IL-10 levels. Decreased apoptosis and increased re-
sponse to stimulation were demonstrated on B cells carrying
PRKCD c.1840C>T or c.1258G>A mutation. Both of these
Epstein-Barr virus immortalized lymphoblastic B-cell lines
were characterized by B-cell hyperproliferative responses
and resistance to PMA-induced or calcium-dependent
apoptosis.

The phenotype resulting from autosomal recessive PKCδ-
deficiency in humans expands findings obtained from mice
related to the functions of the protein in B-cell development
and activity [1]. A non-essential role for the protein in embry-
onic development or early survival had been suggested from
mouse studies [1, 2]; however, presence of PKCδ is crucial for
controlling B-cell expansion, considering that both human
patients and mice presented with lymphadenopathy and/or
hepatosplenomegaly [2, 19–21]. Moreover, increased apopto-
sis resistance of B cells derived from patients with mutations
in PRKCD was demonstrated, when compared to wild-type
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cells [19, 20]. In human PKCδ deficiency as well as in Prkcd−/
− mice, B cells also produced increased amounts of the proin-
flammatory cytokine IL-6 compared to wild type, probably
due to inhibition of NF-IL6 DNA binding activity [2, 20,
21]. Additionally, the production of autoreactive antibodies
by plasma cells was significantly increased in mouse models
[1, 2] and in all described patients [19–21].

The involvement of IL-6 in disturbed B-cell tolerance ob-
served in patients with PRKCDmutation is supported by their
phenotypical similarities with mice transgenically expressing
human IL-6, including glomerulonephritis and enlargement of
lymphoid organs due to massive B-lymphocyte proliferation
[60]. Specifically, the uncontrolled B-cell proliferation ob-
served in individuals with loss-of-function PRKCDmutations
may however also relate to the already-mentioned decreased
inhibition of IL-10 proinflammatory activity in the absence of
functional PKCδ [57].

Although the impact of PKCδ deficiency in T-cell activa-
tion and proliferation could not be demonstrated for the pa-
tients described, and the influence of these mutations in NK-
cell activity is yet to be understood, findings from mouse
models expanded by human PKCδ-deficient patients validate
the crucial role of PKCδ in controlling B-cell activation, dif-
ferentiation, and apoptosis.

PKCδ Deficiency as a Molecular Cause of Systemic
Autoimmunity

The clinical phenotype of SLE is often variable, which sug-
gests a heterogeneous pathophysiology of this disease [18]. To
date, the etiology of SLE is still unclear; however, its patho-
genesis has been associated with defective clearance of apo-
ptotic cells, disturbed B- and T-cell activation, and cytokine-
mediated inflammation. Clinically, almost half of the SLE
patients present with malar rash and one third with nephritis
(reviewed in [61]). The presence of anti-dsDNA antibodies is
associated with higher risk of nephropathy and hemolytic ane-
mia while presence of anti-cardiolipin antibodies and lupus
anticoagulant are associated with thromboembolic events
and miscarriage. Childhood-onset SLE patients, who are more
likely to suffer from monogenic diseases, mainly present with
severe nephropathy but also neurologic features, thrombocy-
topenia, and hemolytic anemia [62]. Clinically, typical fea-
tures of nephritis, butterfly rash as well as anti-dsDNA anti-
bodies demonstrated in the PKCδ-deficient patients are remi-
niscent of childhood-onset SLE [63].

Given the fact that PKCδ is crucial in the regulation of B-
cell survival and apoptosis during B-cell development, the
importance of intact B-cell signaling for peripheral tolerance
is evident. Consistent with high concentrations of autoreactive
antibodies, histology analyses of kidneys in Prkcd−/− mice
indicate glomerulonephritis with mesangial cell proliferation

and deposition of IgG and complement component C3, simi-
larly to the findings of nephritis and reduced levels of C3 and
C4 in some of the PKCδ-deficient patients [19, 21].

Therefore, it is not surprising that also patients with com-
mon variable immunodeficiency (CVID) show increased sus-
ceptibility to immune dysregulation including autoimmunity,
lymphoproliferation, and malignancies [64–68]. In CVID pa-
tients, autoimmunity is identified as the second most frequent
manifestation after pneumonia [69], often closely associated
with splenomegaly [69, 70]. Interestingly, the increased
CD21low B-cells and decreased memory B-cells displayed
by PKCδ-deficient patients resemble findings of the subgroup
CVID Ia from the Freiburg classification [71], which presents
with impaired BCR-mediated calcium response [72] and
shows higher frequency of splenomegaly and autoimmune
cytopenias [71, 72].

The importance of this pathway in B-cell homeostasis
could be further substantiated by the discovery of CVID-like
B cell-deficient patients with or without autoimmunity carry-
ing PLCG2 mutations [67, 68]. PLCγ2 is an essential phos-
pholipase downstream of the BCR upstream of PKCδ [63],
catalyzing the conversion of 1-phosphatidyl-1D-myo-inositol
4,5-bisphosphate to 1D-myo-inositol 1,4,5-trisphosphate
(IP3) and DAG using calcium as a cofactor [73].

Since PKCδ is required not only to regulate T-cell activa-
tion but also to intact B-cell signaling in the periphery and
consequently to peripheral tolerance; disturbed activity of this
kinase can most invariably prompt systemic autoimmune fea-
tures as seen in other B-cell PIDs and in SLE.

Concepts of SLE Therapy in Light of PKCδ
Deficiency

Current treatment strategies in SLE are purely based on em-
pirical observations. With the discovery of (mono)genetic de-
fects underlying SLE pathology, different therapeutic options
may come into place. Currently, standard treatments in SLE
comprise hydroxychloroquine or other antimalarial agents;
corticosteroids, which were also included in the treatment of
P1 and P2 [20, 21]; and cytotoxic immunosuppressive drugs
[74]. Interestingly, patient P6 showed amelioration of autoim-
munity upon treatment using hydroxychloroquine [58]. The
proposed molecular mechanism to justify the immunosup-
pression observed is an increase of CTLA4 expression, as
demonstrated in LRBA-deficient patients treated with chloro-
quine [75].

Other effective drugs frequently used in such patients are
mycophenolate mofetil (MMF) and rapamycin. P1 and P5
receivedMMF, and P2was treatedwith rapamycin, all leading
to disease control/clinical remission [19–21] (Table 1).
Rapamycin is an inhibitor of mTOR, a central serine-
threonine kinase for cellular metabolism, inflammation, and
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antigenic responses in several tissues [76], involved in the
phosphorylation of the hydrophobic region of PKCδ [13].

Rituximab is a monoclonal antibody targeting the surface
molecule CD20, expressed by mature B cells. It is effective in
treatment of B-cell malignancies and rheumatoid arthritis, but
the effects on SLE manifestations are still controversial, al-
though approved in Europe and America for use as treatment
of refractory patients [74]. Two courses of this drug were
employed in P1; however, upon reoccurrence of peripheral
blood B cells, autoantibody production was again detectable
[21]. However, as rituximab targets all CD20-positive cells
and does not influence selection of B cells, targeting of
BAFF using belimumab would have been an interesting strat-
egy, as BAFF signals are influenced by PKCδ and the survival
factor adds to the selection process by altering apoptosis of
transitional B cells.

Similarly to patients with active SLE [77], some patients
with PRKCDmutation present with high levels of serum IL-6
and/or IL-10 [20, 21]. Tocilizumab is a humanized monoclo-
nal antibody that prevents IL-6 binding and therefore blocks
its proinflammatory functions. In our own experience on clin-
ical treatment of patient P1, tocilizumab was efficient in re-
ducing clinical and laboratory findings associated with auto-
immunity; however, infectious complications prevented long-
term use of therapy (unpublished results). Future studies will
need to systematically assess blockade of IL-6 signaling as a
therapeutic option in PKCδ deficiency.

Recent improvements in hematopoietic stem cell transplan-
tation (HSCT) and gene therapy techniques have led to their
increased use for potentially curative treatment of patients with
severe PIDs [78–80]. Although clinical studies on HSCT in
non-SCID are ongoing, it is still unclear which patients should
undergo HSCT according to their phenotype/genotype, which
conditioning regimen to choose, and how to manage those
patients presenting with autoimmune diseases [79].

Recent advances in molecular diagnosis and treatment op-
tions therefore enable improved targeted therapies to be
employed for the treatment of systemic autoimmunity in light
of the identified molecular pathomechanism affected.

Summary

The essential functions of PKCδ in B-cell homeostasis, in T-
cell activation and proliferation, and more specifically in the
autoimmune features observed in SLE were demonstrated in
Prkcd-deficient mice (or mouse T-cells) leading to systemic
autoimmunity. Recently identified human autosomal reces-
sive PKCδ deficiency prompts severe symptoms including
hepatosplenomegaly, lymphoproliferation, and SLE or SLE-
like autoimmunity early in life. Such findings expand those of
Prkcd-deficient mice in regard to the roles of this kinase in B-
cell survival and apoptosis and implicate PKCδ and intact B-

cell signaling in peripheral tolerance in humans. Taken togeth-
er, the identification of human PKCδ deficiency provided proof-
of-concept for monogenetic forms of early-onset SLE and
allowed the identification of a key molecular pathomechanism
relevant to generation of autoimmunity in humans.
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