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Abstract: The application of 1H and 13C nuclear magnetic resonance (NMR) in conjunction with
chemometric methods was applied for the discrimination and authentication of Maltese extra virgin
olive oils (EVOOs). A total of 65 extra virgin olive oil samples, consisting of 30 Maltese and 35 foreign
samples, were collected and analysed over four harvest seasons between 2013 and 2016. A preliminary
examination of 1H NMR spectra using unsupervised principle component analysis (PCA) models
revealed no significant clustering reflecting the geographical origin. In comparison, PCA carried out
on 13C NMR spectra revealed clustering approximating the geographical origin. The application of
supervised methods, namely partial least squares discriminate analysis (PLS-DA) and artificial neural
network (ANN), on 1H and 13C NMR spectra proved to be effective in discriminating Maltese and
non-Maltese EVOO samples. The application of variable selection methods significantly increased
the effectiveness of the different classification models. The application of 13C NMR was found to be
more effective in the discrimination of Maltese EVOOs when compared to 1H NMR. Furthermore,
results showed that different 1H NMR pulse methods can greatly affect the discrimination of EVOOs.
In the case of 1H NMR, the Nuclear Overhauser Effect (NOESY) pulse sequence was more informative
when compared to the zg30 pulse sequence, since the latter required extensive spectral manipulation
for the models to reach a satisfactory level of discrimination.

Keywords: extra virgin olive oil; authentication; chemometrics; proton NMR; carbon NMR; machine
learning; artificial neural networks; PLS-DA

1. Introduction

Several international organisations, including the European Union through its directives (EC No.
2568/1991 and its amendments) [1] and the International Olive Oil Council (COI/T.15/NC No. 3/

Rev 6) [2], have been at the vanguard in the development of methods and establishing limits for
physicochemical parameters of extra virgin olive oil (EVOO) to protect against frauds. The typical
approach relies on comparison of the chemical composition with official limits, as it is expected that
the presence of adulterants will modify the concentration of these constituents. Nonetheless, this
procedure may be inadequate, especially for oils which are classified as ‘virgin’ but do not conform
to official limits of certain constituents due to local climatic or soil peculiarities [3]. Furthermore,
these methodologies do not address the problem of geographical traceability and tend to be rather
time-consuming with a very low throughput.

During the last decade, nuclear magnetic resonance (NMR) spectroscopy has been shown to
be highly effective in the study of oils of vegetable origin [4–8]. In 1999, Vlahov [9] proposed NMR
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spectroscopy as a new analytical tool to compete with the existing methods for studying olive oil
chemistry. Among the vast applications of NMR spectroscopy to the study of EVOO, target analysis
of triacylglycerides, fatty acids, unsaturated fatty chains for quantification, seed oil adulteration,
and degradation of EVOOs encompass some of the techniques that could employ the use of NMR.
Furthermore, NMR spectroscopy could also be extended to the study of minor constituents including
phenolic compounds, sterols, and phospholipids for both detection and quantification of markers
for geographical origin and cultivar information. The main methods used in NMR include 1H
and 13C NMR spectroscopy as reviewed by a number of authors [9–14] together with 31P NMR as
employed by Spyros and Dais [15]. Apart from target-based analytical approaches, NMR metabolic
fingerprinting [16–18] employs the use of whole NMR spectral data to classify a relevant number of
samples according to their origin, harvest, and age. In most cases, fingerprinting analysis is used in
conjunction with sophisticated statistical and mathematical procedures.

1H NMR has been much more widely used in the field of olive oil chemistry than 13C NMR.
While requiring more concentrated samples than 1H NMR, 13C NMR spectra have a much wider
radiofrequency range. Coupled with proton decoupling techniques, this leads to sharp spectra which
rarely have overlapping carbon peaks, allowing easy detection of impurities and making the peaks
readily interpretable. The main disadvantage in 13C NMR is the long acquisition times which reduces
the sample throughput, unlike 1H NMR which takes around 10 min for the entire run to be completed.
Preedy and Watson [19] suggest that each type of NMR spectroscopy could be used for a different
type of analysis into the composition of olive oil—the 13C technique is useful in characterisation of the
genotype of the oil, while the 1H NMR technique is more suited to geographical characterisation of
the oils.

The combination of 1H and 13C NMR fingerprinting with multivariate analysis provides a
promising approach to studying the profile of olive oils in relation to their geographical origin.
The Maltese olive oil industry makes an interesting case, as the industry has only recently been
regenerated using an indigenous olive stock. Considering the small state of the market, mislabeled
EVOO originating from other countries sold as Maltese EVOO could severely impede the growth of
the industry, with severe negative economic repercussions. Recent studies have shown that Maltese
EVOOs have a significantly different phenolic composition and mineral composition [20–22]. In this
study, a variety of olive oils selected from different areas around the Maltese islands and countries
around the Mediterranean were studied. No data is present in the literature regarding the use of 13C
and 1H NMR for the authentication of Maltese EVOOs. The aim of this study was to explore the use of
13C NMR and 1H NMR (specifically 1H zg30 and 1H NOESY), in conjunction with chemometrics in
order to differentiate the Maltese EVOOs from other EVOOs derived from other countries within the
Mediterranean region, thus developing an easy and cost-saving verification method for the origin of
EVOOs from the Maltese islands ensuring olive oil chain sustainability.

2. Materials and Methods

2.1. Sample Preparation

For this preliminary study, a total of 65 extra virgin olive oil samples were collected from the
Maltese islands over four harvest seasons from 2013–2016 and from other neighboring Mediterranean
countries. The cultivars used in this study and their country of origin can be seen in Table S1.
The samples were all taken from different oil producers to cover a representative sample of the Maltese
islands in terms of pedological and microclimatic conditions, whilst also accounting for manufacturing
techniques and the different presses employed. Foreign olive oils obtained were bought with a
protected designation of origin in order to ensure traceability of the product. All the samples were
stored at 4 ◦C in the absence of light prior to the analysis. The samples were preheated to 35 ◦C in a
water bath for 1 h and mixed to ensure homogeneity. For 1H NMR, 20 µL of the EVOO were placed in
5 mm NMR tubes and dissolved in 700 µL of deuterated chloroform, followed by the addition of 20 µL
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of deuterated DMSO and vortex mixing for 20 s. For 13C NMR, 440 µL of sample was dissolved in
420 µL of deuterated chloroform without the addition of DMSO [23].

2.2. 1H and 13C NMR Spectra Acquisition

The analysis was performed on a model AVANCE III 500 MHz NMR spectrometer equipped
with a 5 mm 1H/D-BB probehead with z-gradient, automated tuning and matching accessory, and a
BTO-2000 accessory for temperature control (Bruker BioSpin GmbH, Rheinstetten, Germany). Samples
were measured at 300.0 K after a 5 min resting period for temperature equilibration. NMR spectra
were acquired using Topspin 3.5 (Bruker). Automated tuning and matching, locking and shimming
using the standard Bruker routines, ATMA (automatic tuning and matching in automatic mode),
LOCK (frequency-field lock to offset the effect of the natural drift of the NMR’s magnetic field B0)
and TopShim, were used to optimise the NMR conditions. Samples were analysed using the zgpg30
pulse method for 13C NMR, while the zg30 and NOESY 1D noesypr1d NMR pulse sequence using a
standard presaturation were used for 1H NMR. Every extract sample was run twice with a 1H NMR
standard single pulse experiment zg30 for 100 scans. The samples were run twice automatically under
the control of ICON-NMR. Each run had two prior dummy scans, resulting in 65,536 data points with
a resolution of 0.305 Hz acquired with an acquisition time and a relaxation delay time of 3.27 and
4 s, respectively. The 90◦ flip angle for free induction decay was adjusted to 10 µs. In the case of
one-dimensional Nuclear Overhauser Effect spectroscopy, 100 scans were acquired, each run having
two dummy scans, which resulted in 32,768 data points with a resolution of 0.489 Hz, acquired with an
acquisition time and relaxation time of ~2.04 and 4 s, respectively. In the case of 13C NMR, 250 scans
were recorded for each sample, with an acquisition time of 21 s to allow sufficient time for complete
relaxation of 13C nuclei between scans. The acquisition delay was set at 2 s. The receiver gain was set
at 203, and the temperature was locked at 298.0 K by means of a BTO-2000 accessory. Broadband 1 H
decoupling techniques were employed. The above parameters and settings could run samples with a
turnover time of 1 h and 40 min each, excluding an initial 5-min temperature equilibration period.

Prior to Fourier transformation, the free induction decays (FIDs) were zero-filled to 64 k and
a 0.3 Hz line-broadening factor was applied. The chemical shifts are expressed in d scale (ppm),
referenced to the residual signal of chloroform. For 1H NMR, this was found at 7.24 ppm [21] whilst
for 13C NMR, this was found as a triplet centerd around 77.01 ppm [22]. The corrected spectra were
exported as ASCII files from Topspin 3.5 (TopSpin™ version 5, Bruker, Billerica, MA, USA) and imported
directly into The Unscrambler X 10.3 (CAMO Software, Oslo, Norway) for all subsequent mathematical
data processing. Each spectrum was automatically binned by the software into 32,768 buckets, each
bucket being 0.0072223 ppm wide. The signal-to-noise ratio was calculated using the peak at 172.8 ppm
for 13C NMR corresponding to C1 of the glycerol chain, which resulted in a signal-to-noise ratio of
520:1. For 1H NMR, the signal-to-noise ratio was calculated using the peak at 9.70 ppm, corresponding
to the aldehyde proton in hexanal, and a signal-to-noise ratio of 1.26:1 and 1.46:1 was obtained for zg30
and NOESY pulse sequences, respectively.

The spectrum obtained was subjected to different spectroscopic signal processing techniques,
which were evaluated and compared. The spectra were normalised, a transformation that put all
spectra on the same scale, thus eliminating the fluctuations in intensities between spectra arising from
slightly different sample concentrations. Both peak normalisation and area normalisation were carried
out separately on the baseline corrected spectrum. Normalisation was followed by detrending and
deresolving procedures. The detrend transformation removes the effects of nonlinear trends, showing
only the absolute changes in values across spectra by removing the least-squares line of best fit from the
data, thus focusing only on fluctuations between data. Deresolve is a noise-reducing transformation
that operates by artificially lowering the resolution of the spectra. Other treatments applied to the
baseline corrected spectrum include multiplicative and orthogonal scatter corrections (MSC and OSC),
and standard normal variate (SNV). MSC was corrected for scaling effects by performing a regression
of a spectrum against a reference spectrum, thereby correcting the spectrum using the slope of the
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fit was obtained from the regression. OSC removes variance from the factors that is not related to
the response, by finding directions in X that describe large variances while being orthogonal to Y
and subtracting them from the data. The SNV transformation works similarly to MSC, however, it
standardises each spectrum using data from the spectrum itself rather than data averaged from all
the spectra. A number of derivatising procedures (1st and 2nd derivatives, Savitzky-Golay) were
also carried out. The 1st derivative removes baseline effects while the 2nd derivative also removes
the slope of the spectrum by measuring the change in slope, thereby sharpening spectral features.
The Savitzky-Golay derivative fits a low-degree polynomial to adjacent points in a spectrum, thereby
smoothing the spectrum while minimally affecting the signal-to-noise ratio.

2.3. Data Analysis

A principle component analysis (PCA) was carried out using Unscrambler X 10.3 in order to
identify any gross outliers and determine any preliminary clustering reflecting the geographical origin.
An inspection of the PCA loadings was carried out in order to determine whether the loadings had a
spectral shape indicating that observed variation was due to the NMR spectra and not due to noise.
PCA was carried out on all treated spectra to reduce all the spectral information down to seven
principal components (PCs), which retained the information of the original dataset. The first PC
accounted for most of the variation in the dataset, with successive principal components accounting
for decreasing amounts of the variation. The resulting PC-1 vs. PC-2 plots could be examined for any
clustering that might arise from each spectral pretreatment. Similarly, to PLS, PCA generates loading
plots which indicate those x-values which are most responsible for the variability between the different
spectra. The loading plots for the first two principal components (which explain most of the variability
in the dataset) were used to determine which ppm values had the largest influence on the separation
of PC-1 and PC-2. Following a PCA, supervised chemometric methods were carried out using JMP®,
Version 10 (SAS Institute Inc., Cary, NC, USA), including the partial least squares discriminate analysis
(PLS-DA). The whole dataset was split into two sets, termed the training and test sets (the former to
build the model, the latter to validate it). In order to preserve the diversity in the training and test
sets and to account for the fact that different pretreatments had to be tested, a unique sample splitting
scheme was used.

In order to determine the suitability of the whole NMR spectra for discrimination of EVOOs of
Maltese origin, an artificial neural network (ANN) analysis was carried out. The main advantage of a
neural network model is that it can efficiently model different response surfaces due to its nonlinearity,
allowing a better fit to the data given enough hidden nodes and layers, providing an accurate prediction
for many kinds of data. Unlike other modeling and discriminate methods (PLS) the main disadvantage
of a neural network model is that the results are not easily interpretable, due to the presence of several
intermediate hidden layers. In this experiment, 25 iterations were carried out using a TanH activation
function as the standard neuron activation function in JMP software. In the case of ANN, three different
cross-validation techniques were employed in order to prevent model overfitting; the k-fold (CV-10),
hold back (33.3%), and excluded rows (Venetian blinds). Thirty-three percent of the samples were held
back from the model during holdback validation, which operates by randomly splitting the dataset
into training and validation sets. Thirty-three percent of the data was thus ‘held back’ to form the
validation set. Excluded rows holdback uses those rows that were excluded by the Venetian blinds
method as the validation set. K-fold validation divides the dataset into ‘k’ number of subsets where
each subset contains a fraction ‘1/k’ of the data. Each of these sets is used to validate the model thereby
fitting ‘k’ number of models. The best fitting model is presented as the final output. In this study,
K-fold validation was carried out using 5 k-folds.
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3. Results and Discussion

3.1. Geographical Classification of EVOO Using NMR Spectroscopy

Figure 1 and Table 1 show 1H NMR signals of the major and some minor compounds together
with their chemical shifts and their assignments to protons of the different functional groups [10,24–28].
Figure 2 and Table 2 show the major peaks obtained using 13C NMR and identified using the
literature [10,13,14,17,27–33].
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Figure 2. The major peaks of interest obtained using the 13C NMR of EVOOs (black line Maltese
EVOOs, red line non-Maltese EVOOs).

Whilst the chemical shifts of the major constituents are well known and easily identified, the 1H
and 13C signals of the minor oil components are only observed when their signals do not overlap with
those of the main components, and when their concentrations are high enough to be detected [11].
Minor constituents which are expected to yield NMR signals include mono- and diglycerides, sterols,
tocopherols, aliphatic alcohols, hydrocarbons, fatty acids, pigments, and phenolic compounds [32].
Figure 1 shows the most common 1H NMR signals of the major and some minor compounds together
with their chemical shifts and their assignments to protons of the different functional groups. The main
identified compounds include; cycloartenol at 0.29 and 0.54 ppm, β-sitosterol at 0.62, 0.67 ppm,
stigmasterol at 0.69 ppm, wax at 0.98 ppm, squalene at 1.66 ppm, sn-1,2 diglyceryl group protons
at 3.71 and 5.28 ppm, and two unknown terpenes at 4.53, 4.65, and 4.95 ppm, hexanal at 9.7 ppm,
and phenolic protons at, 6.95, and 6.72 ppm. These compounds have already been observed and
identified by other authors [10,11,14,17,30]. In the case of 13C NMR, the minor constituents observed
were restricted to chemical shifts corresponding to squalene, with a shouldering peak at 26.6 ppm and
another minor peak at 28.2 ppm attributed to the allylic methylene group [26].
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Table 1. Chemical shifts and the corresponding chemical functional group observed for 1H NMR.

1H NMR

Chemical
Shift Compound Functional Group Chemical

Shift Compound Functional Group

1 0.29 -CH2-(cyclopropanic ring)
cycloartenol 17 4.53 Terpene

2 0.54 -CH2-(cyclopropanic ring)
cycloartenol 18 4.65 Terpene

3 0.62 -CH3(C18-steroid group)
β-sitosterol 19 4.95 Terpene

4 0.69 -CH3(C18-steroid group)
β-sitosterol 20 5.28 >CHOCOR (glyceryl group)

5 0.81 -CH3(acyl group) 21 5.55 Unk 2-Tocopherols

6 1.19 -(CH2)n-(acyl group) 22 5.91 -CH=CH-CH=CH-(cis, trans
conjugated dienediene system)

7 1.54 -OCO-CH2-CH2-(acyl group) 23 6.56 -CH=CH-CH=CH-(cis, trans
conjugated dienediene system)

8 1.95 -CH2-CH=CH-(acyl group) 24 6.72 -Ph-H (phenolic ring)
9 2.08 -CH2-CH=CH-(acyl group) 25 6.95 -Ph-H (phenolic ring)

10 2.26 CH-CH2-CH=(acyl group) 26 7.02 Chloroform 13C satellite
11 2.54 CH-CH2-CH=(acyl group) satellite 27 7.24 Chloroform
12 2.71 CH-CH2-CH=(acyl group) 28 7.44 Chloroform 13C satellite
13 3.39 Unk 1-alcohol 29 9.17 Unk 4-hydrocarbon
14 3.71 -CH2OCOR (glyceryl group) 30 9.46 Unk 5-hydrocarbon
15 4.10 -CH2OCOR (glyceryl group) 31 9.47 Unk 5-hydrocarbon

16 4.22 -CH2OCOR (glyceryl group) 32 9.58 Unk 6-hydrocarbon
33 9.70 Hexanal

Table 2. Chemical shifts and the corresponding chemical functional group observed for 13C NMR.

13C NMR

Chemical
Shift Compound Functional Group Chemical Shift Compound Functional Group

1 14 C18(ω1) terminal carbon of
fatty acyl chain 14 128.01 129.82

C9, C10 oleoyl unsaturated
carbons between 2- and 1(3) of

glycerol

2 22.64 C17(ω2) penultimate carbons
from the fatty acyl chains 15 11.97,13.12,14.95 Unk 1 possibly being attributed to

waxes

3 24.74
C3 methylenic group in β

position with respect to the
carbonylic group

16 15.95 Unk 2 possibly C8′a and C4′a of
tocopherols

4 25.53 C11 Linoleyl Linolenyl 17 17.51 Unk 3 possibly C12′a of
tocopherols

5 26.61 C8 allylic methylenes of
sqaulene 18 20.47 C17(ω2) all acyl chains

6 27.12 C8 allylic carbons of oleoyl
chains 19 39.68 Unk 4-C1 of tocopherol

7 28.6 C12 allylic methylenes of
sqaulene 20 64.89

Unk 5 possibly C2 of elenolic acid
derivative of tyrosol or

hydroxytyrosol

8 29.28
C4–C7, C12–C15, C8–C15,

C8–C13 methylenic groups in
fatty acid central chain

21 124.40 C3′, C7′, C11′ of tocopherols

9 31.88 C16 methylenic acylic chainsω 22 131.70 C9 Linoleyl and linolenyl, C13
Linoleyl

10 33.91 C2, sn-2 acyl chains 23 134.80 C4′, C8′ of tocopherols

11 61.93 CH2O-1(3) glycerol carbons of
triglycerides 24 172.8 C1, sn-2 2-glycerol chain

12 68.86 CH2O-2-glycerol carbon of
triglycerides resonates 25 173.2 C1, sn-1,3 1(3) glycerol chain

positions
13 77.39 CDCl3 Solvent 26 177.92 Unk 6-COOCH3 of elenolic acid

The discriminatory models for the traceability of EVOOs from the Maltese islands coupled 1H
and 13C NMR spectroscopy with chemometrics. In order to overcome the instrumental limitation
and to account for scattering and other minor variations which would hinder the performance of the
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classification model, different kinds of spectral pretreatments were tested and compared. A total of
10 spectral pretreatment methods were used. In each case, after pretreatment, a PCA was carried in
order to dimensionally reduce the number of variables into a small set of principal components whilst
retaining all the information of the larger set. PCA enabled the preliminary identification of which
pretreatment offered the highest variability and possible sample grouping based on the geographical
origin but also enabled the identification of outliers and noise modeling.

Figure 3 shows some of the different forms of spectral pretreatments employed and the
corresponding PCA plot for the first two principal components. In the case of 1H NMR, although
clustering was observed in most of the spectral pretreatments, it did not fully discriminate the EVOOs
of Maltese origin from those obtained from other Mediterranean countries. Only a weak clustering
resembling the geographical origin was observed by using PCA. For 1H NMR, the raw data was
presented in Figure 3 as these were seen as the most representative data for highlighting clustering in
PCA. Other spectral transformations can be viewed in the Supplementary Materials Figures S1–S3.
In the case of 13C NMR, the clustering obtained using OSC and SNV spectral transformations highly
resembled the geographical origin of EVOO.
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Inspection of the PC loadings revealed a spectral form, which suggests that the variation observed
was due to the actual NMR spectra and not due to noise. In the case of zg30, it was observed that the
chemical shifts observed at 0.8 and 1.2–1.25 ppm and 0.5–1.25 ppm for the NOESY experiment seem to
have a larger influence on the first and second principal component separation. These observations
suggest that the phytosterol content, namely β-sitosterol, campesterol, cycloartenol together with
1-eicosanol and α-tocopherol, which show chemical shifts between 0.5–1.25 ppm, have a greater
influence on the variation observed along the first two principal components. In the case of zg30, other
peaks observed in the 4.7–4.9 ppm range also seem to be influential, especially in the 1st PC, these
peaks correspond to terpenic compounds present in EVOOs. Alonso-Salces et al., [17,30] identified
three peaks at 4.57, 4.65, and 4.70 ppm, which were attributed to unknown terpenes during their
study on the unsaponifiable fraction of EVOOs. For 13C NMR, inspection of the PC loading plots
corresponding to the previously identified chemical shifts were found to offer the most variation, with
the peak at 14 ppm assigned to the terminal –CH3 of all acyl chains explaining most of the variation in
the SNV spectra.

3.2. Application of PLS-DA for the Discrimination of Maltese EVOOs

The Maltese and the non-Maltese samples were grouped in ascending order so that the first
30 samples would represent Maltese EVOOs whilst the rest corresponded to non-Maltese EVOOs.
A Venetian blinds cross-validation method was then employed, which selected every sth sample from
the data by making data splits such that all samples are left out exactly once (s = 5). This sampling
method excluded 20% of the dataset so that they would be retained as the testing set. The remaining
80% of the dataset was used to build the training set. In the case of PLS-DA, an inspection of the
variable importance plot (VIP) scores was carried out. Variables having a smaller VIP than 0.8 were
removed, and an adjusted PLS model was built after the removal of these variables. The goodness of fit
of the adjusted model was evaluated and compared to the original model. Table 3 shows the accuracy
(% correct classification during training) and the precision (% correct classification during testing)
obtained on using different spectral pretreatments for the two NMR methods. For the zg30 NMR
spectra obtained after deresolve, SNV and quantile normalisation showed the best model performance
with a % accuracy ranging from 93.1–87.9% and % predictability ranging from 72.7–81.8%, whilst for
the NOESY experiment, spectra treated using normalisation and Savitzky-Golay showed the best
performance with an accuracy of 94.8% and predictability of 90.9%. In the case of the zg30 experiment,
all the spectral pretreatments showed an improvement in the % predictability when compared to
the raw data, whilst in the NOESY experiment, spectra treated using SNV and detrending functions
showed a lower % predictability and % accuracy when compared to actual nonpretreated raw data. This
observation suggests that, in the case of NOESY, the signal suppression of the major peaks improves the
signal to noise ratio, and the resulting spectra can be used without the need of extensive pretreatments.
Results obtained by Longobardi et al., [18] showed that the presaturation of the dominating lipid
signals resulted in an increased receiver gain which in turn resulted in a signal-to-noise gain close to
10 compared to the zg30 spectra. In the case of 13C NMR, higher rates of accuracy and predictability
were observed when compared to 1H NMR methods with a % predictability ranging from 66.7–100%,
with OSC reaching 100% correct classification in both the training and validation sets. The higher rates
of predictability of 13C NMR spectra were attributed to a higher signal-to-noise ratio, less coupling
interactions resulting in a cleaner signal, proof of this is the % predictability of the raw untreated 13C
spectra with respect to 1H spectra.

The next step was to build another PLS model, this time using only variables which had a VIP
score > 0.8. Table 3 also shows the results obtained by using the adjusted PLS model for 13C and 1H
NMR. An improvement in the overall % accuracy and predictability of the model. Furthermore, the
models obtained using only VIP > 0.8 variables showed an increase in both %X and %Y explained,
and a higher % accuracy and % precision indicating enhanced model performance. In the case of the
zg30 experiment, it was found that normalised spectra and Savitzky-Golay derived spectra had the
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optimal performance, whilst detrended and SNV spectra had optimal performance when the whole
data set was used. In the case of the NOESY experiment, the models obtained using VIP > 0.8 showed
an increase in the performance when compared to those obtained with whole data.

Table 3. The PLS-DA analysis on both the entire (a) 1H NMR and (b) 13C NMR spectra and selected
variables having a VIP > 0.8 for the different spectral pretreatments. The results obtained on the training
dataset are given in terms of % accuracy of correct classification whilst for the testing data set these are
given in terms of % predictability of correct classification.

(a)

Pretreatment

zg30 1H NMR

Whole Spectrum VIP > 0.8

% Accuracy % Predictability % Accuracy % Predictability

Raw 77.59 27.27 82.76 45.45
Normalised 91.38 63.64 94.83 90.91

Q Norm 93.10 72.73 94.83 72.73
Detrend 70.69 36.36 68.97 36.36

Deresolve 87.93 63.64 82.76 45.45
SNV 93.10 81.82 60.34 36.36
MSC 91.38 81.82 67.24 63.64
OSC 72.41 45.45 94.83 72.73

Savitzky-Golay 74.14 54.55 98.28 90.91
1st Derivative 68.97 45.45 94.83 72.73
2nd Derivative 77.59 63.64 93.10 63.64

Pretreatment

NOESY 1H NMR

Whole Spectrum VIP > 0.8

% Accuracy % Predictability % Accuracy % Predictability

Raw 82.76 45.45 93.10 75.00
Normalised 94.83 90.91 94.83 83.33

Q Norm 94.83 72.73 96.55 91.67
Detrend 68.97 36.36 74.14 66.67

Deresolve 82.76 45.45 94.83 83.33
SNV 60.34 36.36 70.69 75.00
MSC 67.24 63.64 68.97 75.00
OSC 94.83 72.73 96.55 83.33

Savitzky-Golay 98.28 90.91 89.66 75.00
1st Derivative 94.83 72.73 93.10 91.67
2nd Derivative 93.10 63.64 93.10 91.67

(b)

Pretreatment

13 C NMR

Whole Spectrum VIP > 0.8

% Accuracy % Predictability % Accuracy % Predictability

Raw 100.00 73.33 100.00 80.00
Normalised 100.00 86.68 94.64 100.00

Q Norm 100.00 80.00 100.00 100.00
Detrend 100.00 66.67 100.00 100.00

Deresolve 78.57 73.33 91.07 100.00
SNV 100.00 86.67 100.00 100.00
MSC 100.00 86.67 100.00 100.00
OSC 100.00 100.00 100.00 100.00

Savitzky-Golay 100.00 73.33 100.00 100.00
1st Derivative 100.00 80.00 100.00 100.00
2nd Derivative 100.00 86.67 100.00 100.00

These observations indicate that different spectral pretreatments are affected differently to variable
selection techniques since each one of them attempts to maximise spectral variations and corrections,
therefore, removal of a small number of predictors can have a devastating effect on the model
performance. In the case of 13C NMR, variable selection greatly improved the discrimination with
most of the pretreated spectra reaching 100% accuracy and predictability. The noticeable increase
in the model performance has been attributed to the removal of redundant variables which correct
for overfitting by excluding noise variables from the data, therefore, preventing them from affecting
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the model. Reducing the number of variables around which the model is built also increases the
model’s reliability.

3.3. Whole 1H and 13C-NMR Modeling Using Feed-Forward Predictive Artificial Neural Networks

The use of feed-forward predictive neural networks on the NMR data as a method for classification
was assessed using three different forms of validation, namely 33.3% data holdback, CV-10 k-fold,
and excluded row validation. Since ANNs are more powerful than any other classification method
in terms of their flexibility and noise insensitivity, the algorithm was fitted on the training set using
the entire NMR spectrum without any form of variable selection. Table 4a,b shows % accuracy and %
predictability for the different forms of cross-validation carried out on different spectral pretreatments
of 13C NMR and 1H NMR under the zg30 and NOESY NMR spectra. In general, contrary to what was
observed in PLS-DA, it was observed that models obtained under 1H NMR models had higher rates
of classification when compared to 13C NMR. Similarly, to what was observed in PLS-DA, raw data
derived from the NOESY experiment had a higher model performance throughout the three different
validation methods used when compared to the zg30 experiment. With respect to validation it was
observed that, irrelevant to the spectrum used, the 33% holdback cross-validation resulted in overfitted
models which were identified as spectral transformations that had very good training models but failed
to predict new samples with the exception of MSC. In general, the best performing cross-validation
method was the excluded row validation followed by k-fold validation. This could be attributed to the
fact that these cross-validation methods are not completely random as the 33% holdback. In the case
of the excluded row validation the samples were selected in such a way that, the groups contained
approximately equal amounts of local and foreign EVOOs in the training stage. Thus, the models
obtained where equally capable of recognising and predicting local and foreign EVOOs.

Table 4. Application of artificial neural network (ANN) on the (a) 1H NMR and (b) 13C NMR data
using three forms of cross-validation.

ANN

Pretreatment
Holdback CV-10 Excluded Row

Training Validation Training Validation Training Validation

(a)

zg30 1H NMR

Raw 81.03 81.82 96.55 81.82 86.21 90.91
Normalised 94.83 81.82 94.83 100 81.03 63.64

Q Norm 98.28 90.91 98.28 90.91 82.76 81.82
Detrend 77.59 54.55 91.38 90.91 75.86 45.45

Deresolve 91.38 90.91 93.1 90.91 79.31 81.82
SNV 96.55 90.91 98.28 100.00 74.14 72.73
MSC 98.28 100.00 96.55 90.91 93.10 90.91
OSC 77.59 36.36 89.66 63.64 84.48 81.82

2nd Derivative 96.55 90.91 98.28 100.00 86.21 45.45
1st Derivative 84.48 90.91 98.28 90.91 81.03 63.64
Savitzky-Golay 91.38 81.82 98.28 90.91 85.00 90.91

NOESY 1H NMR

Raw 93.33 91.67 93.33 91.67 93.33 91.67
Normalised 95.00 91.67 95.00 100.00 93.33 100.00

Q Norm 98.33 100.00 98.33 100.00 93.33 100.00
Detrend 70.00 83.33 96.67 91.67 95.00 83.33

Deresolve 96.67 100.00 96.67 100.00 91.67 83.33
SNV 93.33 91.67 98.33 100.00 98.33 100.00
MSC 93.33 100.00 93.33 83.33 95.00 91.67
OSC 81.67 75.00 91.67 75.00 90.00 91.67

2nd Derivative 96.67 100 98.33 100.00 96.67 91.67
1st Derivative 93.33 91.67 98.33 100.00 93.33 100.00
Savitzky-Golay 88.33 100 98.33 100.00 90.00 91.67
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Table 4. Cont.

ANN

Pretreatment
Holdback CV-10 Excluded Row

Training Validation Training Validation Training Validation

(b)
13C NMR

Raw 83.93 60.00 100.00 80.00 92.62 80.00
Normalised 91.07 46.67 100.00 100.00 100.00 100.00

Q Norm 78.57 80.00 98.21 86.67 98.21 100.00
Detrend 91.07 80.00 100.00 80.00 98.21 86.67

Deresolve 78.57 73.33 100.00 40.00 87.50 86.67
SNV 94.64 86.67 98.21 93.33 92.86 100.00
MSC 80.36 53.33 100.00 73.33 100.00 86.67
OSC 75.00 66.67 75.00 66.67 100.00 73.33

2nd Derivative 85.71 40.00 100.00 66.67 96.43 86.67
1st Derivative 94.64 73.33 100.00 46.67 100.00 73.33
Savitzky-Golay 83.93 40.00 100.00 73.33 83.93 93.33

4. Conclusions

It was shown that different NMR methods in conjunction with chemometric methods provided
a new insight in the identification of Maltese EVOOs. From the preliminary assessment using only
unsupervised PCA models, no significant clustering was observed, and this was attributed to the high
levels of similarity between the two classes of EVOOs studied, therefore, this method was deemed to be
unsatisfactory when it comes to discrimination of geographical origin. The application of supervised
methods of classification, namely PLS-DA and ANN, were shown to be highly effective in discriminating
local and nonlocal EVOO samples. The use of the variable selection methods significantly increased
the effectiveness of PLS-DA models in discriminating Maltese EVOOs. ANN models were also shown
to offer similar classification rates to PLS-DA models and thus they corroborate the results obtained.
Results showed that different NMR pulse methods can greatly affect the discrimination of EVOOs.
The most informative method was 13C NMR, which resulted in a cleaner spectrum which was void
of coupling, followed by the 1H NOESY pulse sequence, in which suppression of strong signals
greatly improved the signal-to-noise ratio when compared to the zg30 1H NMR spectra. NMR data
acquired using the zg30 pulse sequence required an extensive spectral elaboration in order to obtain
a comparable model performance to that of 1H NOESY and 13C NMR. It was concluded that apart
from the initial and running costs of the instrumentation, NMR proved to be a cheap and reliable
technique for the discrimination of Maltese EVOOs from non-Maltese EVOOs. Whilst 13C NMR
was very successful in the discrimination of Maltese EVOOs, the long acquisition time proved to be
unsatisfactory for a high throughput analysis and thus it is proposed to be used as a confirmatory
method for the identification of origin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/6/689/s1,
Table S1: The cultivars used in this study and their country of origin. Figure S1. The principle component analysis
and loading plots for different 13C NMR spectra. Figure S2. The principle component analysis biplots and loading
plots for different 1H zg30 NMR spectra. Figure S3. The principle component analysis biplots and loading plots
for different 1H NOESY NMR spectra.

Author Contributions: F.L., data acquisition, research paper conceptualisation, methodology, software, validation,
formal analysis, investigation, data curation, writing—original draft preparation, writing—review and editing,
and funding acquisition; B.V., data acquisition, methodology, software, validation, writing—review and editing;
M.Z.M., conceptualisation, writing—original draft preparation, writing—review and editing, and supervision;
C.F., conceptualisation, software, writing—original draft preparation, formal analysis supervision, and project
administration. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Malta Government Scholarships Post-Graduate Scheme for 2014
(MGSS-PG 2014).

Acknowledgments: Robert Borg for his constant support and training on the NMR spectrometer present at the
University of Malta.

http://www.mdpi.com/2304-8158/9/6/689/s1


Foods 2020, 9, 689 13 of 14

Conflicts of Interest: The authors declare no conflict of interest.

References

1. European Community Commission Regulation (EEC) no. 2568/1991 on the characteristics of olive and olive
pomace oils and their analytical methods. Off. J. Eur. Communities 1991, L248, 1–83.

2. International Olive Council (IOC). Trade Standard Applying to Olive Oils and Olive-Pomace Oils,
COI/T.15/NC No. 3/Rev 6. 2011. Available online: http://www.internationaloliveoil.org (accessed on
11 February 2020).

3. Ceci, L.N.; Carelli, A.A. Relation between oxidative stability and composition in Argentinian olive oils.
J. AOCS 2010, 87, 1189–1197. [CrossRef]

4. Frankel, E.N. Chemistry of extra virgin olive oil: Adulteration, oxidative stability, and antioxidants. J. Agric.
Food Chem. 2010, 58, 5991–6006. [CrossRef] [PubMed]

5. Canabate-Diaz, B.; Segura Carretero, A.; Fernandez-Gutierrez, A.; Belmonte Vega, A.; Garrido Frenich, A.;
Martinez Vidal, J.L. Separation and determination of sterols in olive oil by HPLC-MS. Food Chem. 2007, 102,
593–598. [CrossRef]

6. Murkovic, M.; Lechmer, S.; Pietzka, A.; Bratacos, M.; Katzoiamnos, E. Analysis of minor components in olive
oil. J. Biochem. Biophys. Methods 2004, 61, 155–160. [CrossRef]

7. Suárez, M.; Macià, A.; Romero, M.P.; Motilva, M.J. Improved liquid chromatography tandem mass
spectrometry method for the determination of phenolic compounds in virgin olive oil. J. Chromatogr. A 2008,
1214, 90–99. [CrossRef]

8. Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005,
91, 293–301. [CrossRef]

9. Vlahov, G. Application of NMR to the study of olive oils. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 35,
341–357. [CrossRef]

10. Sacchi, R.; Patumi, M.; Fontanazza, G.; Barone, P.; Fiordiponti, P.; Mannina, L.; Segre, A.L. A high-field 1H
nuclear magnetic resonance study of the minor components in virgin olive oils. J. AOCS 1996, 23, 747–758.

11. Guillen, M.D.; Ruiz, A. High resolution 1H nuclear magnetic resonance in the study of edible oils and fats.
Trends Food Sci. Technol. 2001, 12, 328–338. [CrossRef]

12. Hidalgo, F.J.; Gómez, G.; Navarro, J.L.; Zamora, R. Oil stability prediction by high-resolution 13C nuclear
magnetic resonance spectroscopy. J. Agric. Food Chem. 2002, 50, 5825–5831. [CrossRef] [PubMed]

13. Mannina, L.; Marini, F.; Gobbino, M.; Sobolev, A.P.; Capitani, D. NMR and chemometrics in tracing European
olive oils: The case study of Ligurian samples. Talanta 2010, 80, 2141–2148. [CrossRef] [PubMed]

14. Mannina, L.; Patumi, M.; Proietti, N.; Bassi, D.; Segre, A.L. Geographical characterization of Italian extra
virgin olive oils using high field 1H-NMR spectroscopy. J. Agric. Food Chem. 2001, 49, 2687–2696. [CrossRef]
[PubMed]

15. Spyros, A.; Dais, P. Application of 31P NMR spectroscopy in food Analysis, Quantitative determination of
the mono- and di-glyceride composition of olive oils. J. Agric. Food Chem. 2000, 48, 802–805. [CrossRef]
[PubMed]

16. Rezzi, S.; Axelson, D.E.; Heberger, K.; Reniero, F.; Mariani, C.; Guillou, C. Classification of olive oils using
high throughput flow 1H-NMR fingerprinting with principal component analysis, linear discriminant
analysis and probabilistic neural networks. Anal. Chim. Acta 2005, 55, 13–24. [CrossRef]

17. Alonso-Salces, R.M.; Héberger, K.; Holland, M.V.; Moreno-Rojas, J.M.; Mariani, C.; Bellan, G.; Guillou, C.
Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication
purposes. Food Chem. 2010, 118, 956–965. [CrossRef]

18. Longobardi, F.; Ventrella, A.; Napoli, C.; Humpfer, E.; Schütz, B.; Schäfer, H.; Sacco, A. Classification of olive
oils according to geographical origin by using 1H NMR fingerprinting combined with multivariate analysis.
Food Chem. 2012, 130, 177–183. [CrossRef]

19. Preedy, V.R.; Watson, R.R. Olives and Olive Oil in Health and Disease Prevention; Elsevier Academic Press:
Amsterdam, The Netherlans, 2010.

20. Lia, F.; Farrugia, C.; Zammit-Mangion, M. Application of Elemental Analysis via Energy Dispersive X-Ray
Fluorescence (ED-XRF) for the Authentication of Maltese Extra Virgin Olive Oil. Agriculture 2020, 10, 71.
[CrossRef]

http://www.internationaloliveoil.org
http://dx.doi.org/10.1007/s11746-010-1598-6
http://dx.doi.org/10.1021/jf1007677
http://www.ncbi.nlm.nih.gov/pubmed/20433198
http://dx.doi.org/10.1016/j.foodchem.2006.05.038
http://dx.doi.org/10.1016/j.jbbm.2004.04.002
http://dx.doi.org/10.1016/j.chroma.2008.10.098
http://dx.doi.org/10.1016/j.foodchem.2004.06.011
http://dx.doi.org/10.1016/S0079-6565(99)00015-1
http://dx.doi.org/10.1016/S0924-2244(01)00101-7
http://dx.doi.org/10.1021/jf0256539
http://www.ncbi.nlm.nih.gov/pubmed/12358445
http://dx.doi.org/10.1016/j.talanta.2009.11.021
http://www.ncbi.nlm.nih.gov/pubmed/20152464
http://dx.doi.org/10.1021/jf001408i
http://www.ncbi.nlm.nih.gov/pubmed/11409952
http://dx.doi.org/10.1021/jf9910990
http://www.ncbi.nlm.nih.gov/pubmed/10725153
http://dx.doi.org/10.1016/j.aca.2005.07.057
http://dx.doi.org/10.1016/j.foodchem.2008.09.061
http://dx.doi.org/10.1016/j.foodchem.2011.06.045
http://dx.doi.org/10.3390/agriculture10030071


Foods 2020, 9, 689 14 of 14

21. Lia, F.; Farrugia, C.; Zammit-Mangion, M. A First Description of the Phenolic Profile of EVOOs from the
Maltese Islands Using SPE and HPLC: Pedo-Climatic Conditions Modulate Genetic Factors. Agriculture
2019, 9, 107. [CrossRef]

22. Lia, F.; Formosa, J.P.; Zammit-Mangion, M.; Farrugia, C. The First Identification of the Uniqueness and
Authentication of Maltese Extra Virgin Olive Oil Using 3D-Fluorescence Spectroscopy Coupled with
Multi-Way Data Analysis. Foods 2020, 9, 498. [CrossRef]

23. Merchak, N.; Bacha, E.L.; Bou Khouzam, R.; Rizk, T.; Akoka, S.; Bejjani, J. Geoclimatic, morphological, and
temporal effects on Lebanese olive oils composition and classification: A 1H NMR metabolomic study. Food
Chem. 2017, 217, 379–388. [CrossRef] [PubMed]

24. Hoffman, R.E. Standardization of chemical shifts of TMS and solvent signals in NMR solvents. Magn. Reson.
Chem. 2006, 44, 606–616. [CrossRef] [PubMed]

25. Sacchi, R.; Addeo, F.; Paolillo, L. 1H and13C NMR of virgin olive oil. An overview. Magn. Reson. Chem. 1997,
35, 133–145. [CrossRef]

26. Nam, A.; Bighelli, A.; Tomi, F. Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance
Spectroscopy. Magnetochemistry 2017, 3, 34. [CrossRef]

27. Sacco, A.; Brescia, M.A.; Liuzzi, V.; Reniero, F.; Guillou, C.; Ghelli, S.; van der Meer, P. Characterization
of Italian olive oils based on analytical and nuclear magnetic resonance determinations. JAOCS 2000, 77,
619–625. [CrossRef]

28. Vlahov, G.; Del Re, P.; Simone, N. Determination of geographical origin of olive oils using 13C nuclear
magnetic resonance spectroscopy. I—Classification of olive oils of the Puglia region with denomination of
protected origin. J. Agric. Food Chem. 2003, 51, 5612–5615. [CrossRef]

29. Shaw, A.D.; di Camillo, A.; Vlahov, G.; Jones, A. Discrimination of the variety and region of origin of extra
virgin olive oil using 13C NMR and multivariate calibration with variable reduction. Anal. Chim. Acta 1997,
348, 357–374. [CrossRef]

30. Alonso-Salces, R.M.; Moreno-Rojas, J.M.; Holland, M.V.; Reniero, F.; Guillou, C.; Heberger, K. Virgin Olive
Oil Authentication by Multivariate Analyses of 1H NMR Fingerprints and 13C and 2H Data. J. Agric. Food
Chem. 2010, 58, 5586–5596. [CrossRef]

31. McKenzie, J.M.; Koch, K.R. Rapid analysis of major components and potential authentication of South
African olive oils by quantitative 13C nuclear magnetic resonance. S. Afr. J. Sci. 2004, 100, 349–354.

32. Harwood, J.L.; Aparicio, R. Handbook of Olive Oil: Analysis and Properties; Aspen. Henna: Gaithersburg, MD,
USA, 2000.

33. D’Imperio, M.; Dugo, G.; Alfa, M.; Mannina, L.; Segre, A.L. Statistical analysis on Sicilian olive oils. Food
Chem. 2007, 102, 956–965. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/agriculture9050107
http://dx.doi.org/10.3390/foods9040498
http://dx.doi.org/10.1016/j.foodchem.2016.08.110
http://www.ncbi.nlm.nih.gov/pubmed/27664649
http://dx.doi.org/10.1002/mrc.1801
http://www.ncbi.nlm.nih.gov/pubmed/16534833
http://dx.doi.org/10.1002/(SICI)1097-458X(199712)35:13&lt;S133::AID-OMR213&gt;3.0.CO;2-K
http://dx.doi.org/10.3390/magnetochemistry3040034
http://dx.doi.org/10.1007/s11746-000-0100-y
http://dx.doi.org/10.1021/jf0207124
http://dx.doi.org/10.1016/S0003-2670(97)00037-8
http://dx.doi.org/10.1021/jf903989b
http://dx.doi.org/10.1016/j.foodchem.2006.03.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Preparation 
	1H and 13C NMR Spectra Acquisition 
	Data Analysis 

	Results and Discussion 
	Geographical Classification of EVOO Using NMR Spectroscopy 
	Application of PLS-DA for the Discrimination of Maltese EVOOs 
	Whole 1H and 13C-NMR Modeling Using Feed-Forward Predictive Artificial Neural Networks 

	Conclusions 
	References

