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Abstract: The development of metallic joint prostheses has been ongoing for more than a century alongside advancements in hip and 
knee arthroplasty. Among the materials utilized, the Cobalt-Chromium-Molybdenum (Co-Cr-Mo) and Titanium-Aluminum-Vanadium 
(Ti-Al-V) alloys are predominant in joint prosthesis construction, predominantly due to their commendable biocompatibility, 
mechanical strength, and corrosion resistance. Nonetheless, over time, the physical wear, electrochemical corrosion, and inflammation 
induced by these alloys that occur post-implantation can cause the release of various metallic components. The released metals can 
then flow and metabolize in vivo, subsequently causing potential local or systemic harm. This review first details joint prosthesis 
development and acknowledges the release of prosthetic metals. Second, we outline the metallic concentration, biodistribution, and 
elimination pathways of the released prosthetic metals. Lastly, we discuss the possible organ, cellular, critical biomolecules, and 
significant signaling pathway toxicities and adverse effects that arise from exposure to these metals. 
Keywords: metallic joint prostheses, prosthetic metal release, potential toxicity and adverse effects

History and Characteristics of the Metallic Prosthesis
History of the Hip and Knee Prosthesis
The development of hip and knee replacement has continued for over a century as orthopedic surgeons and researchers strive 
to identify suitable materials to replace diseased joints (Figure 1). John Murray Carnochan attempted to complete the first 
mandibular arthroplasty by inserting an oak chip in 1840,1 marking the introduction of prosthesis implantation. However, the 
implant failed immediately after, resulting in the loosening of the chip. In the 1860s, Verneuil introduced knee arthroplasty to 
treat diseased knee rigidity by establishing a septum in the joint space using surrounding soft tissue or fascia.2 Gluck 
performed a total hip arthroplasty (THA) in 1891 using a femoral head and acetabular cup constructed from ivory, 
subsequently fixed with Nickel plated screws.3 The significance of the stiffness and durability of implantations in bearing 
joints emerged over time, leading to the utilization of metallic insertion. Robert Jones designed a golden cover four years later 
to resurface a diseased femoral head.4 Despite the subsequent utilization of prostheses made from rubber,5 glass,3 and stainless 
steel,5 long-term outcomes indicated dissatisfaction with the implantations. Attempts to use materials like nylon and glass in 
diseased knees likewise failed.2 Smith Peterson debuted the first acetabular cup in 1938 constructed using Cobalt-Chromium- 
Molybdenum alloy (Co-Cr-Mo), inspired by dental materials.6 However, a single metallic cup worsened friction between itself 
and the femoral head, resulting in bone necrosis and pain. To address this, the Judet brothers designed an artificial head with 
a short stem or a long stem by Austin Moore.6 Different types of metallic molds were also utilized as femoral or tibial 
hemiarthroplasties in knee replacements until the mid-twentieth century, inspired by the application of Co-Cr-Mo alloy in 
diseased hip joints.2 After 1950, knee prosthesis development focused more on biomechanics than on materials. The transition 
from fully restrictive hinged prostheses to semi-restrictive and non-restrictive total condylar prostheses for total knee 
arthroplasty (TKA) today was a result of such focus.7 On the other hand, John Charnley, regarded as the founder of modern 
hip replacement, used high molecular polyethylene and acrylic cement to anchor the artificial femoral head in 1958,3 
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a milestone in the low friction arthroplasty theory.3 Since then, arthroplasty has been widely accepted and recognized as 
a standard treatment for adult joint diseases.8 Nowadays, press-fit or anatomical prostheses have been developed, with some 
being modified further by hydroxyapatite coating to enhance stability or durability.3

Along with the continuous development of joint prostheses, arthroplasty is now being hailed as the greatest surgery of 
the 21st century and has become the premier solution for end-stage diseases such as osteoarthritis and osteonecrosis of 

Graphical Abstract

Figure 1 History of joint replacement.
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the femoral head. According to the 2022 American Joint Replacement Registry (AJRR) annual report, over 2.8 million 
hip and knee procedures was registered in the whole United States, representing a cumulative registered procedural 
volume growth of 14% compared to the previous year.9 Undoubtedly, the solid development of joint prostheses has 
guaranteed total joint replacement as the most successful option for the treatment of end-stage joint diseases.

Major Characteristics of the Modern Metallic Prosthesis
The current mainstream in clinical applications for joint replacements has been shaped by advancements in alloy 
technology. Specifically, the Titanium-Aluminium-Vanadium (Ti-Al-V) and Co-Cr-Mo metallic prostheses are predomi-
nately utilized.10 Ti-Al-V elements often feature as the tibial plateau in artificial knee systems or the femoral stem and 
acetabular cup in artificial hip systems.11 Co-Cr-Mo, on the other hand, mainly consists of the bearing femoral head in an 
artificial hip or the femoral condyle in an artificial knee.12,13 The exceptional biocompatibility, mechanical strength, and 
corrosion resistance ability of these alloys account for their broad applications.11

Biocompatibility
Biosafety concerns associated with Ti-Al-V and Co-Cr-Mo alloys are rare due to their biological inertia. Co, Cr, Mo, and 
V essentially participate in the metabolism of vitamins, glucose, or carbohydrate by contributing to the formation of 
several critical enzymes in vivo.14–22 Although Ti, Ta, and Al are not considered essential for normal bio-functioning 
detected in the human body, they are detected in vivo, possibly through daily intake of food and water.23,24 Generally, it 
is suggested that the aforementioned metals remaining at a physiologically acceptable level result in few adverse events. 
Additionally, the metals could be excreted through multiple organs. Table 1 summarizes the physiological function of 
these metals.25–35

Mechanical Strength
When treating weight-bearing joints, such as the hips and knees, appropriate mechanical strength is a key advantage of 
Ti-Al-V and Co-Cr-Mo alloys compared to other materials with lower elastic moduli. The elastic moduli of the Ti-Al-V 
alloy are approximately four to six times greater than those of cortical bone, allowing for stress-sharing with the 

Table 1 Physiological Function Affected by Prosthetic Metals

Metals Functions Reference

Co Cofactor of Vitamin B12 
Participating in metabolism of purines, pyrimidines, amino acids, and fatty acids. 

Involving in the production of red blood cell 

Maintaining the normal functions of nervous system by creating a myelin sheath and other amino acids or proteins

[25,26,32,33]

Cr Participating in the metabolism of lipid, carbohydrates, and protein 

Stimulating fatty acid and cholesterol synthesis 
Participating in insulin action and glucose breakdown 

A component of glucose tolerance factor

[29–31]

Mo Cofactor of sulfite oxidase, xanthine oxidase, aldehyde oxidase, mitochondrial amidoxime-reducing component 

Catalyzing oxidation-reduction reactions 

Participating in the metabolism of purines/ pyrimidines amino acids, and fatty acids 
Enzymes containing Mo participate in the basic metabolism of carbon, sulfur and nitrogen cycles

[27,28]

Ti – –

Al – –

V Inhibiting or activating phosphate-dependent enzymes 

Mimicking and potentiating effect of various growth factors such as insulin and epidermal growth factor 

Regulating the phosphate metabolism and phosphate-dependent energetic processes 
Vague function in osteogenic actions

[34,35]

Abbreviations: “-”, No result; Co, Cobalt; Cr Chromium; Mo, Molybdenum; Ti, Titanium; Al, Aluminum; V, Vanadium.
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periprosthetic bone and bearing the body weight as the femoral stem or tibial plateau.36 The Co-Cr-Mo alloy, which has 
an elastic modulus approximately twice that of the Ti-Al-V alloy, is commonly used in grinding components such as the 
artificial femoral head and condyle.36 The mechanical properties of mainstream medical metals was summarized in 
Table 2.37 However, implants with extremely high elastic moduli can hinder osteointegration and result in an unstable 
state due to excessive stress sharing (known as the stress shielding effect), preventing adequate bone growth.11

Corrosion Resistance
The alloys possess excellent corrosion resistance characteristics, which are highly desired in ensuring long-term stability. 
Upon being implanted in vivo, gentle redox reactions start on the prosthetic surface, and a thin protective oxide membrane is 
known as a passivation film gradually forms.38 This passivation film provides a clear antioxidant effect and shields the alloys 
from excessive redox reactions. Specifically, Ti-Al-V generates a stable Ti oxide film on their surface attributed to their strong 
affinity with oxygen, while Co-Cr-Mo produces a thin but denser protective oxide layer to avoid electrochemical 
corrosion.39,40 These membranes can rapidly recover and resupply, even if the film is destroyed by fretting or wearing.38

Potential Mechanism of Metals Released from the Prosthesis
Both the hip and knee joints are load-bearing joints subjected to complex forces. In load-bearing conditions, the prosthesis 
must withstand the comprehensive effects of tension, compression, torsion, interface shearing, and repeated fatigue over many 
years. Despite the excellent corrosion resistance of Ti-Al-V and Co-Cr-Mo, metals in different forms (ions, particles, and 
debris) were detected in vivo under the combined effects mentioned above. The metals are released from prostheses as a result 
of diverse factors involving mechanical wearing, electrochemical corrosion, and inflammation.41

Mechanical wearing, a tribological effect of two surfaces in contact, generally includes fretting and impinging. 
Factors associated with fretting include the number of cycles, load to the interface, motion amplitude, frequency, and 
temperature. Such actions can cause abrasion of metallic particle fragments from the materials. These metallic micro-
particles have an irregular shape and a diameter of less than 400 μm.42

Electrochemical corrosion may occur on the partial or entire surface of the prosthesis, depending on the electric potential 
energy of the metals.41 When active metals come into contact with other cations, the difference in electric potential energy 
causes electron flow, indicating the onset of corrosion. This phenomenon is more noticeable when different metals are used 
in alloy components, such as a Co-Cr-Mo femoral and a Ti-Al-V stem.43 Although the passivation film mentioned earlier 
exists, the protective effect of the oxide membrane is cracked by the simultaneous action of electrochemical corrosion and 
mechanical wear. This cracking causes the continuous release of metallic debris or ions.41

The metallic debris and ions generated by wear and corrosion can lead to a series of cascading effects on multiple cells, 
including inflammation, necrosis, fibrosis, and osteolysis.42 Macrophages play a central role in the cascade, phagocytosing the 
metals and releasing inflammatory mediators such as Interleukin (IL) and Tumour Necrosis Factor (TNF).43 A specific 
phenotype, distinct from traditional M1 and M2 types of macrophages, has even been proposed to describe this situation.43 

Larger but non-degradable debris can be released after cell death and subsequently re-phagocytosed, triggering a negative 
feedback loop.44 Furthermore, macrophages can attach to and affect the oxide surface of alloys, compromising the passivation 

Table 2 Elastic Modulus of Prosthetic Metals and Natural Bone Tissues

Metals Elastic Modulus 
(GPa)

Compressive 
Strength (MPa)

Tensile Strength 
(MPa)

Reference

Co-Cr-Mo 283 1976 1403 [37]

Ti-Al-V 114 1119 940 [37]

Cortical Bone 10–30 141.6 39.74 [37]

Cancellous Bone 4.5–23.6 2.270 4.5 [37]

Note: Adapted from Shanmuganantha L, Baharudin A, Sulong AB, Shamsudin R, Ng MH. Prospect of Metal Ceramic (Titanium- 
Wollastonite) Composite as Permanent Bone Implants: a Narrative Review. Materials (Basel). 2021;14(2):2. Creative Commons.37 

Abbreviations: Co-Cr-Mo, Cobalt-Chromium-Molybdenum alloy; Ti-Al-V, Titanium-Aluminum-Vanadium alloy.
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films and accelerating corrosion.45 Other cells, including osteoclasts and osteoblasts, are also influenced by the released metals 
and inflammatory mediators, amplifying the adverse events.46,47

Metabolism Profiles of the Prosthetic Metals
Elevation of Metals in vivo
The blood of the ordinary population contains very low levels of metals as a result of frequent exposure to metal products 
in their environment,14,15,48 as indicated in Table 1. Therefore, a baseline metallic concentration was established in whole 
blood or serum using references from the Laboratory Test Information Guide of the London Health Sciences Centre and 
Mayo Clinic Laboratory data.49–60 These measurements follow the guidelines from the Centre for Disease Control and 
Prevention of America (Table 3).61

Metallic prostheses can cause an increase in metal concentration in patients’ blood that exceeds the baseline level. As 
indicated in a comprehensive systematic review of over 400 cases of Co-Cr hip prosthesis implantation, the mean Co 
concentrations were found to be 0.70 ~ 3.40 μg/L and 0.30 ~ 7.50 μg/L in the whole blood and serum, respectively.80 

Similarly, the average Cr concentrations were 0.50 ~ 2.50 μg/L and 0.80 ~ 5.10 μg/L, respectively, in the whole blood 
and serum, as shown by the study.80

Table 3 62–79 presents evidence of increased levels of Co and Cr in the blood of patients with Co-Cr-Mo prostheses. 
The increased concentration persisted for 72 months, and the concentration of both Co and Cr exhibited two peaks, as 
observed at 24 months (6.20 μg/L of Co, 4.70 μg/L of Cr) and 60 months (8.42 μg/L of Co, 4.58 μg/L of Cr) following 
surgery.81 The second peak may be attributed to secondary wearing and corrosion due to prosthetic dysfunction or patient 
factors, such as renal dysfunction.82,83 However, others have suggested that after implantation of Co-Cr-Mo prostheses, 
the concentration of Co and Cr may initially soar before stabilizing or gradually decreasing over time.84 The post-
operative in-vivo fluctuations in Mo levels are still debatable Some studies have reported that Mo concentration peaked at 
60 months following THA, reaching levels over 6 ng/mL.81 However, other studies have shown that there was no notable 
rise in Mo levels detected in the blood.85,86

Individuals with Ti-Al-V prostheses exhibit obvious Ti accumulation (12 times higher than baseline) in their blood, 
peaking at 13.6 μg/L after 3 months post-surgery before declining. Ti concentration in a case with Ti-Al-V prostheses may 
even reach 50 times the baseline.87 Al tends to bind to transferrin, albumin, and some low molecular weight compounds, 
primarily citrate,88 in the blood, facilitating its penetration through biological barriers and subsequent clearance from the 
kidneys,89 thereby producing a gentler rise compared to Ti. V primarily occurs as Vanadate or Vanadyl in the blood, binding 
also to transferrin, and it has a similar duration of peaking (3~6 months post-surgery) as Al.90,91

The release of metals into the body can be influenced by various factors that include prosthetic factors such as interfaces, 
designs, and manufacturing processes; patient-specific factors such as weight and physical activity; and operational factors 
such as instability and mismatched components. Additionally, the methods used to sample and detect metal ions in the body 
and the timing of these evaluations can also have an impact on the results. Specifically, the use of a Metal-on-Metal bearing 
interface tends to result in higher concentrations of metals in the body compared to the Metal-on-Polyethylene or the Metal- 
on-Ceramics bearings.63–68,74,75,92 Moreover, higher levels of metals are commonly detected when the prosthesis is not 
functioning optimally.72,93 Elevation in metallic concentration is more likely to occur when bilateral implantation is 
performed.62,71,94 Other factors that can affect metal release include the surface coating,77,78 the size of the femoral 
head,66,73 and the design and manufacture of the prosthesis.76,79

Thus, long-term monitoring of the state of the prosthesis after implantation is essential. Prostheses in an abnormal 
state are more prone to severe wear and may result in a secondary surge in metal concentration following surgery. 
Continuous monitoring of metal concentration fluctuations, for example, at 3- or 6-month intervals following implanta-
tion, can aid in evaluating the state of the implanted prosthesis and predicting its lifespan. Therefore, postoperative metal 
concentration can be an essential indicator of the state of the implanted prosthesis. However, some aspects, including 
sensitivity, specificity, and the time lag between increased metal concentration and the occurrence of an unstable 
prosthesis, require further confirmation. The findings presented in this study may provide some insights; however, 
further detailed investigations are necessary.
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Table 3 Reference Range and Postoperative Concentration of Prosthetic Metals in the Blood

Metals Reference Range (μg/L) Postoperative Metallic Concentration (μg/L) Reference

3 Months 6 Months 12 Months 18 Months 24 Months 36 Months 60 Months 72 Months

Co Serum/Plasma 0.000–0.900 – 0.650 0.130–1.700 0.760–5.160 0.140–0.770 0.780–1.620 0.180–2.930 0.240–0.860 [52,62–68]
Whole Blood 0.000–1.000 0.900–1.900 0.850–2.650 0.360–3.400 – 0.360–6.200 0.850–3.650 0.340–8.420 – [55,62,69–76]

Cr Serum/Plasma 0.000–0.300 – 0.600 0.250–2.100 0.500–2.980 0.180–1.300 0.970–2.410 0.210–1.200 0.360–1.050 [51,62–68]
Whole Blood 0.000–1.000 1.300–3.100 0.100–4.150 0.300–4.150 – 0.240–4.700 0.100–4.300 0.100–4.580 – [54,62,69–76]

Mo Serum/Plasma 0.300–2.000 – – 0.250–0.970 – – 0.890–0.930 – – [56,65,77,78]
Whole Blood 0.000–4.000 – – – – – – – – [53]

Ti Serum/Plasma 0.000–1.000 10.290–13.600 9.050–12.780 5.270–11.700 – 8.900–9.340 – – – [50,68,79]
Whole Blood 0.000–1.000 – – 0.940–3.360 – 1.200–3.460 – 1.230–3.780 – [60,69,76]

Al Serum/Plasma 0.000–6.000 10.900–11.800 9.500–13.700 9.400–9.800 – 7.730–7.900 – – – [49,79]
Whole Blood 0.000–15.100 – – – – – – – – [59]

V Serum/Plasma 0.032–0.088 0.550–0.720 0.710–0.920 0.600–0.630 – 0.490–0.560 – – – [57,79]
Whole Blood 0.026–0.106 – – – – – – – – [58]

Abbreviations: “-”, No result; Co, Cobalt; Cr Chromium; Mo, Molybdenum; Ti, Titanium; Al, Aluminum; V, Vanadium.
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Biodistribution and Deposition
Metals released from implanted prostheses eventually deposit in various organs and tissues through transportation via 
blood or interstitial fluid. Although direct detection of metal accumulation in tissues of THA or TKA patients remains 
lacking, the biodistribution or deposition of blood metals has been confirmed via experiments conducted in human or 
animal models, as well as biokinetic models. Figure 2 summarizes the biodistribution of these metals.

Bone and Muscle
Concentration of Co up to 380 ppm was detected in the mineralized periprosthetic bone two years after implantation of 
the prosthesis.95 In an animal trial, Co distribution in muscle was also observed.96 Although the Cr level in the 
mineralized periprosthetic bone exhibited no significant change,95 a biokinetic investigation provided evidence of Cr 
distribution in bone.97 Biopsy results from THA or TKA patients or animal models failed to present any relevant 
evidence of Mo accumulation.

While Ti deposition from prostheses was not detected in bone and muscle, Ti from dental implants was found in 
the jawbone and surrounding soft tissue.95 Evidence of Ti retention in bone is also found in an animal trial.98 Bone 
and muscle serve as the primary accumulation sites for Al, with 60% and 10%, respectively.99,100 V is detectable in 
human muscle tissue, with elevated levels also found in rat bone after a long-term high V diet or intravenous 
injection.101

Kidney and Liver
The kidney and liver are organs that filter and purify blood flow. Biopsies from patients with bilateral THA have shown 
concentrations of Co, Cr, and Mo nearly fifty times higher than the standard value,102 similar to findings from studies in 
rats with metallic implants.103,104

Elevated levels of Ti concentration in the liver of Metal-on-Metal bearing THA patients are confirmed 4 to 10 years 
post-implantation.105 Both laboratory rats with hamster dose injections and New Zealand rabbits with proximal tibial 

Figure 2 Biodistribution and excretion of prosthetic metals.
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screw implants have experienced Ti accumulation in the liver and kidney.24,105 Approximately 3% of the total body 
burden of Al is found in the liver,99 whereas evidence of Al kidney retention is only present in rats in intravenous 
injection tests.100 Limited evidence of V accumulation has been found in the kidney or liver of THA or TKA patients; 
however, biokinetic calculation suggests V tends to first accumulate in the kidneys, then the liver of rats treated with oral 
V administration.106

Brain
The ability of metals to permeate the brain depends on their ability to cross the blood-brain barrier (BBB). Ti dioxide 
nanoparticles have been reported to cause damage to the BBB ultrastructure and increase BBB permeability.107 Elevated 
levels of Ti in brain tissue were found in laboratory rats after intravenous injection of Ti nanoparticles,108 with the metal 
mainly concentrating in the hippocampus.109 It is estimated that with the assistance of transferrin and citrate, approxi-
mately 1% of the total Al burden and 5% of the total V burden are deposited in the brain.90,99 V dose-dependently 
accumulates primarily in the olfactory bulb, brain stem, and cerebellum,110,111 while experimental studies show Al 
retention in cerebral tissue detected in rats treated with a dose of intravenous Al.100 However, no significant increase in 
Ti, Al, and V has been reported in patients with metallic prostheses.

Co and Cr may enter the brains of THA patients through cerebrospinal fluid circulation,112 with animal trials showing 
accumulation in cerebral tissue.113,114 Evidence for Mo accumulation in brain tissue is limited.

Lung
Although few reports indicate the metal deposition of Co-Cr-Mo or Ti-Al-V in human lungs, elevated concentrations of 
Ti, Al, and V were found in the lungs of laboratory baboons with Ti-Al-V alloy implantation.115 Furthermore, increased 
Co, Cr, and Mo levels were found in lung tissue after Co-Cr-Mo debris was implanted under rat skin, with peak 
concentrations recorded at 48 hours.116

Spleen
Studies have reported Co, Cr, and Mo deposition in the spleen of THA and TKA patients, with concentrations exceeding 
baseline values.102,117,118 In an animal trial, Ti retention in the spleen of rats was detected after intraperitoneal or 
intravenous injection of Ti dioxide.109 Biokinetic modeling based on multiple human and animal studies confirms Al 
accumulation in the spleen.119 Accumulation of V in humans was confirmed in the spleen, a fact also evidenced in rats.106

Other Organs and Tissues
In addition to the previously mentioned organs, traces of these metals have been found in other tissues in the human 
body. Elevated levels of Co, Cr, Mo, Ti, and Al have been detected in the hair of patients that have prostheses.120,121 

A high level of Co was found in the heart of a patient after they experienced fatal cardiomyopathy due to severe wear of 
the Co-Cr-Mo alloy.122 Additionally, an investigation showed higher levels of Co in the seminal plasma of implanted 
patients (2.89 μg/L) compared to control patients (1.12 μg/L).123 An implantation model of metallic debris also suggested 
elevated levels of Co in the heart and testis.116 In addition, deposition of Al in body fat and accumulation of Mo in lymph 
nodes were also confirmed in patients with THA.124

Excretion and Elimination
The kidneys were the primary excretion site for all the metals mentioned.88,96,106,109,125–127 TKA or THA patients had 
high metal concentrations in their urine.128–130 Strong evidence indicated high average Co concentrations in the urine of 
patients who had undergone THA.81,92,131–139 An experiment administering Co intravenously in humans demonstrated 
that 40% was eliminated within the first 24 hours, 70% within a week, 80% within a month, and 90% within a year.140 

The geometric mean Mo level in the blood was 15.36 nmol/L, while the highest level in urine was 58.41 μmol/L.141 

Furthermore, a volunteer experiment demonstrated rapid Mo excretion,142 which could explain the low Mo level in the 
blood and the low risk of adverse effects from Mo. Al and V are rapidly excreted by converting to hydrophilic forms 
(Vanadyl or Vanadate)106 or combining with hydrophilic substances (citric acid, transferrin, or albumin).89 These 
processes enhance penetration and improve kidney clearance, but only 10% can pass through the glomerular membrane 
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as free ions.89 Nevertheless, due to the continuous metallic release in THA patients, the excretion of both metals 
gradually slows down after the initial rapid phase and persists for several years.90,91,128

In addition to urination, faecal excretion is an important elimination pathway for metals. Metals, including Cr, Al, V, 
and Ti, in the gastrointestinal tract primarily come from saliva, bile, and gastrointestinal secretions,88,90,106,109,143,144 and 
due to their poor absorption rate, they are eliminated with feces.90,125,145–148 Moreover, Cr and Ti can be eliminated 
through the shedding of nails, hair, sweat, and milk.109,143 Ti particles can also be phagocytosed by cells and coughed up 
as sputum from the respiratory tract (Figure 2).109

Toxicity Induced by the Prosthetic Metals
Toxicity to Organs and Tissues
Continuously high concentrations of these metals can cause damage to multiple organs, with diverse clinical manifesta-
tions. Reports show that elevated Co in THA or TKA patients can cause various organ damages, including neurotoxicity 
(lethargy, hearing loss, numbness, paresthesia, tinnitus, visual and auditory abnormalities, and peripheral neuropathy), 
cardiomyopathy, pericardial effusion, hypothyroidism, hepatotoxicity, allergic dermatitis (rash) and polycythemia.149–153 

High levels of Co can also cause systemic toxicity that can lead to hard metal asthma, hard metal disease (pulmonary 
fibrosis) and myocardial toxicity better known as “Beer Drinkers’ Cardiomyopathy”.25,154–157 Excess Cr can lead to 
similar systemic toxicity in the nervous and circulatory systems.152

Chronic accumulation of Al in the brain can cause neurological damage, including Alzheimer’s and Parkinson’s 
diseases, with symptoms such as brain degeneration, disorientation, memory impairment, dementia, and changes in 
personality and intelligence.100,158 Al accumulation in the kidneys can cause fibrosis in glomeruli or Bowman’s 
capsule,100 leading to renal dysfunction and subsequent microcytic anemia.159 Al systemic toxicity can also manifest 
as bone diseases such as osteomalacia due to interference with parathyroid hormone and bone calcium metabolism.100 

Excessive V deposition can cause systemic toxicity, including peripheral neuropathy, skin allergies, diarrhea, kidney 
damage, and reproductive system damage, as reported in several studies.160–166 Systematic pathological changes from 
high Ti, and Mo levels after THA or TKA are uncommonly reported.167–172

Aside from causing systemic changes, accumulated metals in situ can also trigger adverse local tissue reactions (ALTRs) in 
the periprosthetic tissues, such as inflammatory pseudotumor, osteolysis, and tissue necrosis.173–176 Excessive Ti, in the form 
of metallic oxide nanoparticles, can often cause periprosthetic osteolysis and inflammation.24,109,146,177,178 Another possible 
localized adverse reaction known as aseptic lymphocyte-dominated vascular-associated lesions (ALVAL), may occur in 
patients with especially a Metal-on-Metal bearing prosthesis. ALVAL is resulted by activated cytotoxic T lymphocytes and 
macrophages induced via the T lymphocyte-mediated type IV hypersensitivity reactions, for the metal debris or ions released 
from the prosthesis diffuse into the surrounding tissue, complexing with natural proteins to form hemi-antigens and leading to 
the allergic reaction.179 The histopathological manifestation of ALVAL is characterized as an aseptic and chronic perivascular 
inflammatory response dominated by lymphocytic infiltration.179 ALVAL has been shown to have a positive correlation with 
elevated Co and Cr concentrations, but no evidence with Ti, Al, V, and Mo has been found.180,181 The reported cases also 
focused only on the abnormally elevated levels of Co and Cr in the patients’ blood.181 Most patients with ALVAL manifest as 
persistent periarticular pain, especially persistent groin pain after THA, and further examination also reveals pathologic 
changes such as joint effusion and osteolysis.180

Metals are also known to pose considerable risks of both carcinogenicity and mutagenicity. Experimental evidence has 
confirmed the carcinogenic and mutagenic potential of Co, Cr, and both ionic and oxide forms of Ti,177,182–196 and they are 
more likely to pose risks that are time-dependent rather than concentration-dependent.197 The carcinogenicity of Al is yet to be 
confirmed, although a correlation has been observed between Al and breast cancer.100 It is still unclear whether the metals act 
as a single causative factor or as a co-inducing factor with other substances during tumor development.90

Toxicity to Cells and Biomolecules
To gain a deeper understanding of metal toxicity like inflammation, osteolysis, and mutagenicity, researchers have studied 
their toxic effects on the cell and biomolecule aspects. Therefore, we will further discuss the potential mechanisms of how the 
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release of metals correlates with the regulation of the inflammatory cascade, the inhibition of osteoblasts, the activation of 
macrophages and osteoclasts, and the damage to the biomolecules and organelles.

Macrophage and Osteoclasts Activation
After the uptake of metals by macrophages and osteoclasts through phagocytosis, these cells get activated to release pro- 
inflammatory mediators, such as IL-1β, IL-6, TNF-α, and Prostaglandin E2 (PGE2), which participate in the receptor 
activator of nuclear factor-kappa B/ligand (RANK/RANKL) signaling to provoke osteolysis and inflammation.198–202 

The larger non-degradable debris is re-phagocytosed after cell death, creating a closed circuit that promotes inflammation 
continuously.44 Moreover, mature osteoclasts also produce acid and enzymes that erode the prosthetic surface and enable 
the uptake of dissolved metals, thereby compounding the damage.203 The effects of metals on osteoclasts and macro-
phages vary according to the concentration.200 Extremely high metal concentrations are believed to have a direct harmful 
effect on cell viability.200

Osteoblasts and Mesenchymal Cells Inhibition
Apart from macrophages and osteoclasts activation, osteoblasts and mesenchymal cells also have an essential role in the 
emergence of ALTR, given the imbalanced homeostasis of bone resorption and formation.204 After internalizing 
prosthetic metals, osteoblasts are impacted, and their viability and proliferation are affected, which can cause cell 
death.205–207 On the other hand, osteoblasts exhibit downregulation of the type-I collagen gene expression, while 
cytokines like IL-6 and TNF-α occur synchronously.205,206 Factors derived from osteoblasts promote osteoclastogenesis 
by facilitating its progression.207 Also, exposure to prosthetic wear products in vivo and in vitro reduced mesenchymal 
cells’ alkaline phosphatase activity and matrix mineralization for osteogenesis.208

Inflammatory Cascade Regulation
Cytokines that metallic-activated cells release act as messengers that disperse the functions of different cells throughout 
the regulatory network of local osteolysis and inflammation. For instance, PGE2, and TNF-α are essential activators of 
the RANK/RANKL pathway and suppressors of type-I collagen generation.207,209–211 TNF-α production activates the 
osteoclast precursor through calcineurin/nuclear factor of activated T cells 1 (CaN/NFATc1) signaling212–214 and 
upregulates the RANKL expression in osteoblasts.213,215–219 Additionally, chemokines like granulocyte-macrophage 
colony stimulating factor (GM-CSF) and macrophage colony stimulating factor (M-CSF) enhance and accumulate 
inflammatory cells. Furthermore, the chemokines like monocyte chemotactic protein-1 (MCP-1) and macrophage 
inflammatory protein-1α (MIP-1α) are responsible for osteoclasts migrating to periprosthetic tissues.198,220–225

The regulation of most cytokines is thought to occur following a metallic concentration and time-dependent pattern. 
Elevated levels of Co and Cr can lead to increased TNF-α upregulation.226 Furthermore, Co promotes other cytokines 
and chemokines, such as IL-1β, IL-6, IL-8, PGE2, INF-γ, MCP-1, MIP-1α and vascular endothelial growth factor-a 
(VEGF-A),227–229 while Cr is believed to promote IL-1β, MCP-1, and MIP-1α.228,230 Promotion of cytokines by Mo 
includes IL-1β, IL-6, and TNF-α.231 Ti causes upregulation of cytokines, including IL-1β, IL-6, IL-8, TNF-α, and 
PGE2.232–234 Moreover, M-CSF and GM-CSF are promoted by Ti to induce the maturation and gathering of inflamma-
tory cells.235 V upregulates TNF-α, IL-6, and IL-8 expression, while suppressing IFN-γ and IL-10 expression.236–239 

Besides, common inflammatory cytokines such as IL-1β, IL-8, and TNF-α, Al promotes cytokines including MIP- 
1α.240,241 Figure 3 and Table 4 summarize the cytokine profiles that were upregulated. Contrarily, metals such as Co, Cr, 
and Ti are known to downregulate transforming growth factor-β (TGF-β), the factor that promotes anti-inflammation and 
type-I collagen synthesis.242,243

Toxicity to Biomolecules
Studies have shown that excess metals can cause molecular-level hazards such as structural damage to DNA and 
chromosome abnormalities (including aberrations, translocations, and aneuploidy), which can increase the risk of 
genotoxicity and carcinogenicity.268,269 In summary, the study of toxicology can be classified into three basic categories: 
i. metals binding directly to molecules and influencing their functions or structure; ii. metals generating free radicals and 
oxidative species that lead to significant damage; iii. metals interfering with signaling molecules in specific pathways.
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The damage induced by direct combination mostly emerges in the ionic metals through the direct combination with 
negatively charged components due to ionic interactions. The toxicity is strengthened with the higher charges of the cations.270 

Toxicity of bivalent Co (Co2+) is attributed to their notable capacity to interact with Zinc finger motifs, which mediates the 
interactions between proteins themselves and nucleic acids,271 thus resulting in DNA single-strand break, DNA repairing 
interruption, DNA-protein cross-linkage and sister chromatid exchange.272–276 The decreased function of the osteogenic- 
related alkaline phosphatase due to the direct substitution of Zn2+ by Co2+ has also been reported.277 Furthermore, the high 
affinity to sulfur atoms enables Co2+ to suppress the antioxidation of lipoic acid in mitochondria, subsequently blocking the 
citric acid cycle, the core of adenosine triphosphate (ATP) production,275 which has been evidenced by the Co-dose-dependent 
ATP depletion and the consequently decreased mitochondrial membrane potential.258 Trivalent Cr (Cr3+) can be directly 
combined with DNA to form a stable Cr3+-DNA admixture and DNA-DNA cross-linkage. Hence, the single or double-strand 
structure of nucleic acid is destroyed.278,279 As the Cr3+ concentration significantly increases, enzyme activity is directly 
inhibited, where the active center is restricted by Cr3+, leading to the more pronounced toxicity.280 The primary toxicology of 
ionic Ti is its direct combination with cellular structures, including phosphorylated proteins, phospholipids, and 
nucleotides,203 consequently hindering cellular functions. The combination of Trivalent Al (Al3+) with phospholipids, the 
chief component of the membrane of a cell or organelle, can render the peroxidation and alter membrane fluid dynamics.159 

Once the mitochondrial membrane is affected, cytochrome c can be released, initiating cell apoptosis.159 V appears more as 
Vanadate and Vanadyl, rather than in the ionic form. The metallic salt is proven to be able to inactivate a series of bioligands, 
including Glutathione, ATP, adenosine diphosphate (ADP), nicotinamide adenine dinucleotide (NAD), amino acids and some 
enzymes (phosphatases and dynein ATPase), after the direct combination.239,281

Reactive oxygen species (ROS) is a group of oxygen-free radicals typically generated by neutrophils and macro-
phages during inflammation or by metal-catalyzed reactions.282 ROS can be hazardous if they overwhelm the body’s 
antioxidant protection, leading to interference with DNA bases, enhanced lipid peroxidation, and changes in calcium and 
sulfhydryl homeostasis.282 The generated hydroxyl radicals play a major role in later intensive oxidative damage to 

Figure 3 Macrophage, osteoblasts and osteoclasts influenced by prosthetic metals.
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biomolecules (DNA, chromosomes, proteins, and polyunsaturated fatty acids) and cell organelles (such as mitochondria 
and lysosomes) due to the concentration-dependent result of Co2+,275 Cr3+,278,279,283 and Mo283 overload. Detectable 
elevation of superoxide dismutase (SOD)283 and catalase activity280 is further evidence of metal-induced oxidative stress 
caused by ROS. The hexavalent (Cr6+) form is often used for prosthetic fabrication.284 However, Cr6+ has a transient 
biological half-life due to its high potential energy, which tends to switch to the more stable Cr3+ form - The most 
common oxidation form found in humans. This means that the hexavalent form is likely to be reduced to trivalent swiftly 
by redox reactions in cells, potentially leading to intensive oxidation damage to biomolecules and organelles.285

For Ti-Al-V alloys, ROS is generated by Ti dioxide (TiO2) nanoparticles.286 The following oxidative stressing leads to 
repeated cell damage and proliferation, indirect DNA damage, and finally, abnormal cell growth behavior.287 Trivalent Al 
(Al3+)-associated with oxidative damage affects the mitochondria functioning,288 inducing p53 elevation, chromosome 
translocation and DNA fragmentation, followed by the activation of caspase-3 and caspase-12.159 This implies genomic 
instability, the hallmark of tumorigenesis and a prerequisite condition for malignant transformation.289 A series of oxide 
compounds of V (V2O5, V2O3, V2O4) and Vanadyl and Vanadate is the source of ROS, which is dose- or time- 
dependently.239,290–293 The consequences are upregulation of cyclooxygenase-2,294 activation of p21 and p53,295 and 
inhibition of a cyclin named Cdc25C,296 finally leading to abnormal anti-apoptotic effect, arrested cell cycle and 
improper cell growth. Additionally, increased DNA strands are broken and chromosomal damages involving aberration, 
sister chromatid exchange and aneuploidy also happen because of V oxide compounds.297–299

Metals, in addition to causing structural damage and inactivating functional biomolecules, can inhibit signaling 
networks. For instance, the elevation of Co can create a hypoxic environment, which can result in the regulation of the 
PI3K/AKT/mTOR pathway, leading to cell autophagy or proliferation.244,245 Moreover, Co-generated ROS can decrease 
macrophage motility by downregulating the RhoA signaling pathway.246 Cr can cause endoplasmic reticulum stress, 
mitochondrial dysfunction, and carcinogenicity via Ca2+/CaMK, SRC/Ras, and AMPK/PGC-1α.247–249 Mo can trigger 
DNA damage, the release of IL-6, and cell death through JNK, ERK, and AMPK signaling.250,251

Table 4 Inflammatory Cytokines, Chemokines and Signaling Related to Prosthetic Metals

Metals Increased Cytokines Decreased 
Cytokines

Chemokines Signaling Molecule Reference

Co TNF-α, PGE2, INF-γ, 

VEGF-A 

IL-1β, IL-6, IL-8

TGF-β MCP-1 

MIP-1α
HIF-1, PI3K, AKT, mToR, RhoA [244–246]

Cr IL-1β 
TNF-α

TGF-β MCP-1 

MIP-1α
Ca2+/CaMK, SRC, Ras, AMPK, PGC-1α [247–249]

Mo IL-1β, IL-6 
TNF-α

– – JNK, ERK1/2, AMPK [250,251]

Ti IL-1β, IL-6, IL-8 
TNF-α, PGE2

TGF-β M-CSF 
GM-CSF

PI3K, AKT, p38MAPK, ERK1/2, PKCε, NF-κB, GSK-3β, 
β-catenin, MAPK, JNK, HIPPO, YAP

[252–257]

Al IL-1β, IL-8 
TNF-α

– MIP-1α JNK, Ca2+/CaMK, Wnt, β-catenin, PI3K, AKT, DDX3X, 
NLRP3, PHF8, H3K9me2, BDNF

[258–266]

V IL-6, IL-8 
TNF-α

INF-γ 
IL-10

– PLA2, SRC, EGFR, PKC, MAPK, NF-κB, JNK [267]

Abbreviations: “-”, No result; Co, Cobalt; Cr, Chromium; Mo, Molybdenum; Ti, Titanium; Al, Aluminum; V, Vanadium; TNF-α, Tumor Necrosis Factor α; PGE2, 
Prostaglandin E2; IFN-γ, Interferon-γ; IL, Interleukin; VEGF-A, Vascular Endothelial Growth Factor A; TGF-β, Transforming Growth Factor-β; MCP-1, Monocyte 
Chemoattractant Protein-1; MIP-1α, Macrophage Inflammatory Protein-1α; M-CSF, Macrophage Colony Stimulating Factor; GM-CSF, Granulocyte- Macrophage Colony 
Stimulating Factor; HIF-1, Hypoxia-Inducible Factor-1; PI3K, Phosphoinositide 3-Kinase; AKT(PKB), Protein Kinase B; mToR, Mammalian Target of Rapamycin; RhoA, Ras 
homolog gene family-member A; CaMK, Ca2+/Calmodulin-Dependent Protein Kinase; AMPK, Adenosine 5‘-Monophosphate-Activated Protein Kinase; PGC-1α, Peroxisome 
Proliferator-Activated Receptor-Gamma Coactivator-1α; JNK, c-Jun N-terminal Kinase; ERK1/2, Extracellular Regulated Protein Kinases 1/2; p38MAPK, p38- Mitogen- 
Activated Protein Kinase; PKCε, Recombinant Protein Kinase Cε; NF-κB, Nuclear Factor κB; GSK-3β, Glycogen Synthase Kinase 3β; YAP, Yes-Associated Protein; DDX3X, 
DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 3; NLRP3, NOD-like Receptor Thermal Protein Domain Associated Protein 3; PHF8, PHD Finger Protein 8; H3K9me2, 
trimethylation of lysine 4 of the third subunit of histones; BDNF, Brain-Derived Neurotrophic Factor; PLA2, Phospholipase A2; EGFR, Epidermal Growth Factor Receptor.
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Ti is responsible for PI3K/AKT/p38MAPK and NF-κB signaling, leading to cell autophagy or apoptosis.252,253 NF- 
κB controlled by PKCε and ERK1/2 stimulated by Ti has a pro-inflammatory effect.254 On the other hand, Ti can inhibit 
osteogenesis via several signaling, including GSK-3β/β-catenin, MAPK/JNK, and HIPPO/YAP.255–257 Abnormal activa-
tion of JNK and Ca2+/CaMK pathway in osteoblasts in the process of Al-associated cell apoptosis,259,260 plus the 
inhibition of osteogenesis via Al interfering with Wnt/β-catenin pathway,261 both enhance osteolysis. Furthermore, Al- 
associated dysfunctional mitochondria affect Ca2+-ATPase, hindering the Ca2+ influx.258,262 The obstacle on the Ca2+ 

channel triggers the altered Ca2+ signaling, leading to the generation of pro-apoptotic factors and cell death.263 Besides, 
Al-associated ROS also affects the PI3K pathways, with downstream effects on cell growth and proliferation and a close 
relationship to tumor development.264 In nerve tissue, Al induces inflammation and synaptic damage through DDX3X/ 
N2RP3 and PHF8/H3K9me2/BDNF pathways.265,266 V can promote inflammation by elevating arachidonic acid via 
calcium-dependent PLA2,267 and on the other hand, by facilitating COX-2 synthesis through SRC or EGFR and the 
downstream PKC and MAPK.267 Besides, ROS generated by V also influences NF-κB.267

Conclusion and Perspective
Metallic prostheses have been developed and perfected over nearly a century, and are now used in joint replacements. 
However, the release of metals from Co-Cr-Mo and Ti-Al-V prostheses cannot be overlooked. Several studies have found 
a significant link between these metals and long-term adverse consequences of the implanted prosthesis. Metals released 
from implants can distribute in multiple organs and accumulate in surrounding tissues. While blood metals can be 
presented in various ways, significantly elevated blood metals have been detected in patients undergoing TKA and THA. 
High levels of metals can have considerable toxic and destructive effects on distributed organs and surrounding tissues. 
This adverse effect is linked to the disturbance of the inflammatory cascade and the dysfunction of critical cells and 
biomolecules.

Factors such as unstable implantation or a mismatch of prosthetic components can lead to an increase in metal 
concentration. The clinical application of digital technology may help solve problems and improve the curative effect. 
Robot technology is currently the most advanced representative of digital technologies. Although the current use of 
robot-assisted artificial joint replacements has some limitations, it represents the future development trend in joint surgery 
and is an inevitable result of industry advancement. Current hip and knee replacement surgery robots provide doctors 
with visual 3D preoperative planning, which allows for more precise operations. Robotic assistance can reduce human 
error and help ensure the accurate placement of the prosthesis during the operation, which can reduce the risk of 
postoperative complications. The use of this technology can also help achieve better soft tissue balance in knee joint 
replacement. Joint replacement prostheses may become highly personalized in the future, with support from imaging 
technology, 3D printing, computer technology, and relevant laws and regulations.

Improved prosthetic implant materials are a promising direction of research. Four main design factors have been 
identified: reducing the elastic modulus to better match that of human bone (~30 GPa), improving the biocompatibility 
and corrosion resistance of metal alloys, using non-toxic alloy elements (avoiding toxic Al and V), and enhancing the 
tensile and fatigue strength of titanium alloys. Personalized design, particularly for children and young adults, can 
prevent damage during implant removal by designing new titanium alloys that do not grow well into bone. In the future, 
joint replacement prostheses may be highly personalized, but this will require support from imaging technology, 3D 
printing, computer technology, relevant laws, and regulations.
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