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Background: Metabolic syndrome (MS) is known to be associated with hypertension, insulin 

resistance, and dyslipidemia, and it raises the risk for cardiovascular diseases and diabetes mel-

litus. Telmisartan is used in clinic as an angiotensin II receptor blocker and it is also identified as 

activating peroxisome proliferator-activated receptors δ (PPARδ). Activation of PPARδ produced 

beneficial effects on fatty acid metabolism and glucose metabolism. This study aims to investi-

gate the effects of telmisartan on the modulation of MS in rats fed a high-fat/high-sodium diet. 

Methods: Rats were fed with a high-fat/high-sodium diet and received injections of strepto-

zotocin at low dose to induce MS. Then, rats with MS were treated with telmisartan. The weight, 

glucose tolerance, and insulin sensitivity were measured. The lipid profiles were also obtained. 

The weights of retroperitoneal and epididymal fat pads were determined. The role of PPARδ in 

telmisartan treatment was identified in rats pretreated with the specific antagonist GSK0660. 

Results: The results showed that telmisartan, but not losartan, significantly reduced plasma 

glucose and plasma insulin, and improved insulin resistance in rats with MS. Telmisartan also 

decreased blood pressure and lipids more significantly than losartan. Moreover, GSK0660 

effectively reversed the effects of telmisartan in the MS rats. In the MS group, telmisartan 

activated PPARδ to enhance the levels of phosphorylated GLUT4 in muscle or the expression 

of phosphoenolpyruvate carboxykinase (PEPCK) in the liver, which was also abolished by 

GSK0660. Telmisartan is useful to ameliorate hypertension and insulin resistance in rats with 

MS. Telmisartan improves the insulin resistance through increased expression of GLUT4 and 

down-regulation of PEPCK via PPARδ-dependent mechanisms. 

Conclusion: Telmisartan has been proven to ameliorate MS, particularly in the prediabetes 

state. Therefore, telmisartan is suitable to develop for the management of MS in clinics. 
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Introduction
Metabolic syndrome (MS) is a cluster of risk factors for metabolic abnormalities and 

cardiovascular disease. It includes abdominal obesity, dyslipidemia, hypertension, and 

hyperglycemia.1 Prevalence of MS is rapidly increasing worldwide.2 Approximately 31 

% of the world’s adult population is estimated to have MS.3 Moreover, MS is associated 

with a 2.5-fold increase in cardiovascular- and diabetes-related mortalities.4

 Diet is a potential factor that could be responsible for the rise in MS and the asso-

ciated cardiovascular pathologies.5 The diet pattern in Western countries is generally 

characterized by high intake of carbohydrates and saturated fat. The increase in calo-

rific intake has been associated with many diet-induced complications, including MS, 
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cardiovascular diseases, and nonalcoholic fatty liver disease. 

High dietary fat intake is associated with oxidative stress and 

an activation of the proinflammatory transcription factors.6

 High salt intake is also a significant environmental factor 

and is strongly associated with high blood pressure (BP). It 

has been previously indicated that essential hypertension 

is frequently related to insulin resistance and compensa-

tory hyperinsulinemia.7 MS patients also exhibit enhanced 

BP in response to sodium intake.8 Insulin resistance could 

activate the renin-angiotensin system (RAS) by increasing 

the expression of angiotensinogen, angiotensin II (AT2), 

and angiotensin receptor (AR), which may contribute to the 

development of hypertension.9 It has been recently discovered 

that adipocytes also produce aldosterone in response to AT2.10 

 The peroxisome proliferator-activated receptor δ 

(PPARδ) is a transcription factor that belongs to the super-

family of nuclear receptors.11 Activation of PPARδ has 

beneficial effects on fatty acid and glucose metabolism.12 

Moreover, PPARδ could enhance fatty acid β-oxidation and 

attenuate MS.13 PPARδ activation could prevent obesity and 

exert protective effects on hypertension and on the early 

manifestations of atherosclerosis in high-fat (HF) diet-fed 

mice.14

Telmisartan, an AR blocker (ARB), has the highest 

affinity for AT2 receptors among the available ARBs.15 

Telmisartan has a profound role in the improvement of 

glucose homeostasis in skeletal muscle, which is associated 

with activation of PPARδ.16 Several studies have revealed 

that telmisartan improves insulin sensitivity in patients with 

hypertension or the early stages of diabetes mellitus.17,18 

Many animal models were used to study disorders of 

MS19 in a manner to mimic the major signs of MS. In the 

induction of animal models, various approaches were applied 

in rodents including dietary manipulation, genetic modifica-

tion, and drugs.19 However, limitations of each model were 

observed. Dietary approaches included the use of a single 

type of diet or a combination of diets, such as high-fructose,20 

HF,21 high-fructose/HF,22 which usually affects the whole-

body metabolism, but the effects is limited23 and the symp-

tom did not include hypertension. The genetic models of MS 

included leptin-deficient (ob/ob) or leptin receptor-deficient 

(db/db) mice. Unlike humans with MS, ob/ob mice did not 

develop dyslipidaemia,24 and both ob/ob and db/db mice did 

not show hypertension.25,26 Although HF fed, spontaneously 

hypertensive rats show some symptoms of MS, they have 

genetically induced, rather than diet-induced, hyperten-

sion.27 Models of drug-induced MS include glucocorticoid-

induced28 and antipsychotic-induced29 models, which seem 

more suitable for the research of specific diseases. In this 

study, we established a MS model based on environmental 

effects, which promoted blood glucose, blood pressure, and 

blood fat using the HF, high-sodium (HS) diet intake and a 

low-dose of streptozotocin (STZ) injection. The main aim 

of this study was to investigate the effects of telmisartan 

on insulin resistance, hyperlipidemia, and hypertension in 

rats with MS.

Methods
Animals 
Male Sprague Dawley rats weighing 180–220 g were obtained 

from the National Animal Center (Taipei, Taiwan) and 

maintained in the animal center of Chi Mei Medical Center 

(Tainan, Taiwan). The animals were housed two rats per cage 

on a 12/12-hour light/dark cycle at a constant temperature 

(24 °C±1 °C) and humidity (60%±10%). This project was 

approved by the Institutional Animal Care and Use Commit-

tee of Chi Mei Medical Center (No. 105110330). The Guide 

for the Care was referred to during this study.  

Rat model with MS
The rats were randomly fed either standard rat chow (13.43% 

kcal as fat; TestDiet®; Richmond, IN, USA) or HF/HS diet 

for 8 weeks. Custom HF diets (60% kcal as fat; LabDiet®; 

St Louis, MO, USA) were applied to prepare a HF/ HS (4% 

NaCl) diet.30 All rats freely received normal tap water. 

After an 8-week feeding of a HF/HS diet, rats were 

starved for 12 hours then injected intraperitoneally with 

STZ at low dose (30 mg/kg)31 and were continued to be 

fed the same diet during the experiments. After 7 days of 

STZ injections, the rats had hyperglycemia (>200 mg/dL), 

hyperlipidemia (total cholesterol [TC] >110 mg/dL and 

triglyceride [TG] >150 mg/dL), an increase in body weight 

(8% of initial weight) or mean arterial BP >130 mmHg, and 

a marked decrease in high-density lipoprotein (HDL) choles-

terol (<35 mg/dL) that were used to confirm the development 

of MS.32 Rats with MS were allowed the HF/HS diet until 

the end of the study.

Treatment protocols
Once MS occurred, models and controls were treated by oral 

gavage with telmisartan (8 mg/kg/day; Boehringer Ingelheim, 

Ingelheim am Rhein, Germany)10 or losartan (8 mg/kg/day; 

Zydus Pharmaceuticals, Pennington, NJ, USA) for 4 weeks. 

 Moreover, PPARδ antagonist GSK0660 (10 mg/kg; Sigma-
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Aldrich Co., St Louis, MO, USA) was intraperitoneally 

injected 30 minutes before telmisartan administration. 

Food and water intake were measured daily. Body 

weight was monitored weekly. BP was determined at week 

9 (before drug treatment) and week 13 (the end of 4-week 

periods of the drug treatment) using the tail-cuff method 

with a sphygmomanometer (Muromachi Kikai Co., Ltd., 

Tokyo, Japan).33 

At week 14, insulin tolerance tests (ITTs) were performed 

in the rats fasting overnight. According to a previous report,34 

rats were intraperitoneally injected with 0.75 IU/kg of regular 

insulin. Blood was collected from the tail vein of rats under 

anesthesia before injection and after 15, 30, 60, 90, and 120 

minutes.

At the end of the study, livers and soleus muscles were 

collected from the sacrificed rats. The weight of retroperito-

neal and epididymal fat pads were also measured. All samples 

were immediately frozen in liquid nitrogen and kept at –80°C 

for further assays.

Biochemical measurements
Blood samples were collected from the tail vein of rats that 

were anesthetized with sodium pentobarbital (50 mg/kg, i.p.) 

and all efforts were made to minimize the animals’ suffering. 

Blood glucose concentration was measured35 using com-

mercial kits (Wako Pure Chemical Industries, Ltd., Osaka, 

Japan). Serum insulin concentrations were also measured 

using commercialized enzyme-linked immunosorbent assay 

kits (Mercodia AB, Uppsala, Sweden). The following formula 

was used to calculate the homeostasis model assessment for 

insulin resistance (HOMA-IR): (fasting insulin [μU/mL] × 

fasting glucose [mg/dL])/405. Additionally, the area under 

the curve was evaluated for the glucose concentrations deter-

mined at 0, 30, 60, 90, and 120 minutes. The lipid profile, 

including concentrations of TC, TG, and HDL, was estimated 

using laboratory kit reagents (Randox Laboratories, Crumlin, 

UK). The low-density lipoprotein (LDL) levels were then 

calculated using Frieldwann’s equation.

Western blotting analysis
The Western blotting analysis was was performed according 

to the previous method.52 Total protein lysates were extracted 

in lysis buffer (1% Triton X-100, 150 mM NaCl, 10 mM 

Tris [pH 7.5], and 5 mM ethylenediaminetetraacetic acid), 

containing a protease and phosphatase inhibitor cocktail 

(Sigma-Aldrich Co.). The protein concentration was deter-

mined with the BCA Protein Assay Kit (Thermo Fisher 

Scientific, Waltham, MA, USA). The following primary 

antibodies were used at 4°C overnight: anti-PPARδ (1:1000) 

and anti-GLUT4 (1:1000) (Abcam, Cambridge, UK); and 

anti-phosphoenolpyruvate carboxykinase (anti-PEPCK) 

(1:1000) (EMD Millipore, Billerica, MA, USA) was used 

as an internal control. The next day, the blots were incubated 

in the secondary antibodies at room temperature for 1 hour. 

Protein bands were visualized using the enhanced chemilu-

minescence kit (PerkinElmer Inc., Boston, MA, USA). The 

optical densities of the bands were determined using software 

(Gel-Pro® Analyzer Version 4.0 software; Media Cybernetics 

Inc., Rockville, MD, USA).

Statistical analyses
All results are provided as mean ± SEM of each group. All 

statistical analyses were carried out by SPSS, Version 21 

(IBM Corporation, Armonk, NY, USA). Differences between 

the two groups were determined by two-way repeated mea-

sures ANOVA. For comparisons between two independent 

groups, a Student’s t-test was used. Significance was accepted 

at p<0.05. 

Results
Telmisartan ameliorated hyperglycemia 
and insulin resistance in MS rats 
Rats fed the HF/HS diet for 8 weeks followed by an injec-

tion of STZ (30 mg/kg) developed MS because they became 

hyperphagic, obese, hyperlipidemia, insulin resistant, and 

hypertensive. The MS group displayed moderate glucose 

intolerance characterized by a 2.0-fold increase in fasting 

serum glucose and 2.2-fold increase in HOMA-IR index. 

In ITT experiments, the MS group showed higher glucose 

levels in serum that were improved by telmisartan treatment 

compared with the normal control group. 

Blood glucose was significantly reduced in MS rats 

treated with telmisartan compared with the vehicle-treated 

MS group (–28%, P<0.05) (Figure 1A). Similarly, the 

HOMA-IR was significantly attenuated in the telmisartan-

treated group (–29%, P<0.05). However, losartan did not 

affect the glucose levels in MS rats (Figure 1C−E). 

Effects of telmisartan on body weight, 
food intake and white adipose mass in MS 
rats
The MS group showed a 14% increase in body weight com-

pared with the control group. Also, the MS group significantly 

increased retroperitoneal fat mass and epididymal fat mass in 

a different way to the control group (Table 1). In addition, the 
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average daily food intake and water intake were elevated in 

MS groups more markedly than in the control group (Table 2).

Telmisartan significantly reduced the rise in body weight 

of MS rats compared with the vehicle-treated MS rats. Retro-

peritoneal fat mass and epididymal fat mass were also noted 

Figure 1 Effects of telmisartan or losartan on MS rats. 
Notes: The change in (A) blood glucose; (B) mean arterial blood pressure; (C) HOMA-IR; (D) AUC of HOMA-IR; and (E) ITT in normal rats and MS rats after 4 weeks of 
experimental period. Con (white column), SD rats fed normal chow diet; Con+Tel (white column), SD rats fed normal chow diet and administered with telmisartan (8mg/kg); 
Con+Los (white column), SD rats fed normal chow diet and administered with losartan (8mg/kg); Veh (black column), MS rats received with vehicle; Veh+Tel (black column), 
MS rats received administered with telmisartan (8mg/kg) for 4 weeks; Veh+Los (black column), MS rats received administered with losartan (8mg/kg) for 4 weeks. Data are 
expressed as mean ± SEM (n = 6). *P<0.05 vs Con; #P<0.05 vs Veh. 
Abbreviations: AUC, area under the curve; Con, control; HOMA-IR, homeostatic model assessment for insulin resistance; ITT, insulin tolerance test; Los, losartan; MS, 
metabolic syndrome; SD, Sprague Dawley; Veh, vehicle; Tel, telmisartan.
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to be reduced by telmisartan in the MS group at the end of 

experiments. However, a similar change was not observed in 

MS rats administered with losartan. Additionally, telmisartan 

or losartan did not influence body weight or fat mass in rats 

that received normal chow diet (Table 1).
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Telmisartan improved lipid metabolism in 
MS rats
Lipids in normal control or MS rats treated with telmisartan 

or losartan shown in Table 1. Significant increases in TC, TG, 

HDL, and LDL cholesterol concentrations were observed 

in MS rats. 

Telmisartan attenuated the plasma TC, TG and LDL 

levels significantly and increased the HDL levels. However, 

losartan produced a little improvement in the lipids in MS 

rats compared with telmisartan-treated MS rats.

Effects of telmisartan and losartan on BP 
Mean arterial BP was significantly increased in MS rats 

and mild hypertension was observed compared with the 

control group (144.3±10.7 vs 92.9±7.9 mmHg, P<0.05). A 

significant reduction in BP was observed in MS rats treated 

with telmisartan or losartan (telmisartan: 110±12.7 mmHg 

and losartan: 115.8±10.6 mmHg) compared with those not 

treated (144.3±10.7 mmHg, P<0.05) (Figure 1B). 

PPARδ antagonist inhibited the effects of 
telmisartan in MS rats 
To investigate the role of PPARδ in the effects of telmisartan 

in MS rats, the selective PPARδ antagonist GSK0660 was 

pretreated with telmisartan.

Table 2 Effects of telmisartan or losartan on food intake and water intake in normal rats and MS rats

Con Con+Tel Con+Los MS+Veh MS+Tel Con+Los

Food intake (g/day) 36.88±2.47 39.13±3.76 38.38±1.89 47.88±1.35* 49.50±1.77* 48.75±4.20
Water intake (g/day) 30.88±2.47 30.75±2.25 29.25±1.84 41.88±3.489 43.50±5.13* 45.75±4.49

Notes: Average daily food and water intakes were calculated. Con, SD rats fed normal chow diet; MS, MS rat model using SD rats as described in Methods; Veh, MS rats 
received vehicle. Rats were administered daily with telmisartan (8 mg/kg) or losartan (8mg/kg) for 4 weeks. Data are expressed as mean ± SEM (n = 6). *P<0.05 vs Con; 
#P<0.05 vs Veh.
Abbreviations: Con, control; Los, losartan; MS, metabolic syndrome; SD, Sprague Dawley; Tel, telmisartan; Veh, vehicle.

Table 1 Effects of telmisartan (Tel) or losartan (Los) on the metabolic parameters in normal rat and MS rats

Con Con+Tel Con+Los MS +Veh MS +Tel MS +Los

TG (mg/dL) 70.5±7.21 72.88±8.13 73.75±7.05 131.00±9.74* 105.63±8.43*# 122.25±8.31*
TC (mg/dL) 57.75±4.53 57.63±5.45 58.63±4.66 74.13±5.59* 67.13±5.17# 70.63±6.55*
HDL(mg/dL) 25.00±2.39 25.75±2.19 25.88±1.73 20.50±1.31* 24.25±2.66# 21.25±1.75*
LDL(mg/dL) 17.90±4.82 17.30±6.07 18.00±4.77 27.43±6.28* 18.55±7.94# 24.93±5.96*
Retroperitoneal fat mass (g) 4.54±0.75 4.49±0.66 4.71±0.45 6.78±0.75* 5.66±0.78# 6.71±0.55*
Epididymal fat mass (g) 4.23±0.53 4.33±0.69 4.58±0.57 7.21±0.95* 5.98±0.96*# 6.44±0.56*
Body weight (g) 272.63±10.01 276.5±7.83 279.75±8.71 311.38±13.70* 289.25±6.84# 314.13±16.25*
The increase of body weight 
(Compared with Con,%)

≈0 ≈0 ≈0 14.36±1.72* 4.43±1.55# 15.14±1.20*

Notes: Control (Con), SD rats fed normal chow diet; Metabolic Syndrome (MS), SD rats were induced MS model as described in methods; Vehicle (Veh), MS rats received 
vehicle. Rats were daily administered with telmisartan (8 mg/kg) or losartan (8 mg/kg) for 4 weeks. Data shown mean ± SEM (n = 6). *P<0.05 vs. Con; #P<0.05 vs. Veh. 
Abbreviation: SD, Sprague Dawley; Con, control; Los, losartan; MS, metabolic syndrome; Veh, vehicle; Tel, telmisartan.

GSK0660 significantly reduced the beneficial effects 

of telmisartan in blood glucose (from 153.0±17.1 mg/dL 

to 185.6±14.2 mg/dL, P<0.05) (Figure 2A). Additionally, 

TG and TC levels in the telmisartan-treated MS group were 

reversed markedly (Table 3). Moreover, pretreatment with 

GSK0660 reversed the reduction of HOMA-IR index and 

the improvement of ITT, which were induced by telmisartan 

in MS rats (P<0.05) (Figure 2C−E). In addition, the BP-low-

ering effect of telmisartan was also inhibited by GSK0660; 

GSK0660 reversed BP from 137±1 mmHg to 152±1 mmHg 

(P<0.05) showing ~30% recovery in the telmisartan-treated 

MS group (Figure 2B). Administration of GSK0660 also 

reversed the glucose and lipid profiles modified by telmis-

artan in MS rats but not in the control group. In addition, 

GSK0660 also reversed the body weight and adipose mass 

in MS rats attenuated by telmisartan (Table 3). 

Telmisartan ameliorates MS through PPARδ-dependent 

mechanisms in liver and skeletal muscle 

The protein levels of GLUT4 in skeletal muscle and 

PEPCK in the liver of MS rats were determined. As shown 

in Figure 3A, the decreased GLUT4 and PPARδ expression 

in the soleus muscle of MS rats were reversed by telmisartan. 

Additionally, the increased hepatic PEPCK level in MS rats 

was also markedly reduced by telmisartan (Figure 3B). But 

similar changes were not observed in losartan-treated MS 
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rats. Moreover, the effects of telmisartan were attenuated 

by GSK0660 in MS rats (Figure 4). Therefore, the results 

suggested that the effects of telmisartan in liver and skeletal 

muscle were PPARδ dependent.

Discussion
A rat model was successfully developed for MS using the 

modified diet and pancreatic toxin described in this study. 

Male SD rats received a HF/HS diet for 8 weeks, followed 

by a low-dose STZ (30 mg/kg) injection. The MS rats showed 

insulin resistance, impaired glucose tolerance, obesity, 

dyslipidemia, and hypertension. Moreover, this MS model 

mimics the main changes that occur in humans.

 In this study, we found that telmisartan improved glu-

cose and/or lipid profiles in MS rats through PPARδ activa-

tion. Telmisartan significantly decreased the plasma insulin 
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Figure 2 PPARδ antagonist GSK0660 inhibited the effects induced by chronic telmisartan treatment in MS rats. 
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and markedly reduced plasma glucose. Telmisartan also 

alleviated the impaired insulin resistance and ameliorated 

the responses of ITT and HOMA-IR in MS rats. Addition-

ally, telmisartan significantly attenuated the increased 

adipose mass and reduced increased plasma TC and TG 

concentrations that may be due to modification of adipocyte 

Table 3 GSK0660 inhibited the effects of telmisartan on various metabolic parameters in MS rats

Parameters Con Con+GSK MS+Veh MS+Tel MS+Tel+GSK MS+GSK

TG (mg/dL) 70.50±7.21 72.38±9.68 131.00±9.07* 105.63±8.43*# 135.88±10.80* 138.00±12.33*
TC (mg/dL) 57.75±4.53 59.63±4.21 74.13±5.59* 67.13±5.17# 77.13±8.48* 77.25±8.60*
HDL (mg/dL) 25.00±2.39 24.25±2.38 20.50±1.31* 24.25±2.66# 21.38±1.85* 20.63±2.83*
LDL (mg/dL) 17.90±4.82 19.90±6.15 27.43±6.28* 18.55±7.94# 28.58±10.53* 29.03±9.54*
Retroperitoneal fat mass (g) 4.54±0.75 4.62±0.59 6.78±0.75* 5.66±0.78# 7.01±0.65* 6.85±0.42*
Epididymal fat mass (g) 4.23±0.53 4.31±0.73 7.21±0.95* 5.98±0.96*# 6.92 ±0.58* 6.44±0.56*
Body weight (g) 272.63±10.01 268.4±8.83 311.38±13.70* 289.25±6.84# 320.51±13.31* 318.87±14.58*
The increase of body 
weight (compared with Con, %)

≈0 ≈0 14.36±1.72* 4.43±1.55# 16.19±2.51* 15.74±2.32*

Notes: Con, SD rats fed normal chow diet; MS, MS rat model using SD rats as described in Methods; Veh, MS rats received the vehicle. Rats were administered with 
telmisartan (8 mg/kg) or losartan (8mg/kg) for 4 weeks. GSK0660 were pretreated 30min before telmisartan administration. Data are expressed as mean ± SEM (n = 6). 
*P<0.05 vs Con; #P<0.05 vs Veh. 
Abbreviations: Con, control; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MS, metabolic syndrome; SD, Sprague Dawley; TC, total cholesterol; Tel, 
telmisartan; TG, triglyceride; Veh, vehicle.

Figure 3 Effects of telmisartan or losartan on PPARδ and related signal expression in skeletal muscle and liver. 
Notes: (A) Representative immunoblots are shown in the upper part of the figure, and the relative expression levels of GLUT4 and PPARδ expression in soleus muscle 
are indicated in the lower. (B) Representative immunoblots are shown in the upper part of the figure, and the relative expression levels of PEPCK and PPARδ in liver are 
indicated in the lower. Con (white column), SD rats fed normal diet; Con+Tel (white column), SD rats fed normal diet and administered with telmisartan (8mg/kg); Con+Los 
(white column), SD rats fed normal diet and administered with losartan (8mg/kg); Veh (black column), MS rats received with vehicle; Veh+Tel (black column), MS rats received 
administered with telmisartan (8mg/kg) for 4 weeks; Veh+Los (black column), MS rats received administered with losartan (8mg/kg) for 4 weeks. Data are expressed as mean 
± SEM (n = 4). *P<0.05 vs Con; #P<0.05 vs Veh. 
Abbreviations: Con, control; PEPCK, phosphoenolpyruvate carboxykinase; PPARδ, peroxisome proliferator-activated receptor delta; Los, losartan; MS, metabolic 
syndrome; SD, Sprague Dawley; Tel, telmisartan; Veh, vehicle.
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biology and metabolism.36 This resulted in an increase of 

energy expenditure and decrease of dietary-induced obesity 

and/or accumulation of visceral fat.37,38 It is consistent with 

a previous report that telmisartan activates PPARδ expres-

sion and reduces weight gain and HF-induced obesity.39 

In this study, telmisartan produced a beneficial effect on 

hyperglycemia, insulin resistance, and lipid metabolism 

more effectively than losartan in the MS model, which is 

consistent with a previous report.40 In clinics, telmisartan 

showed effects on metabolic parameters to a greater degree 

than losartan in hypertensive patients with MS.41 A large-

scale clinical study reported that hypertensive patients with 

type 2 diabetes had reduced plasma glucose and serum TG 

concentrations after 6 months’ treatment with telmisartan 

compared with baseline values.42 Telmisartan may induce 

beneficial effects on MS by direct blockade of the AT1 

receptor. Some studies have established that AT1 receptor 

stimulation by AT2 contributes to insulin resistance and 

its associated deleterious metabolic profile.43,44 Therefore, 

the AT1 receptor blockade ameliorates the disorders and 

partially explains the beneficial effects of telmisartan on 

insulin resistance. A recent study indicated that the pre-

vention of weight gain by telmisartan is partly attributed 

to an Ang-(1-7)-dependent mechanism.45 However, it also 

indicated that lowering of BP in fructose-fed rats by the use 

of other antihypertensive drugs, such as calcium channel 

blockers,46,47 failed to show a metabolic impact, which sug-

gests that telmisartan improved insulin resistance via BP-

independent mechanisms. Moreover, our study showed that 

the beneficial effects of telmisartan on MS were markedly 

Figure 4 Effects of the PPARδ antagonist GSK0660 on expressions of PPARδ and related signals in skeletal muscle and liver isolated from the telmisartan-treated MS rats. 
Notes: (A) Representative immunoblots are shown in the upper part of the figure, and the relative expression levels of GLUT4 and PPARδ in soleus muscle are indicated 
in the lower. (B) Representative immunoblots are shown in the upper part of the figure and the relative expression levels of PEPCK and PPARδ in the liver are indicated in 
the lower. Con (white column), SD rats fed normal diet; Con+Tel (white column), SD rats fed normal diet and administered with telmisartan (8mg/kg); Veh (black column), 
MS rats received with vehicle; Veh+Tel (black column), MS rats received administered with telmisartan (8mg/kg) for 4 weeks; Veh+Tel+GSK (black column), MS rats received 
administered with telmisartan (8mg/kg) for 4 weeks and GSK0660 were pretreated 30 minutes before telmisartan treatment; Veh+GSK (black column) MS rats received 
administered with GSK0660 and vehicle for 4 weeks. Data are expressed as mean ± SEM (n = 4). *P<0.05 vs Con; #P<0.05 vs Veh. 
Abbreviations: Con, control; GSK, GSK0660; PEPCK, phosphoenolpyruvate carboxykinase; PPARδ, peroxisome proliferator-activated receptor delta; MS, metabolic 
syndrome; SD, Sprague Dawley; Tel, telmisartan; Veh, vehicle.
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reversed by GSK0660 at the dose sufficient to block PPARδ. 

Therefore, telmisartan may activate PPARδ to improve 

glucose and lipid metabolism and prevent the increase of 

insulin resistance induced by diet.48

 Increase in insulin sensitivity is mainly induced by the 

enhancement of insulin signals. PPARδ is the most abun-

dant isoform among the three PPARs in skeletal muscle.49 

Alternatively, Ang II (via AT receptor) is the predominant 

component of the RAS, which appears to be antagonistic 

to insulin action and contributes to insulin resistance.50 Ang 

II impairs the insulin-induced activation of IRS1 and Akt 

in addition to GLUT4 membrane translocation in skeletal 

muscle cells.51 Although it is an ARB, telmisartan could 

activate PPARδ to increase the oxidative capacity and result 

in the usage of glucose or breakdown of fat.52 Insulin induces 

GLUT4 translocation to the cellular membrane to facilitate 

glucose uptake in skeletal muscle. Insulin resistance leads to 

defective PI3K/Akt signaling, reduced GLUT4 expression, 

and impaired insulin-stimulated glucose uptake.49 The pres-

ent study demonstrated that telmisartan activates PPARδ in 

the skeletal muscle of MS rats, which is consistent previous 

research.16 Moreover; telmisartan attenuated the increased 

expression of hepatic PEPCK in a dose-related manner. It has 

been documented that PPARδ functions as a nuclear sensor of 

dietary fats, capable of modulating immune response through 

regulation of metabolic programs in the liver.53 Therefore, 

telmisartan could activate PPARδ to alter peripheral insulin 

sensitivity and improve pancreatic β-cell function. 

Elevated BP is associated with metabolic disorders.54 In 

this study, HS intake was an important factor associated with 

the exacerbation of hypertension.55 Excessive salt intake may 

stimulate ROS production to increase the oxidative stress 

in various organs including muscle, liver and fat tissues in 

rats.56,57 HS diet also causes a decrease in the activity of cir-

culating RAS to lower Ang II levels, which may induce the 

compensatory upregulation of AT receptors.58 Telmisartan, 

as a long-acting ARB, showed the antihypertensive effect 

more effectively than losartan, which is consistent with a 

previous report.59 A 3-year study confirmed the advantage of 

telmisartan in controlling BP and reducing the risk of MS.60 

Telmisartan may cause an AT receptor blockade to result in a 

fall of peripheral resistance59 or a PPAR-dependent increase 

in eNOS expression and activity.61 PPARδ has been suggested 

as a potential therapeutic target in the treatment of hyper-

tensive subjects with insulin resistance. We also confirmed 

that systemic blockade of PPARδ seems to be associated 

with the elevation of BP in MS rats. Chronic PPARδ agonist 

administration in the hypertensive rats induced a marked 

decrease in BP.58 In addition, the PPARδ agonist also induced 

the upregulation of hepatic lipid oxidation processes to sup-

press Ang II-induced dysfunctional adipogenesis and lipid 

accumulation.61

Conclusion
In summary, we have provided experimental evidence that 

telmisartan is effective in ameliorating hypertension, hyper-

insulinemia, and hypertriglyceridemia through activation of 

PPARδ in rats with MS. Therefore, the preclinical data sup-

port that treatment with telmisartan is suitable for managing 

patients with MS after clinical trials in the future.
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