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Abstract: Oxygen depletion in confined spaces represents one of the most serious and underestimated
dangers for workers. Despite the existence of several commercially available and widely used gas
oxygen sensors, injuries and deaths from reduced oxygen levels are still more common than for other
hazardous gases. Here, we present hydrogel-based organic electrochemical transistors (OECTs) made
with the conducting polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)
as wearable and real-time oxygen gas sensors. After comparing OECT performances using liquid
and hydrogel electrolytes, we identified the best PEDOT:PSS active layer and hydrogel coating
(30 µm) combination for sensing oxygen in the concentration range of 13–21% (v/v), critical for
work safety applications. The fast O2 solubilization in the hydrogel allowed for gaseous oxygen
transduction in an electrical signal thanks to the electrocatalytic activity of PEDOT:PSS, while OECT
architecture amplified the response (gain ~ 104). OECTs proved to have comparable sensitivities if
fabricated on glass and thin plastic substrates, (−12.2 ± 0.6) and (−15.4 ± 0.4) µA/dec, respectively,
with low power consumption (<40 µW). Sample bending does not influence the device response,
demonstrating that our real-time conformable and lightweight sensor could be implemented as a
wearable, noninvasive safety tool for operators working in potentially hazardous confined spaces.

Keywords: oxygen sensor; PEDOT:PSS; organic electrochemical transistor; hydrogel; work safety

1. Introduction

Except for small living entities still relying on less efficient, anaerobic metabolisms,
most animals depend on oxygen, as it plays an important role in their energy-generating
processes [1]. Human beings metabolize around 200 g of oxygen daily and could not live
without an O2 supply for longer than 10 min, with potentially irreversible neural damage
(neuron death) already occurring after few minutes [2]. Its importance is further highlighted
by the fact that, despite the existence of different hazardous gases known for their toxicity
and lethal effects, oxygen depletion is still one of the major causes of death and injuries and
is often underestimated [3]. Especially in confined spaces, oxygen-concentration reductions
can be caused by leakage of inert gases, such as nitrogen, helium, or argon that are often
used in laboratories, medical clinics or industrial facilities. In addition, stored ripening
fruits, organic material decomposition, combustion, bacteria, and rusting metals could
contribute in oxygen consumption, thus producing an oxygen-depleted environment [4,5].
In the last decade, reports by the Centers for Disease Control and Prevention (CDC) and
the U.S. Bureau of Labor Statistics demonstrated that oxygen deficiency in confined spaces
is a serious issue, causing a number of deaths each year [6,7]. It is worth noting that the
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Occupational Safety and Health Administration (OSHA) highlights the hazards and risks
of confined spaces, requiring gas monitors to prevent work injuries.

Nowadays, robust and reliable oxygen sensors are commercially available, either
continuously monitoring the room gas percentage or working as portable systems for
the single end-user [8–12]. However, these technologies are expensive and cannot be
included as a standard equipment for each worker. Thus, wearable oxygen sensors directly
integrated on worker overalls or helmets as personal protective equipment (PPE) could
mitigate this issue, providing continuous monitoring of the gaseous oxygen level in the
wearer’s surroundings.

Wearable sensors need to be biocompatible, flexible, lightweight and conformable
to be non-invasive and easily worn. Nowadays, there is heightened interest in wearable
technologies, as highlighted by several reviews, reporting up-to-date advances and im-
plementation of chemical, gas and pressure/strain sensors aiming at meeting the above
mentioned needs [13–16]. Among these sensors, conducting polymer-based devices have
been recently investigated due to their flexibility, stretchability and low-cost which allow
the production of comfortable devices suitable for daily use [17–19].

In our previous work, we proposed poly(3,4-ethylenedioxythiophene):poly(styrene
sulfonate) (PEDOT:PSS) organic electrochemical transistors (OECTs) to monitor dissolved
oxygen concentration in cell mediums for biological applications. [20] OECTs are three-
terminal devices in which the electronic current flowing in the semiconducting channel is
modulated by means of an electrolyte solution throughout the application of a low potential
(<1 V) on the gate. Gate voltage allows for ion injection/extraction in/from the polymeric
matrix, reversibly changing its redox state, thus its electrical conductivity. OECTs have
been widely used as chemical sensing devices (analytes, biomarkers, molecules) [21–28]
since they allow for low power consumption, ease of functionalization and inherent signal
amplification and filtering. In particular, our devices exploited PEDOT:PSS electrocatalytic
activity toward oxygen when it was negatively polarized with respect to a reference
electrode. Consequently, the occurring oxygen reduction reaction led to polaronic state
formation without the need of external dopants or specific functionalization, as previously
modelled by Singh et al. using density functional theory [29]. The energetically preferable
reaction is the following:

4Pedot0 + O2 + 4H+ → 4Pedot+ + 2H2O (1)

which causes the injection of holes in partially oxidized Pedot:Pss. When Vg and Vd
are set to reach the conditions that allow the electrocatalysis at the PEDOT:PSS channel
(positive gate bias triggering device turn off), oxygen reduction takes place, enhancing the
conductivity and the current that flows in the conducting polymer channel.

In the present work, working to develop a reliable and low-cost gas oxygen sen-
sor, we moved from the detection of dissolved oxygen in solution to the identification
of gaseous oxygen in a confined space in the target range for work-safety applications,
13–21% O2, without any specific functionalization of the sensing PEDOT:PSS film. Since
the electrolyte solution, which is an important component in an OECT architecture, does
not reach a rapid equilibrium with the surrounding environment, we substituted the liquid
electrolyte with a conducting agarose-based hydrogel coating. In this way, we enabled
electrochemical sensing on gaseous compounds permeating/dissolving in the hydrogel,
foreseeing a compact and real-time wearable sensor. The transistor architecture provides a
high output signal amplification (103–104) owing also to the extremely low gate current
(leakage current).

Wearable sensor devices were patterned on thin plastic substrates, proving the repeata-
bility, reproducibility and preservation of the performances under bending.

The here proposed low-cost wearable OECTs patterned on plastic provide proof-of-
concept sensors for real-time and reliable gas-oxygen monitoring with low power con-
sumption (30–40 µW). The device integration on worker overalls/helmets would help keep
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the wearer safe constantly, alerting the user of oxygen depletion in confined spaces with
low invasiveness.

2. Materials and Methods
2.1. OECT Fabrication

Glass/plastic substrates were cleaned by sonication in acetone/isopropanol/distilled
water baths. Afterward, substrates were dehydrated for 10 min at 110 ◦C and Microposit
S1818 positive photoresist was spin coated (4000 rpm for 60 s) and annealed at 110 ◦C
for 1 min. Metallic contacts were patterned through direct laser lithography by using the
ML3 Microwriter (from Durham Magneto Optics, Cambridge, UK). The photoresist was
developed with a Microposit MF-319 developer. Then, 10 nm of chromium and 30 nm of
gold were deposited by thermal evaporation. Samples were immersed in acetone for 4 h
for photoresist liftoff and then rinsed by sonication in acetone/isopropanol/distilled water
baths. A double layer of S1818 was deposited for the photolithography of the PEDOT:PSS
channel [30]. After the development, substrates were treated with air plasma (15 W for
4 min) and the PEDOT:PSS solution was spin coated at 3000 rpm for 10 s. The solution was
made of 93.75% PEDOT:PSS (Clevios PH1000, provided by Heraeus Deutschland GmbH &
Co., Leverkusen, Germany) with 5% ethylene glycol (EG) (Sigma Aldrich, St. Louis, MO,
USA), 1% 3-glycidoxypropyltrimethoxysilane (GOPS) (Sigma Aldrich, St. Louis, MO, USA)
and 0.25% 4-dodecylbenzenesulfonicacid (DBSA) (Sigma Aldrich, St. Louis, MO, USA).
This suspension was treated in an ultrasonic bath for 15 min and filtered using 1.2 µm
cellulose acetate filters (Sartorius) before the deposition. The resulting film thickness was
(100± 10) nm. The samples were subsequently baked at 120 ◦C for 1 h. Then, the photoresist
was lifted off following the procedure reported above, and devices were submerged in
distilled H2O for 1 h and dried with a nitrogen flux. The resulting OECTs presented both
channel and gate in PEDOT:PSS, the first having length (L) and width (W) of 1 mm and
0.3 mm, respectively, while the latter dimensions being 1.9 mm × 0.8 mm. Channel to gate
distance was d = 1.6 mm.

A phosphate buffer solution was prepared dissolving 0.1 M of H2KPO4 in water and
adjusting the pH with a concentrated solution of NaOH, reaching a final value of 5.5.
Hydrogel formulation was prepared dissolving 0.7% of agarose in 0.1 M PBS (described
above) at 90 ◦C, obtaining a viscous but clear solution. Once removed from the hotplate,
the hydrogel was then ready to use. In particular, devices with the thin hydrogel (30 µm)
layer were further refined by dip-coating the sample in the hydrogel formulation for 10 s
and drying it at room temperature for 10 min. OECTs having the 0.1 M PBS or the thick
hydrogel (5 mm) as gating electrolyte were completed using a transparent, cylindrical
polydimethylsiloxane (PDMS) well to contain the electrolyte. Devices having the thin or
thick hydrogel coating are referred to as H-Thin and H-Thick throughout this work. H-Thin
OECTs were finally immersed in glycerol for 10 s and left at room temperature for 1 h
to limit water loss over time. Similarly, H-Thin OECTs were fabricated onto transparent,
125 µm thick polyethylene napthalate (PEN) films to yield sensors on flexible substrates.

2.2. Electrical Characterization

Electrical data for the transcharacteristic (transfer), characteristic (output) and Id(t)
curves were acquired using a Keysight B2912A (Keysight Technologies, Santa Rosa, CA,
USA) for channel and gate biasing. Transfer curves were obtained with a constant bias of
−0.3 V on the channel (Vd), sweeping the gate potential (Vg) between −0.2 V and 0.7 V
with a scan rate of 0.04 V/s. The fifth cycle (stable response) was taken for plotting both the
transfer and transconductance (first order derivative of the transfer) curves. Output curves
were studied sweeping the Vd between 0 and −0.4 V with a scan rate of 0.04 V/s, for the
eight different constant Vg (from 0 V to 0.7 V, step = 0.1 V). Id(t) plots were studied with
constant polarizations of the channel, −0.3 V, and on the gate, 0.3 V, the last one selected
for maximum OECT transconductance.
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Pulsed experiments for analyzing the dynamic behavior of the OECTs were carried
out with constant Vd = −0.1 V, and a square wave potential on the gate electrode, from
Vg(OFF) = 0 V to Vg(ON) = 0.3 V, with 25% of duty cycle. The cycle duration lasted 0.4 s for
the devices having 0.1 M PBS and the thick hydrogel as electrolyte, and 20 s for the thin
hydrogel-based device.

AC measurements were performed with the MFLI lock-in amplifier (from Zurich
Instruments, Zurich, Switzerland). The OECTs were biased with constant DC drain
and gate voltages corresponding to their maximum transconductance (Vg = 0.3 V and
Vd = −0.3 V, respectively). A small sinusoidal oscillation with amplitude |vg,AC| = 100 mV
and angular frequency of ω was then applied to the gate electrode. This led to an AC
current in the transistor channel, whose amplitude |id,AC| was measured from the drain
terminal with the lock-in amplifier. During each acquisition, the modulation frequency was
swept between 0.1 and 103 Hz to acquire the current spectrum of the sensor. The OECT
transconductance was then calculated as a function of the frequency assuming a linear
response of the device (gm,AC = |id,AC|/|vg,AC|).

2.3. Data Analysis

The device dynamic time response (τ) was extracted using the following exponential
decay function [31,32]:

Id = Id,o ×Ae−
(t−t0)

τ (2)

The sensitivity of device sensing O2 was extracted as the slope of the linear fit in the
range under study. The calibration line was obtained linearly fitting Id versus the logarithm
of the O2 percentage.

3. Results
3.1. PBS-vs.-Hydrogel as Gating Electrolyte for OECTs

Organic electrochemical transistors (OECTs), having 1 mm × 0.3 mm (L ×W) and
1.9 mm × 0.8 mm PEDOT:PSS channel and gate respectively, were fabricated using direct
writing lithography, as outlined in Materials and Methods. PEDOT:PSS was chosen as
the active material because it allows for oxygen detection and quantification without any
particular functionalization, as demonstrated in our work on dissolved-oxygen sensing
using PEDOT:PSS-based OECTs. Similarly, the device dimensions were scaled down,
maintaining the same ratio between the gate and channel active areas of the previous
work, Ag/Ach = 5. Indeed, the larger gate area allowed for a greater potential drop on
the channel/electrolyte interface, where the oxygen reaction takes place [20]. In order to
move from sensing the oxygen dissolved in liquid to the study of the oxygen in gas phase,
we combined the OECT with a phosphate buffer saline (PBS)-based agarose hydrogel,
which supplied the ions for the PEDOT:PSS channel doping/dedoping. We then compared
the device performances gated using liquid PBS or the hydrogel, studying two different
thicknesses, namely an extremely thin coating (H-Thin, 30 µm) and a very thick one
(H-Thick, 5 mm). H-Thin, PBS and H-Thick OECT schematic renderings are reported
in Figure 1a–c, respectively. For the experiments involving PBS and the thick hydrogel,
a transparent, cylindrical Polydimethylsiloxane (PDMS) well was used to contain the
electrolyte, as shown in Figure 1b. The complete device characterization is reported in
Figure 1 and Figure S1. It is worth noting that OECTs display current modulation also
when the standard electrolyte PBS is substituted by the hydrogel as an electrolyte for
gating, as shown in Figure 1d and Figure S1a for transcharacteristic and output curves,
respectively. Conversely, a slight reduction (around 30%) in the transconductance (gm)
peak is reported in Figure 1e for the hydrogel-based OECTs, together with a slight voltage
shift for the H-Thin one. Despite similar performances in the steady-state behavior, a
significant difference in the device dynamic response and in the frequency domain was
evident for the thin hydrogel-based OECT. Figure 1f compares the average time response
(τ) upon a positive, square voltage polarization on the gate (switching between the “on”
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and “off” state) of four OECTs per type. H-Thin OECT τ values underwent an increase in
the time response of three orders of magnitude (as visible also in the time scales of the raw
drain currents in Figure S1b, Supplementary Material). We ascribed this increment to the
enhancement of the ionic resistance, caused by the thinner hydrogel layer, as suggested
by the reduction of its gate current, Ig (Figure S1c). PBS-based and H-Thick samples had
similar time responses and Ig values. The transconductance versus frequency analysis
confirmed the slower response of the H-Thin OECT, highlighted by the shift of the curve
towards smaller frequencies (Figure 1g). However, it is worth noting that the H-Thin OECT
time response can still be considered low (<0.5 s) and that the lower gate current leads to an
increased gain of the device, compared to PBS-based and H-Thick OECTs. A summary of
the described device parameters is outlined in Table 1, assessing the effective OECT gating
using agarose hydrogel as an electrolyte.

Figure 1. OECT configuration and electrical characterization. Rendering of the OECT devices on glass
used with the thin hydrogel coating (a) and the thick hydrogel (b) or PBS electrolytes (c); (d) transfer;
(e) transconductance; (f) time response to a voltage pulse on the gate of the OECT having PBS (red);
the thin hydrogel (blue), or the thick one (black), as an electrolyte for gating. (g) Transconductance
versus frequency measurements for OECTs having PBS (red); the thin hydrogel (blue); or the thick
one (black); as electrolyte for gating, with relative cutoff frequencies (corresponding to the—3 dB
points) extracted at 37, 3.7 and 21 Hz, respectively.

Table 1. OECT parameters and currents extracted from the pulsed and transfer measurements for the
three selected electrolytes (mean ± standard deviation).

PBS H-Thick H-Thin

τ [ms] 1.005 ± 0.006 1.12 ± 0.03 198.21 ± 0.13
Ig (=0 V) [µA] −0.31 ± 0.06 −0.27 ± 0.17 −0.0258 ± 0.0012

Ig (=0.3 V) [µA] −0.20 ± 0.07 −0.14 ± 0.10 −0.0165 ± 0.0013
Id (=0 V) [µA] −46.69 ± 0.08 −58.27 ± 0.10 −30.818 ± 0.007

Id (=0.3 V) [µA] −25.34 ± 0.07 −41.90 ± 0.10 −18.297 ± 0.004
Gain = Id/Ig (0 V) 150 220 1195

Gain = Id/Ig (0.3 V) 130 300 1110
Gm peak [µS] 207 174 241

3.2. Oxygen Gas Sensing Using OECTs on Glass Substrates

Oxygen gas sensing tests were carried out fluxing gas streams containing O2/N2 at
different concentrations (starting from a nitrogen-saturated environment to set the blank
baseline of the device). The schematic setup is reported in Figure S2. It is worth noting
that the H-Thick OECT did not show significant responses to the four increasing oxygen
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additions (starting from a nitrogen-saturated environment) in the range applicable for work
safety (Figure S3), probably owing to the thickness of the hydrogel layer whose oxygen
permeability is not fast enough for sensing in the selected time scale. Only a slight drift of
the current from the baseline was observed, which cannot be correlated with O2 additions.
Since we aimed for a device capable of quickly warning potential oxygen deficiencies in
the workplace, the thicker hydrogel presented unsuitable performances for our purposes.
In contrast, a fast response to O2 variations was obtained with the thin hydrogel coating.
H-Thin OECTs were thus chosen for oxygen sensing measurements and were further
improved by adding a glycerol treatment, which, as highlighted in our previous work,
improved the stability of the current output by limiting water loss in the hydrogel [26].
Figure S4 proves that glycerol does not alter the electrical performances of the OECTs.

Figure 2a reports the output current increase of a H-Thin OECT upon several oxygen
additions (starting from a nitrogen saturated environment) in the sealed chamber, with
Vd = −0.3 V and Vg = 0.3 V, chosen for maximum transconductance. We hypothesize that,
owing to the thin hydrogel layer, O2 rapidly dissolves in the electrolyte and electrochemi-
cally interacts as oxidant agent with the PEDOT:PSS channel, doping the semiconducting
material, and increasing its conductivity. The energetically favorable reaction (no need of
a catalyst or external dopants to ease electrocatalysis), proposed by Singh et al. using the
density functional theory, ref. [29] is reported in Equation (1).

Figure 2. H-Thin OECT on glass substrates for oxygen sensing: Id(t) measurement (a); device
calibration (b); for oxygen addition (black arrows) in the sealed cell, starting from a nitrogen-saturated
environment (0% of O2); device picture is reported in the inset of (a); with a red scale bar of 2 mm.

OECT output current values were linearly correlated to the logarithm of the O2 con-
centration fluxed in the chamber, as demonstrated in Figure 2b, thus allowing quantitative
oxygen sensing with very low power consumption (<40 µW). Three sensors, fabricated
in different batches, reported comparable sensitivities (see Table 2), confirming the re-
producibility of the devices and allowing for the extraction of an average sensitivity of
(−12.1 ± 0.6) µA/dec.

Table 2. Extracted sensitivities of three measured H-Thin OECT on glass substrates.

Sample Sensitivity [µA/dec] Error [µA/dec]

1 −13.6 1.3
2 −12.5 1.2
3 −11.2 0.9

3.3. Oxygen Gas Sensing Using OECTs on Flexible PEN Substrates

To obtain a wearable device that could be integrated into a worker’s helmet or overalls,
we fabricated the sensor on a thin plastic substrate of polyethylene napthalate (PEN), having
a thickness of 125 µm. Replicating the O2 sensing test and device calibration (Figure 3a,b,
respectively), we assessed similar sensitivities for the H-Thin OECT on plastic and on glass.
Again, the reproducibility of three devices was studied (Table 3), obtaining comparable
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results, with an average sensitivity of (−15.4 ± 0.5) µA/dec, slightly higher than the one
calculated for OECTs on glass. It is worth noting that OECT sensing using the drain current
allows for a gain factor on the sensitivities higher than 104 and reduces the noise incoming
from the gate current, since the slow time-responding transistor acts as a low pass filter,
as explained in our previous work [20]. Figure S5 highlights the gate current variation
upon the oxygen addition of OECT n◦2 and the extracted calibration curves. A software
smoothing process was required to reduce the noisy gate signal, which however maintains
fluctuations and spikes especially during or close to the O2 additions. Furthermore, the
extracted sensitivity was below nA/dec. Comparing Figure S5 with Figure 3 highlights the
importance of the filtering and amplification provided by the OECT architecture.

Figure 3. H-Thin OECT on PEN substrates for oxygen sensing: Id(t) measurement (a); sensor
calibration curve (b); for oxygen addition (black arrows) in the sealed cell, starting from a nitrogen-
saturated environment (0% of O2). The device picture is reported in the inset of (a); with a red scale
bar of 2 mm.

Table 3. Extracted sensitivities of three measured H-Thin OECT on PEN substrates.

Sample Sensitivity [µA/dec] Error [µA/dec]

1 −15.0 0.9
2 −14.9 0.8
3 −16.1 0.7

Aiming at a robust and reliable sensor, in addition to reproducibility, we also measured
the device repeatability and its responses to oxygen additions or removals in the “work-
safety” range of 13–20%. Figure 4a highlights the stability of the device response for two
consecutive measurements, with I0 representing the current flowing into the channel of
the device when no oxygen was present (nitrogen-saturated environment), which was
subtracted to exclude the baseline shift (slight reduction) upon sensor reuse. The graph
shows almost superimposed Id-I0 values for the oxygen additions with sensitivities of
(−13.2 ± 1.6) µA/dec and (−14.9 ± 0.7) µA/dec, that are comparable within their standard
deviations. The device current response to oxygen additions and removals is reported in
Figure 4b, with the analysis displayed in Figure 4c. Again, comparable sensitivities are
obtained, highlighting the sensor’s robust response that does not depend on the previous
O2 concentrations.

Bending tests and real-time warning tests were carried out to evaluate sensing perfor-
mances while mimicking real-life applications using a portable electronic readout wirelessly
connected to a smartphone application for real-time data acquisition. We chose a bending
radius of 6 mm (Figure 5a), simulating a device integrated onto the work suit or bracelet of
a worker. Figure 5b shows that a similar sensor response upon oxygen additions was ob-
tained for the flat and, subsequently, bent sample: the curve slopes are identical, as shown
by the ratio between the extracted sensitivity, 1.03 ± 0.02 a.u. We hypothesized that the
current reduction was caused by sample manipulation to obtain the bending configuration
in Figure 5a, since repeated flat/bent tests showed independent current from the sample
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bending (Figure S6). The portable electronic reader is shown in Figure 5c, powered by
a coin battery allowing drain (Vd = −0.3 V) and gate (Vg = 0.3 V) biasing of the sensor.
Upon alternating low oxygen concentrations with the standard oxygen levels present in
breathable air in the sealed chamber, we assessed (Figure 5d) that the current monitored by
the portable system follows oxygen contents, proving that our device could be employed as
wearable, battery powered, low-cost O2 sensor. Finally, it is noteworthy that once calibrated,
a safety threshold current may be selected and set to activate a real-time alert value to
protect the wearer in case of severe oxygen depletion before oxygen deficiencies cause
breathing fatigue or impaired judgment.

Figure 4. (a) Repeatability test comparing two subsequent measurements of an oxygen sensing
OECT, in the range 13–21%. I0 represents the output current when no oxygen is present in the
electrochemical cell and was subtracted to consider the slight baseline shift of the device; (b) Id(t) for
oxygen additions and removals, marked by the black and red arrows, respectively; (c) corresponding
sensor calibration curve.
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Figure 5. Bending test: (a) OECT patterned on PEN foil bent with a radius of 6 mm to mimic a
real-life application; (b) OECT sensing the oxygen additions in the complete range from 6% to 21%
in the flat (blue) and bent (red) configuration: (c) interfacing the sensor with a portable, handheld,
battery-powered electronic readout from Elements srl company, wirelessly transmitting the current
signal to a smartphone application; (d) warning test on a bent sample connected to the Elements
system, showing the current response upon oxygen level variations (oxygen percentages are reported
in black in the corresponding colored interval time). A safety threshold has been highlighted in white
at 15% O2 to ensure operator’s protection before oxygen depletion could cause breathing fatigue
or fainting.

4. Discussion

Oxygen depletion in confined spaces caused several injuries and deaths in the last
decade. OSHA considers O2 levels below the threshold of 19.5% in air as oxygen deficiency,
since even small reductions from the optimal value of 20.9% may cause dizziness and
fatigue, impairing people from escaping or calling for help.

Our work focused on the design and realization of a real-time, wearable and lightweight
oxygen sensor, continuously monitoring the oxygen percentage in the range [13–21%] for
operators’ safety. We employed a thin hydrogel as a semi-solid electrolyte for gating a
PEDOT:PSS OECT (H-Thin OECT), patterned on a PEN plastic substrate. The ~30 µm
thin PBS-based hydrogel coating allowed for an effective quantitative O2 sensing and
granted ease-of-use to device handling and wearability, since the small microfabricated
device could noninvasively be added to worker overalls or helmets as standard personal
protective equipment. The repeatability and reproducibility assessed the reliability of the
sensor, whose current was linearly correlated to the logarithm of the oxygen percentage
(sensitivity = −12.2 ± 0.6 µA/dec). Bending tests demonstrated that the proposed sensors
could be easily conformed to a curved surface or a garment without performance loss.
Finally, we demonstrated that the sensors could easily interface with a portable reader
for real-time sensing in wearable applications, allowing for selection of an O2 threaten-
ing threshold for safety. The proposed low-cost wearable OECTs patterned on plastic
provide proof-of-concept sensors for real-time and reliable gas-oxygen monitoring with
low power consumption (30–40 µW). Different from commercially available portable O2
sensing devices, it can be directly integrated on workers’ overalls or helmets and wirelessly
connected to a user’s smartphone. This paves the way toward the achievement of the
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“wear-and-forget” functionality, noninvasively but constantly protecting the wearer from
potential oxygen deficiencies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14051022/s1, Figure S1: Output curves for OECT having
the thick hydrogel, the thin one or PBS; Figure S2: Experimental setup for the oxygen sensing
measurements.; Figure S3: Oxygen sensing using a H-Thick OECT, thus having the 5 mm-thick
hydrogel as electrolyte; Figure S4: Glycerol-treated, H-Thin OECT electrical performances; Figure S5:
H-Thin OECT on plastic substrate for oxygen sensing; Figure S6: Repeated flat versus bent sequence
test in air at constant transistor polarization (Vd = −0.3 V, Vg = 0.3 V).
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