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Soliton driven angiogenesis
L. L. Bonilla1, M. Carretero1, F. Terragni1 & B. Birnir2

Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen 
to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but 
it may also be induced by tumours to amplify their own growth. Mathematical and computational 
models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most 
work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-
induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some 
of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential 
description of the vessel tip density. Here we find that the latter advances chemotactically towards the 
tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity 
change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis 
through the soliton, the engine that drives this process.

Angiogenesis is a multiscale process spanning scales from subcellular to millimetre ones by which blood vessels 
grow from existing ones and carry oxygen to distant organs1–3. Angiogenesis is essential for normal growth of 
organs in embryos and repair of wounded tissue in adults. Angiogenesis imbalance may lead to malignant, ocular 
and inflammatory disorders, and it affects asthma, diabetes, cirrhosis, AIDS, ischemic heart disease, multiple 
sclerosis and autoimmune diseases among others1. In recent years, understanding of the molecular mechanisms 
of angiogenesis has increased at an explosive rate and has led to the approval of anti-angiogenic drugs for cancer 
and eye diseases4. Combined with experiments, mathematical and computational models contribute substantially 
to these efforts; see ref. 5 for a state of the art review. Models range from those capturing cell dynamics at cellular 
scale6–8 to mesoscopic endothelial cell migration models that do not describe the cellular scale9–20.

Most work has dealt with numerical solutions of models and their analysis has lagged behind. In this work, we 
consider a recent stochastic model of tumour-driven angiogenesis including tip branching, elongation, and anas-
tomosis of blood vessels (simulated in Fig. 1 and sketched in fig. 2) that has been shown to capture some of the 
intrinsic multiscale structures of this complex system19,21,22. The vessel network is the set of all trajectories of tip 
cells (blood vessels are thus assumed to follow the paths of tip cells), Xi(t), i =​ 1, …​, N(t), that move with velocities 
vi(t). Elongations of tips are described by Ito stochastic differential equations (Wi(t) are independent identically 
distributed Brownian motions) whereas tip branching and anastomosis are birth and death processes that change 
the number of active tips. While it is standard to obtain a deterministic description of a tip density based on Ito 
equations23, a recent breakthrough has resulted in including the effect of vessel fusion (anastomosis) in the deter-
ministic description for the tip density21,22. This counterpart deterministic description is also shown in Fig. 2. The 
vessel tip density is a mean over many realisations or replicas of the stochastic process (ensemble average)22, and 
it is the unique solution of a system of integropartial differential equations24. During tumour induced angiogene-
sis, the marginal tip density, ∫=p t p t dx x v v( , ) ( , , ) , forms a lump that grows and moves towards the tumour, as 
shown in Fig. 3. The lump profile, p t x( , , 0), is that of a moving pulse. By analyzing the deterministic equations 
and simulating both them and the stochastic model, we show here that this pulse is approximately a soliton simi-
lar to that of the famous Korteweg-de Vries equation for water waves25. Angiogenesis is driven by this soliton 
which, in turn, is determined by two parameters or collective coordinates. The latter respond to transport pro-
cesses such as chemotaxis or diffusion that are affected by e.g. anti-angiogenic treatments. This paves the way to 
controlling a complex multiscale biological process by controlling the much simpler description provided by the 
soliton collective coordinates.

Results
Except for an initial stage of detachment from the primary vessel and a final stage of arrival at the tumour, the tip 
density profile is close to a soliton similar to the Korteweg-de Vries soliton; see Fig. 4. To see why this is so, we 
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consider the overdamped limit of stochastic vessel extension in Fig. 2(a), β= + −Fd
dt

d
dt

X W1/2i i
, and write the 

corresponding deterministic equation for the marginal tip density as
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Here the chemotactic force F and the renormalized tip branching rate μ are known functions of the tumour angi-
ogenic factor C(t, x). Provided β is large, C is slowly-varying and F is predominantly aligned along the x axis, the 
previous equation may be approximated by
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for the soliton. Here X(t) =​ ct +​ ξ0 and K and ξ0 are constants. This expression resembles the Korteweg-de Vries 
soliton25. The soliton shape and velocity are determined by K and c and its position by X(t) such that = cdX

dt
. As 

we recall the small diffusion term in (1) and that the coefficients F and μ in that equation vary with C(t, x), we may 
surmise that K and c are collective coordinates whose change describes how the soliton advances towards the 
tumour. In the Methods section, we write the equations for the collective coordinates K(t) and c(t) corresponding 
to a soliton far from both the primary vessel and the tumour.

Our numerical simulations show that the vessel tip density approaches the soliton after some time. Initially 
there are few tips, the density is small and anastomosis is scarce. Tips branch and multiply, and anastomosis kicks 
in. The soliton formation should be described as the solution of a semi-infinite initial-boundary value problem. 
After the soliton (3) is formed, its evolution is governed by the collective coordinate equations (8)–(10) (Methods 
section). Figure 4 shows that the soliton approximates quite well both the solution of the deterministic descrip-
tion and the ensemble averaged vessel tip density for most of the vessel network evolution: after an initial stage 
of soliton formation and before the tip cells arrive at the tumour. What is most important is that angiogenesis is 
driven by soliton formation and motion. Including other mechanisms in our stochastic model such as haptotaxis 
through continuum fields providing extra forces representing e.g. fibronectin and matrix degrading enzymes can 
be done as indicated in other tip motion models10,12,19. These new fields affect soliton motion in ways similar to the 
growth factor and chemotaxis. Thus they can be included in our study with little changes affecting the collective 
coordinates only. Haptotaxis models that describe changes in cell shape, degradation of the extra cellular matrix, 
etc via cellular Potts models6,8 require additional studies to ascertain the effects of these microscopic processes 
on the mesoscopic scale described by tip or stalk cell density equations. Insofar as anti or pro-angiogenic treat-
ments can be included in equations for the continuum fields12–14, their effect on the soliton can be ascertained and 
control of angiogenic sprouts may be reduced to a simpler problem of controlling the equations for the collective 
coordinates.

In conclusion, we have explained for the first time tumour induced angiogenesis as being driven by a soliton 
wave of the vessel tip density. After an initial stage, a lump in the tip density forms and its profile becomes that 
of a soliton whose shape and velocity are determined by diffusion of vessel tips and by the tumour angiogenic 
factor through the evolution of collective coordinates. Although the tip density appears as an ensemble aver-
age over many realisations of the stochastic process, the soliton velocity and position describe well that of any 

Figure 1.  Network of blood vessels simulated by the stochastic model of tumour induced angiogenesis. The 
level curves of the density of the tumour angiogenic factor (vessel endothelial growth factor) are also depicted.
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single replica. This opens a path to control angiogenesis through controlling the soliton, the engine that drives 
angiogenesis.

Methods
Equation for the marginal tip density.  Equation (1) is derived by using the Chapman-Enskog method26 
to approximate the solution of the deterministic description for the vessel tip density. We assume that
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in which  is a scaling parameter that we also insert in the equation for the tip density:

Figure 2.  (a) Stochastic model of tumour induced angiogenesis comprising vessel extension, tip branching and 
anastomosis. (b) Deterministic description for the vessel tip density δ δ= ∑ − −=p t t tx v x X v v( , , ) ( ( )) ( ( ))i

N t
x

i
v

i
1
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(c) Equation for the TAF density. δx(x) and δv(v) are Gaussian regularizations of delta functions and all 
equations are written in nondimensional units22.
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We have replaced βF instead of F in the equations of ref. 22. Substituting (4) in (6) and taking into account (5), we 
obtain a hierarchy of equations in the limit of small . We determine the j( )  for j =​ 0, 1 such that p(1) and p(2) are 
bounded. The result is (1) with μ =​ α/π +​ O(1/β) once we set the scaling parameter  = 1.

Collective coordinates.  To find evolution equations for them and following ref. 27, we insert the soliton (3) 
in (1), thereby obtaining
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We now multiply (7) by ∂ ∂p K/s  and integrate from ξ =​ −​∞​ to ∞​. Then we multiply (7) by ∂ ∂p c/s  and integrate 
from ξ =​ −​∞​ to ∞​. From the two resulting equations, we find the following system of ordinary differential equa-
tions for the collective coordinates
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Figure 3.  (a) Density plot of the marginal tip density p t x y( , , ) at different times showing how tips are created 
at the primary blood vessel at x =​ 0 and march towards the tumour at x =​ L. (b) Marginal tip density at y =​ 0 for 
the same times as in panel (a). The tip density has been calculated as an ensemble average over 400 replicas of 
the stochastic model.
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Figure 4.  Comparison of the marginal tip density profile to that of the moving soliton. (a) Continuum 
description. (b) Stochastic description averaged over 400 replicas.
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The integrals can be explicitly done by using Mathematica.

Coefficients in the collective coordinate equations.  The coefficients in these equations depend on the 
TAF concentration C(t, x) which is supposed to be almost constant. We calculate these constant values by setting 
y =​ 0 and averaging the resulting coefficients from x =​ 0 to 0.6. At larger values of x, the boundary condition 
at x =​ 1 influences the outcome. In our numerical simulations, we have used the same numerical values of the 
parameters as in ref. 22. The anastomosis coefficient Γ​ is found by fitting deterministic and stochastic simulations 
so that the total number of vessel tips is approximately the same; see ref. 22. The upper panels of Fig. 4 are pro-
duced by numerically solving the deterministic description and comparing the results to the solutions of the col-
lective coordinate equations (8)–(9). The lower panels of Fig. 4 are produced by ensemble averages of stochastic 
simulations that are compared to the solutions of (8)–(9) with a fitted anastomosis coefficient.
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