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The common marmoset is a new world primate belonging to the

Callitrichidae family weighing between 350 and 400 g. The

marmoset has been shown to be an outstanding model for

studying aging, reproduction, neuroscience, toxicology, and

infectious disease. With regard to their susceptibility to

infectious agents, they are exquisite NHP models for viral,

protozoan and bacterial agents, as well as prions. The

marmoset provides the advantages of a small animal model in

high containment coupled with the immunological repertoire of

a nonhuman primate and susceptibility to wild type, non-

adapted viruses.
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Introduction
The common marmoset is a new world primate belonging

to the Callitrichidae family. The animals are native to the

Atlantic coastal forests in northeastern Brazil, but the

supply for research comes from National Primate Research

Centers, pharmaceutical companies, and breeding facili-

ties [1]. It is small in size with adults weighing 350–400 g.

The lifespan of marmosets is relatively compact compared

to other nonhuman primates (NHPs), with animals reach-

ing maturity by 18–24 months of age, producing offspring

by three years of age and reaching old age by 8 years of age

[2]. The compressed lifespan of the marmoset is attractive

in scientific research because the number of marmosets

available for research can be scaled up quickly when the

need arises and then naturally reduced when large num-

bers of animals are not needed [1,3��].

The marmoset has been shown to be an outstanding

model for studying aging, reproduction, neuroscience,

toxicology, and infectious disease [3��]. With regard to

their susceptibility to infectious agent, they are exquisite
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NHP models for viral, protozoan and bacterial agents, as

well as prions [3��,4,5�,6,7�,8,9�,10,11�,12]. That they do

not carry herpes b virus (Macacine herpesvirus 1), unlike

macaques, which harbor the virus, is an especially desir-

able trait for those who handle the monkeys [3��]. For the

purposes of this review, the focus is on the use of

marmosets in high biocontainment, highlighting how

they reflect human disease.

Marmoset as a small animal model for
hemorrhagic fever
Hemorrhagic fever is an often-fatal disease caused by

RNA viruses belonging primarily to bunyaviridae, arena-

viridae and filoviridae families. Because of the high

morbidity they induce and the lack of approved vaccines

and therapies, many of these viruses can only be handled

safely using Biosafety level 4 practices. Disease severity,

imported cases of disease from patients that traveled to

endemic areas, and the potential use of this agent as a

biological weapon underscore the need to understand its

viral pathogenesis as well as to develop intervention

strategies [13–16]. The unique characteristics of the

marmoset make it especially suited for high biocontain-

ment research. In particular, the small size of the animal

as opposed to larger NHP species makes husbandry less

cumbersome and time-consuming thus using these mon-

keys at high containment is safer and less expensive than

using larger NHP counterparts. In addition, current small

animal models for some hemorrhagic fever diseases

require the use of rodent-adapted viruses, which have

been shown not to be especially predictive of efficacy in

NHPs. The marmoset has the advantage that it is suscept-

ible to infection with wild-type viruses, which is desirable

for testing vaccines and therapeutics.

Arenavirus induced hemorrhagic fever
Lassa fever

Lassa virus, a member of the Arenaviridae family, is the

causative agent of Lassa fever. The fatal disease affects

more than 300 000 people a year in western Africa and has

an overall instance of fatality of 1–2%. The virus is

transmitted from a natural rodent reservoir to humans

via contaminated rodent excreta or by close contact with

infected individuals [13]. Following an incubation period

of 7–18 days, the disease is marked by a gradual onset

of symptoms including fever, weakness and malaise. As

the disease progresses, nausea, vomiting, diarrhea and

abdominal pain are often observed. Hemorrhage on

mucosal surfaces, such as conjunctival hemorrhages or

gastrointestinal or vaginal bleeding, occurs in less than
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20% of the cases. Late stages of the disease are marked by

shock, seizures and coma, culminating in death [13].

It has been demonstrated that a single subcutaneous

inoculation of common marmosets with Lassa virus

resulted in a systemic viral disease with fatal outcome

and histological features similar to those described in fatal

disease in humans [7�]. The experimental infection

resulted in a systemic viral disease with high viremia,

elevated liver enzymes and decreased levels of albumin

in plasma; weight loss; and severe morbidity 15–20 days

after inoculation. Histological analysis of tissue from

infected animals identified lesions comparable to those

described in human cases of fatal Lassa fever, and

included hepatic and adrenal necrosis, lymphoid

depletion, and interstitial nephritis [7�,10]. The model

also demonstrated that the virus induces alterations in

target tissues that would be expected to impair adaptive

immune responses [7�] consistent with the observations

of immunosuppression contributing to Lassa disease pro-

gression in humans [17].

In fatal Lassa fever cases and Lassa virus-infected exper-

imental animals the liver is one of the most affected

organs participating in a systemic breakdown [18–20].

The most prominent morphological features of Lassa

virus-inducible hepatitis in common marmosets were:

(i) multifocal hepatic necrosis with mild inflammation

presented predominantly by HAM56-positive macro-

phages; (ii) near absence of CD20-positive, CD8-positive,

or CD3-positive lymphocytes in necrotic foci; (iv) the

complete lack of expression of MHC-II antigen; and (v)

hepatocyte proliferation as judged by positive Ki67 stain-

ing. These findings suggest evasion of the normal

immune response as a virulence factor in the develop-

ment of Lassa virus-induced hepatitis [7�].

Lymphoid depletion, a major finding in humans, was also

observed in the spleen and lymph nodes of Lassa virus-

infected marmosets. These changes were most pro-

nounced in lymph nodes marked by loss of follicles

and infiltration by large numbers of histiocytes. In

addition to liver tissues, a marked reduction in the inten-

sity of HLA-DR staining was also observed in lymph

nodes in Lassa virus-infected marmosets. Alterations in

the spleen included reduction in overall numbers of CD3-

positive and CD20-positive lymphocytes in Lassa-

infected marmosets [7�]. The immunosuppressive phe-

notype of Lassa virus infection was previously based on

detection of proinflammatory cytokines and immunomo-

dulatory molecules in culture medium of human cells

infected in vitro [21–24], in plasma of experimentally

infected animals [25], or in Lassa fever patients [17].

Argentine hemorrhagic fever

Junin virus is the causative agent of Argentine hemorrhagic

fever, for which no licensed vaccine or specific antiviral
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exists in the United States [26]. Humans become

infected by inhalation of aerosolized rodent excrement

or blood or direct contact with infected animals. The

mortality rate for the disease is 15–30%. Early clinical

symptoms of infection include fever, fatigue, nausea,

and mild hemorrhaging (petechiae), usually in skin or

mucosal tissues [27,28]. The initial targets, such as

macrophages, recruit additional sentinel cells, through

the secretion of cytokines and chemokines, leading to

disseminated viral infection. Disseminated infection

leads to lack of immune control, increased endothelial

leakage and platelet defects.

Common marmosets were successfully used for patho-

genesis and protection studies with Junin virus [29–33].

Infection of Callithrix jacchus with the prototype strain of

Junin virus produced a fatal disease with multifocal

hemorrhages and characteristic microscopic lesions such

as meningoencephalitis, lymphocytic depletion of lym-

phatic tissue, hepatocytic necrosis, interstitial pneumo-

nia, and a variable decrease in bone marrow cellularity

[29]. High virus concentrations correlated with lesions

and with the presence of virus antigen [29].

Filovirus induced hemorrhagic fever

The family Filoviridae predominantly consists of two

genera – Ebolavirus (EBOV) and Marburgvirus (MARV).

The genera EBOV comprises five species: the prototype,

Zaire; Sudan; Bundibugyo; Taı̈ Forest (the virus formerly

known as ‘Ivory Coast’); and Reston. EBOV Zaire, Sudan

and Bundibugyo, as well as MARV, are responsible for

sporadic, highly lethal outbreaks of severe hemorrhagic

fever in both humans and apes in sub-Saharan Africa, with

mortality rates sometimes approaching 90% [34].

Although the primary animal host for the filoviruses is

still somewhat unclear, as with other tropical viral dis-

eases, bats have been strongly implicated as a possible

reservoir [35,36]. However, the description of EBOV

Reston in pigs in Asia [37] serves as a warning about

the potential ease with which these viruses may arise and

spread in diverse species and populations. No FDA-

approved vaccines or specific treatments are currently

available for filoviruses, although recent advances in

vaccine development are promising.

The common marmoset is susceptible to experimental

infection with viruses from the family Filoviridae [9�].
The intramuscular inoculation of as little as 10 PFU of

either EBOV or MARV induced pathological features

similar to those observed in human disease. Most notably,

animals experienced thrombocytopenia, neutrophilia and

disseminated intravascular coagulation [9�]. Marmosets

had high virus loads in blood and tissue regardless of dose

of virus or agent. Furthermore, the small NHP experi-

enced a disease syndrome comparable to what has been

reported in other NHP models currently used to study

filovirus disease.
www.sciencedirect.com
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Inoculation of marmosets with Zaire ebolavirus resulted in

an acute disease. Marmosets experienced anorexia

coinciding with the onset of fever. Shortly after these

initial findings, anorexia and varying degrees of recum-

bency were observed, culminating in prostration and death

at 4–5 days post-challenge [9�]. Previous work has shown

that intramuscular inoculation of macaques with MARV

results in a similar course of disease; however, overall

disease progression was delayed [38–40]. Experimental

inoculation of marmosets with MARV also results in

delayed onset of disease, with death occurring 3–4 days

later than seen with marmosets infected with EBOV.

However, the course of Marburg disease in marmosets

was more rapid than that seen in macaques, with death

occurring several days sooner than in macaques [9�].

Marmosets infected with either of the filoviruses display

neutrophilia, lymphopenia and thrombocytopenia. These

hematological abnormalities are also seen in human in-

fection [41,42,43�]. Shortly after infection, overall platelet

counts decreased while neutrophil numbers increased,

with a concomitant decrease in lymphocyte numbers. In

addition, infected marmosets showed biochemical signs

of liver involvement early in infection with elevated

markers of liver function (ALT, ALP, GGT). Gross

examination of the liver revealed hepatomegaly with pale

foci throughout all lobes while microscopic examination

of sections from the liver revealed necrosis with mild to

moderate inflammation [9]. Similar findings have been

documented in the macaque model of filovirus infection

and in fatal human cases [43�,44,45].

Fatal human cases are characterized by hemorrhage and

bleeding at site of venipuncture and other coagulation

abnormalities. The coagulopathy observed in humans at

times exists in the absence of rash: only 50% of patients

infected with EBOV develop a maculopapular rash [47].

Marmosets do not develop a petechial rash when infected

with either MARV or EBOV and in this respect appear to be

more similar to the African green monkey model of filovirus

infection [38,46]. Further evidence that the marmoset

mimics human disease is that microscopic examination

of tissue from EBOV-infected animals showed widespread

fibrin deposition that is a hallmark of coagulation abnorm-

alities [40,45,48]. EBOVinfection of themarmoset caused a

severe disseminated viral infection characterized princi-

pally by microthrombosis in multiple organs (disseminated

intravasculature coagulation). MARV-infected animals dis-

played moderate fibrin deposition in the spleen. These

findings are similar to those seen in human infection and in

the macaque [40,43�,45,48]. Interestingly, signs of coagulo-

pathy characteristic of primate infections are observed

variably in rodent models [38,49,50].

Marmoset as a model for encephalitis
Eastern Equine Encephalitis (EEE) is an arthropod

borne viral encephalitis endemic in North America along
www.sciencedirect.com 
the United States Atlantic Coast affecting humans and

equines. Severe cases of human infection begin with

fever, chills, headache, and vomiting and then rapidly

progress to disorientation, seizure and coma owing to

encephalitis. EEEV causes greater than 30% mortality

and there is no specific treatment. Because alphaviruses

are highly infectious by aerosol route, development of

countermeasures is of high priority.

Intranasal exposure to a North American strain of

EEEV caused lethal encephalitis in marmosets [6].

A decrease in leukocytes was observed in NA

EEEV-infected marmosets within 24–48 h of infection,

followed by marked leukocytosis before death or eutha-

nasia. Similar to human cases [51], leukocytosis in the

marmosets was composed of a mixture of lymphocytes

and granulocytes.

The pathological lesions in the CNS of the NA EEEV-

infected marmosets were similar to those described for

human cases [51–54], where EEEV causes neuronal loss,

neuronophagia, perivascular cuffs, focal and diffuse

accumulations of inflammatory cells and leptomeningitis

in the CNS. Vascular lesions with breakdown in the

structure of the vessel wall and the appearance of thrombi

and extravasation of red blood cells have often been

noted. Foci of necrosis in the gray and white matter have

also been reported in severe EEE cases of the disease.

Areas of the CNS most frequently subject to severe

lesions include the cerebral cortex, basal ganglia,

thalamus, hippocampus, and brainstem. By contrast,

lesions in the cerebellum and spinal cord are not common

findings in human EEE.

South American EEEV strain BeAr436087 was attenu-

ated in infected marmosets, a finding consistent with data

derived from mouse studies. There have been only two

reported fatal human encephalitis cases of EEE in South

America [55]. Humans are most probably exposed in

South America but do not develop apparent infection

with EEEV because of poor infectivity and/or a virulence

of South American strains [56].

Marmoset as a model for SARS
Severe acute respiratory syndrome (SARS) emerged in

2002 and infected 8000 people, causing death in 11% of

the cases [57,58]. Humans infected primarily present

with pneumonitis but may also develop hepatic, gastro-

intestinal, and renal pathology. Older people were more

often associated with increased SARS pathogenicity and

death resulting from acute respiratory distress syndrome

[59,60]. Intratracheal inoculation of marmosets with cell

culture supernatant containing SARS-CoV develops dis-

ease with features similar to human disease [11�]. Mono-

nuclear cell interstitial pneumonitis, accompanied by

multinucleated syncytial cells, edema, and bronchiolitis,

was observed in most SARS-infected animals while
Current Opinion in Virology 2012, 2:357–362
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Table 1

Disease agents.

Disease Agent Route Main feature

Ebola hemorrhagic fever Ebola Zaire (Kikwit) Intramuscular Viremia, hemorrhage, thrombocytopenia,

neutrophilia, increase hepatic enzymes, DIC

Marburg hemorrhagic fever Marburg (Musoke) Intramuscular Viremia, hemorrhage, thrombocytopenia,

neutrophilia, increase hepatic enzymes,

moderate fibrin deposition

Lassa hemorrhagic fever Lassa (Josiah) Subcutaneous Viremia, elevated liver enzymes, multifocal

hepatic necrosis, lymphoid depletion,

MHC-II and CD20 lymphocytes suppression

Argentine hemorrhagic fever Junin (XJ Strain) Intramuscular Multifocal hemorrhage, lymphocytic depletion,

hepatocellular necrosis, viremia

Eastern Equine Encephalitis EEE (FL93-939) Intranasal Encephalitis, neuronophagia, perivascular

cuffing, leptomeningitis

SARS SARS-CoV (Urbani) Intratracheal Viral RNA in pulmonary extracts, interstitial

pneumonitis and Bronchiolitis
alveolar macrophages and type-1 pneumocytes appeared

to be the site of viral antigen localization. Furthermore,

pulmonary tissue extracts obtained at necropsy as well as

tracheobronchial lymph node and myocardium had

detectable levels of viral RNA. Hepatic inflammation

was observed in most animals, predominantly as a multi-

focal lymphocytic hepatitis accompanied by necrosis of

individual hepatocytes [11�]. These findings provide

evidence that the marmoset is a relevant NHP to study

SARS-CoV pathogenesis.

Conclusions
The marmoset has emerged as a viable NHP model for

studying high biocontainment infectious disease agents

(Table 1). Advantages of using the marmoset are that they

mimic human disease, are small in size, provide a cost

savings over larger NHP species, require husbandry tech-

niques that are less time consuming, and have fewer

biosafety considerations because they are not known to

carry endogenous virus harmful to humans. Marmosets,

because they are NHPs, provide distinct advantages over

rodent species including an immunological repertoire that

more closely resembles humans. As testing of vaccines

and therapies to high consequence pathogens advances,

more robust animal models to validate countermeasures

will be required [61].

Because of the sporadic nature of many high consequence

pathogens, the incidence of these agents is not predict-

able and therefore phase III efficacy trials are not feasible.

The US Food and Drug Administration (FDA) declared a

new regulation in 2002 as an alternative licensing pathway

for pharmaceutical products that target highly lethal

pathogens when evaluation in the field is not possible.

The ‘animal rule’ will allow approval provided that satis-

factory efficacy data are generated in two animal models.

In the case of viral hemorrhagic fever, the marmoset offers

advantages over rodent species as an alternative small

animal model. With regard to filovirus research, in

addition to needing rodent adapted virus, mouse and
Current Opinion in Virology 2012, 2:357–362 
guinea pig filovirus models have not been good predictors

of efficacy in higher species. The marmoset model pro-

vides the advantages of a small animal model in high

containment coupled with the immunological repertoire

of an NHP and susceptibility to wild type, non-adapted

viruses. Undoubtedly, increased use of marmoset models

will accelerate pre-clinical development of vaccines and

therapeutics to high consequence pathogens.
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