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Abstract: Nonalcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic
syndrome, characterized from pathological changes in lipid and carbohydrate metabolism. Its main
characteristics are excessive lipid accumulation and oxidative stress, which create a lipotoxic environ-
ment in hepatocytes leading to liver injury. Recently, many studies have focused on the identification
of the genetic and epigenetic modifications that also contribute to NAFLD pathogenesis and their
prognostic implications. The present review is aimed to discuss on cellular and metabolic alter-
ations associated with NAFLD, which can be helpful to identify new noninvasive biomarkers. The
identification of accumulated lipids in the cell membranes, as well as circulating cytokeratins and
exosomes, provides new insights in understanding of NAFLD. This review also suggests that lifestyle
modifications remain the main prevention and/or treatment for NAFLD.

Keywords: NAFLD; fatty acids; exosomes; cytokeratins; lipid metabolism; Mediterranean diet;
physical activity

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is considered the most common form of
chronic liver disease worldwide [1,2]. It has been closely associated with metabolic syn-
drome, and its incidence is growing rapidly [1–4]. Furthermore, the presence of NAFLD
has been reported in obese children and adolescents [5], that are certainly at higher risk
of cardiovascular diseases and metabolic complications in adult age [6]. Epidemiologic
studies have demonstrated that the excessive consumption of free sugars in childhood is
associated with NAFLD in overweight adults [7,8].

Literature data indicate that the pathogenesis of NAFLD is closely linked with in-
creased adiposity, dyslipidemia, and insulin resistance [9]. Recently, the influence of genetic
factors in the development of hepatic steatosis, as well as its progression in more severe
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forms of liver disease, has been reported in both experimental and observational stud-
ies [10,11]. Genome wide association studies (GWAS) have demonstrated the presence
of genetic variants associated with NAFLD [12]. The single nucleotide polymorphisms
E167K of the Transmembrane 6 Superfamily Member 2 (TM6SF2) gene, and the poly-
morphisms I148M of the Patin-like Phospholipase-3 (PNPLA3) gene, are two common
genetic variations conferring susceptibility to NAFLD [13,14]. The substitution of lysine for
glutamate at residue 167 of TM6SF2 gene is associated with the loss of TM6SF2 function
protein [15], causing a reduced hepatic lipid secretion via Very Low Density Lipoprotein
(VLDL) and an increased fat accumulation in hepatocellular droplets [16]. PNPLA3- I148M
variant is strongly associated with the severity of liver disease and, likely, it is related
to the progression of steatosis and progressive fibrosis, up to hepatocellular carcinoma
(HCC) [17].

Among key genes considered etiological drivers of NAFLD, the membrane bound
O-acyltransferase domain containing 7 (MBOAT7) gene has been also identified as a genetic
modifier of risk for liver damage progression [18]. One of its variants, namely rs641738 C > T
polymorphism, has been shown to be associated with hepatic steatosis and severity of
NAFLD-related necroinflammation [19].

In addition to the genetic component, emerging evidence suggests that epigenetic
modifications may also contribute to the pathophysiology of NAFLD. Epigenetics refers
to the reversible changes in gene expression caused by environmental stimuli [20]. In
response to these external factors, as lifestyle habits and nutritional factors, the epigenetic
modulation refers to DNA methylation, histone modifications, and the regulation of specific
noncoding RNAs. Many studies have investigated the role of noncoding RNAs in the
pathogenesis of NAFLD and their potential as biomarkers of the disease [21,22].

Noncoding RNAs are a group of RNA molecules without protein-coding capacity,
involved in chromatin remodeling and in transcriptional and post-transcriptional gene
regulation [23]. Among noncoding RNAs, especially the microRNAs (miRNA) are dereg-
ulated in NAFLD, and several studies have shown the association of miRNAs with liver
steatosis [24–26].

Given the plethora of risk factors, the NAFLD has been considered a complex disease,
not only restricted to the liver, but it is also often associated with other pathologies such
as diabetes, cardiovascular, and chronic kidney diseases [27,28]. Several studies have
demonstrated that NAFLD is a hepatic manifestation of metabolic syndrome, characterized
by pathological changes in lipid and carbohydrate metabolism [1,29,30].

In the liver, fat accumulation seems to cause lipid peroxidation, producing into the
hepatocyte high levels of Reactive Oxygen Species (ROS). Increased lipid peroxidation has
been documented in animal models, as in the ob/ob mice where an increase in mitochon-
drial ROS production has been detected [31]. Abnormal peroxidation occurs both in the
liver cell and circulating lipids causing lipotoxicity with metabolic dysfunctions [32,33].

The imbalance between lipid uptake/lipogenesis and lipid oxidation/secretion in the
liver is a main characteristic of NAFLD. The excess of free fatty acids (FFA), free cholesterol
(FC), and other toxic lipid metabolites cause mitochondrial dysfunction in the liver [34].
Chronic production of acetyl-CoA through oxidative processes due to the increased content
of FFAs impairs ATP synthesis and increases ROS production [35]. Experimental studies
have demonstrated that alteration of mitochondrial activity can be a protective mechanism
to counteract the lipid overload [36,37]. In addition, FFAs indirectly affect mitochondrial
function, by inducting lysosomal permeabilization and involving the activation of pro-
apoptotic proteins of the Bcl-2 family [38].

In NAFLD, lysosomal dysfunction leads to reduced activity of lysosomal acid lipase
(LAL), an enzyme hydrolyzing cholesterol esters and triglycerides. Clinical studies have
shown a down-regulation of LAL in patients with NAFLD [39–41]. Serum LAL activity has
been also demonstrated to be negatively correlated with the severity of NAFLD-induced
liver fibrosis [42].
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Exosomes have been identified as effective cell–cell communicators that contain a
specific load from the cell of origin. They are able to transfer this load to a target or an
acceptor cell, with consequent modification of the activity of the recipient cell. Abundant
evidence suggests that exosomes are involved in many liver injuries, such as alcoholic and
nonalcoholic fatty liver disease, liver fibrosis, cirrhosis, and hepatocellular carcinoma [43].
The exosomes are produced not only from parenchymal cells (hepatocytes), but also from
non-parenchymal cells (hepatic stellate cells, endothelial, cholangiocytes, Kupfer cells, and
liver endothelial cells, are directly involved in the progression and evolution of NAFLD [44].

NAFLD is characterized by changes in the levels of various fatty acids species in cell
membranes. Higher levels of saturated fatty acids (SFAs) and a significant decrease of
total omega-3 and omega-6 Polyunsaturated Fatty Acids (PUFAs) have been observed in
different studies that have adopted a lipidomic approach for the study of NAFLD [45–47].
Lipidomic studies in patients with liver steatosis are substantially increased in the last
decade, as well as all the studies suggesting that gut microbiota and its metabolites are
relevant in NAFLD onset [48,49]. Currently, qualitative and quantitative changes in gut
microbiome composition have been also associated with NAFLD stages [50].

It has also been suggested that NAFLD can potentially progress into non-alcoholic
steatohepatitis (NASH), later into cirrhosis and hepatocellular carcinoma (HCC) [51]. More-
over, it has been suggested that NAFLD is a risk factor also for extrahepatic cancers, as
colorectal cancer [52]. One of the potential mechanisms responsible for oncogenesis is
certainly the excess of advanced glycation end products and other factors that can elicit
cellular oxidative stress [52]. A retrospective study found that the incidence of HCC, as
well as the non-liver mortality, were increased in patients with advanced liver fibrosis [53].
There is evidence that severe NAFLD is associated with an elevated risk of colorectal
adenoma/colorectal cancer respect to mild or moderate NAFLD [54].

In light of this evidence, all the intervention strategies for NAFLD require a deep
understanding of the metabolic defects occurring in the onset of this disease.

The present review is aimed to focus the attention on cellular and metabolic alterations
associated with NAFLD that can be helpful to identify new noninvasive biomarkers.
Moreover, alternative therapeutic approaches for NAFLD, based on dietary and lifestyle
modification, are encouraged.

2. NAFLD and Lipid Biomarkers

Liver injury is strongly associated with an increased influx of free fatty acids into
hepatocytes [28], leading to alterations of cellular glucose metabolism, to a condition of
insulin resistance and diabetes. Dyslipidemia associated with NAFLD is characterized
by the imbalance in triglycerides metabolism, including uptake, clearance, and secretion
through VLDL [55]. Dyslipidemia also consists in alteration of serum levels of specialized
lipoproteins able to transport the lipids from the gut to the liver and between the liver and
peripheral tissues [56,57]. In particular, high levels of circulating low density lipoproteins
(LDL) have been observed in patients with liver steatosis [56–59].

Lipid metabolism is an active contributor to NAFLD pathophysiology so that the
main lipogenic enzymes pathway result is upregulated in this pathology. Fatty acid
synthase (FAS), a key enzyme in de novo lipogenesis, and Lipoprotein lipase (LPL), the
rate-limiting enzyme for the hydrolysis of core triglycerides in chylomicrons and VLDL,
have been detected at elevated levels in serum from patients with steatosis [58,59]. The
over-expression of FAS was also associated with the degree of liver injury, suggesting that
two enzymes, FAS and LPL, can be considered valid biomarkers of liver steatosis.

Interestingly, loss of hepatic lipases function resulted in an increased liver steatosis in
mice and LPL being expressed in non-parenchymal cells in the liver, is certainly involved
in hepatic fibrogenesis [60].

The prevalence of NAFLD is associated with the prevalence of obesity so that a
contributing factor to adverse clinical outcomes is the excess of body weight [61]. Free
fatty acids released from hypertrophic adipocytes, in particular from visceral adipose



Int. J. Mol. Sci. 2021, 22, 3899 4 of 17

tissue, lead to hyperthriglyceridemia with a consequent lipids dysfunction [62,63]. Adipose
tissue expansion can result in reduced oxygen supply to the tissue, as well as to a higher
production of inflammatory cytokines [64]. It has been also suggested that adipose tissue
macrophages can activate Toll-like receptor 4 signaling and change their phenotype in
the pro-inflammatory macrophages able to produce tumor necrosis factors-α (TNF-α) and
interleukin-6 (IL-6) [64].

Additionally, recent studies demonstrated that a reduced oxygen supply to the cell,
named hypoxia, is an important factor that worsens the toxic effects of lipids within
hepatocytes [41,65]. Hypoxia signaling may act as a link between NAFLD and more severe
forms of liver injury, as NASH [66].

Lipid accumulation in the liver creates a lipotoxic environmental leading also to
mitochondrial dysfunction characterized by a decrease of cellular energy production
responsible for the break of mitochondria and other hepatocellular structures [34].

Different studies, using animal models of NAFLD, have demonstrated an altered
mitochondrial structure within hepatocytes, notably larger mitochondria, rounded cristae,
loss of typical granules, and even mitochondrial DNA modification [67,68].

In the liver cells of NAFLD patients, a decreased mitochondrial membrane potential
(MMP) has been observed [69]. This defect leads to decreased ATP-production and elevated
mitochondrial production of oxygen species, responsible of oxidative stress and cell apop-
tosis [70]. In this regard, NAFLD is also characterized by an increased lipid peroxidation
which results in altered circulating levels of oxidative stress markers [71,72]. Oxidative
stress has been recognized as a central mechanism contributing to liver damage, acceler-
ating the transition from simple steatosis to NASH [73]. A significant increase of plasma
Thiobarbituric Acid Reactive Substances (TBARS) levels has been detected in NAFLD
patients compared to control health subjects [74].

Laboratory approach to study NAFLD-associated changes of individual lipid species
or markers of inflammation should be planned in order to identify valid disease biomarkers.
About this, the analysis of circulating LPL and FAS levels, as well as the analysis of a serum
inflammatory and oxidative stress profile, in particular the evaluation of circulating levels
of TBARS, are proposed as possible new lipid biomarkers for NAFLD.

3. NAFLD and Circulating Cytokeratins

The liver damage in patients with NAFLD is accompanied by cell death that occurs
primarily by apoptosis [75], which might be one of the drivers involved in the progression
of NAFLD ranging from simple hepatic steatosis to NASH, with and without fibrosis, and
finally to cirrhosis or hepatocarcinoma.

During hepatocytes apoptosis, caspases are activated, and they cleave a wide number
of substrates, including the intermediate filament keratin 18 (K18). Then, during liver
injury, both intact K18 and its fragments (CK18) can be detected in the blood.

Expression of circulating CK-18 protein has been detected in HCC due to an instability
and disorganization of the cytoskeleton system, associated with an abnormal modulation of
the intermediate filaments such as cytokeratins [76]. An unstable cytoskeleton may play a
role in tumor transformation and progression, local invasion, and distant metastasis [76,77].

Recent studies suggest the use of K18 and cK18 as biomarkers in the diagnosis of
NAFLD and NASH [75,78,79], as well as in the monitoring of patients, in response to
treatment [80,81]. The first study demonstrating the importance of caspase-generated
fragments in patients with NAFLD was published in 2006 [82]. This study demonstrated
that CK18 fragment levels not only were higher in subjects with NAFLD respect to controls,
but they were also correlated to grade of fibrosis and inflammation stage.

CK18-M30 and CK18-M65 are antigens of the same protein, in particular M30 measures
the caspase-cleaved CK-18 revealed during apoptosis, while M65 measures both caspase-
cleaved and intact CK-18, which is released from cells undergoing necrosis [83]. In patients
with NAFLD, a significant positive association was detected between serum levels of CK-18
and serum Alanine aminotransferase (ALT), suggesting that CK-18 can be a convenient
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biomarker for making the diagnosis of NAFLD [84]. Similarly, throughout the hepatocyte
apoptosis, the cleaved pieces of CK-18 can be used to differentiate the stages of liver
disease [84,85].

However, the data are conflicting due to recent studies that have shown low sensitivity
and poor diagnostic performance of CK18 tests [86,87]. Our preliminary data on the evalu-
ation of circulating levels of CK18-M30 fragments and CK18-M65 with ELISA Kit-PEVIVA
(DiaPharma) have demonstrated that the subjects with severe steatosis had significantly
higher plasma levels of CK18-M30 fragments compared to subjects with mild steatosis
(Mann–Whitney Test). No statistically significant difference was observed in CK18-M65
fragment levels between two groups of NAFLD patients studied (Figure 1). The CK18-M30
is specifically indicative of apoptosis, whereas the CK18-M65 is indicative of total cell death
(apoptosis and necrosis).
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These findings suggest that analysis of the circulating levels of CK18-M30 fragments
may be helpful for the identification of the subjects with a higher degree of liver steatosis.

4. NAFLD and Circulating Exosomes

NAFLD progression is characterized by the accumulation of toxic lipids, such as
saturated free fatty acids (SFA), ceramide, free cholesterol, or sphingolipid in hepato-
cytes [38,43]. The hepatocytes that receive the lipotoxic lipids release large quantities of
exosomes (Figure 2), that contribute to the processes involved in the NAFLD pathogene-
sis [88,89], including inflammation, angiogenesis, and fibrosis [90–92].
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Different authors have reported that mixed lineage kinase 3 (MLK3) mediates the
release of hepatocyte-exosomes that carry chemokine (C-X-C motif) ligand 10 (CXCL10), a
macrophage chemo-attractant, with consequent activation of hepatic macrophages (Kupffer
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cells) during NASH and NAFLD progression [93]. Recently, extracellular vesicles (EVs)
have been considered an experimental new component of blood stream for the diagnosis of
NAFLD. Extracellular vesicles, in particular the fraction named exosomes, transport differ-
ent molecules including cytoplasmic proteins, lipids, DNA, mitochondrial DNA (mtDNA),
transfer RNA (tRNA), messenger RNA (mRNA), microRNA (miRNA), ribosomal RNA
(rRNA), noncoding RNAs (ncRNAs), and lipotoxic lipids. They consent the interaction
between neighbor or distant target cells by the release in the bloodstream [94,95]. The
exosomes are the smallest vesicles (30–150 nm) and are formed from the intraluminal
vesicles within multivesicular bodies (MVBs), and released out of the cells after the fusion
with the plasma membrane [96]. The mechanisms implicated in NAFLD progression, all
related to metabolic syndrome–associated lipotoxicity, trigger the secretion of exosomes by
affected hepatocytes [97]. The exosomes secreted by derived alcohol-treated hepatocytes
transfer miR-122 to monocytes, with a consequent increase of sensitization to lipopolysac-
charides and augmented alcohol-related inflammatory response [98]. Different proteins
vehiculated from exosomes are normally upregulated or downregulated in the hepatic
cells during the NAFLD evolution, such as Frizzled (FZD) proteins naturally present on
the cell membrane as a Wnt receptors. In the case of hepatocyte, the protein involved is
FZD-7. The FZD protein receptors are a family member of G protein-coupled receptors
(GPCRs) having a substantial role as “cancer drivers” [99]. In hepatocellular carcinoma
(HCC), the Wnt signaling pathway is frequently activated, and it is associated with more
aggressive tumor phenotype [100]. In particular, in NAFLD progression, the FZD7 upregu-
lation has been postulated to be an early event in liver injury [101]. During the evolution
in liver fibrosis, the Hepatic stellate cells (HSCs) also play a crucial role [102] through the
activation and expression of several fibrosis markers such as transforming growth factor β
(TGF-β), tissue inhibitor of metalloproteinases 1 and 2 (TIMP-1 and TIMP-2), and matrix
metalloproteinase-2 [103]. Young-Sun Lee et al. demonstrated that the exosomes derived
from palmitic acid treated hepatocytes caused an increase in the expression levels of fibrotic
genes in HSCs, with the clear demonstration that exosomes play an important role in
the crosstalk between hepatocytes and HSCs in the progression from simple steatosis to
NASH [104]. These changes were associated with the exosomes cargo miR-128-3p, which
regulates different proteins involved in HSCs activation and liver fibrosis, one of all the
peroxisome proliferator-activated receptor γ (PPAR-γ) mediators in the maintenance of a
quiescent HSCs phenotype in normal liver [105].

A recent in vivo study highlights that the proliferation of primary murine hepatocytes
was enhanced by self-derived exosomes [106]. Koeck et al. [107], on the contrary, demon-
strated that the external exosomes derived from visceral adipose tissue were involved in the
progression of NAFLD, through the dysregulation of the TGF-β pathway in hepatocytes.

For all these aspects, we believe that, in the future, it will be useful to consider
exosomes and their cargo as novel biomarkers for liver diseases.

5. NAFLD and Lipidomic Analysis

The fatty acids composition of cell membranes can be considered an efficacious
biomarker for metabolic diseases, as obesity, diabetes mellitus, and different types of
cancer [108–110]. The quality and the quantity of accumulated lipids in the cell membranes
provide exhaustive information on the health status of the single cell, as well as of the
entire organism. Therefore, the lipidomic analysis offers the opportunity to detect specific
fatty acid profiles, typical of a metabolic disorder.

The lipidomic analysis on the erythrocyte membrane as “reporter” for liver injury is
well recognized [1,111]. The morphology, permeability, and fluidity, as well as the mem-
brane fatty acids composition of red cell blood and hepatocytes, are very similar [1]. This
similarity allows to investigate fatty acids quality and quantity of erythrocytes membrane
in order to assess alteration of lipid metabolism occurring in the liver.

NAFLD has been often associated with an increase of saturated fatty acids and the
reduction of PUFAs, especially omega-3 series, in cell membranes [43,112,113]. Previously,
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we demonstrated that the subjects with severe NAFLD showed a significant decrease of
stearic acid/oleic acid ratio (saturation index, SI) compared to controls [114]. Low levels
of SI in erythrocyte cell membranes were inversely associated with the degree of liver
damage. Moreover, in the same patients, severe NAFLD was also associated with higher
levels of elongase 5 enzymatic activity, estimated as vaccenic acid to palmitoleic acid ratio.
This finding is in agreement with other studies showing that elevated circulating levels
of cis-vaccenic acid are associated with an increased risk of coronary heart disease and
stroke [115,116].

The lipidomic approach is relevant in patients with NAFLD, overall due to its potential
in diagnosis and staging. In particular, the evaluation of SI in red blood cell membranes
allows to gain novel insights in the NAFLD biomarkers discovery.

The interaction between the quality of fatty acids in the membranes and cell homeosta-
sis is mainly mediated by omega-3/omega-6 Polyunsaturated Fatty Acids (PUFAs) ratio.
PUFAs are able to modulate the inflammatory processes, likely omega-6 fatty acids have a
pro-inflammatory and pro-thrombotic action, while omega-3 PUFAs are known to exert
anti-oxidant and anti-inflammatory effects [117,118]. Arachidonic acid (AA) and eicosapen-
taenoic acid (EPA) are considered the active biological forms of omega-6 and omega-3
PUFAs, respectively, and their ratio is considered a specific index of cell inflammation [119].
An unbalanced AA/EPA ratio in favor of AA correlates with different metabolic disorders,
including NAFLD [120–122]. Recently, a nutritional clinical trial, enrolling subjects with
NAFLD, demonstrated that the combined effect of diet and physical activity reduced the
AA/EPA ratio value, improving the score of steatosis [123].

AA/EPA ratio has been demonstrated to be more sensitive and accurate than the
omega-6/omega-3 PUFAs in the evaluation of cell membrane inflammation status [119].
There is a direct relationship between AA levels and chronic inflammation, as well as EPA
has been demonstrated to exert anti-inflammatory effects and to prevent oxidative stress
within the cell membrane. In this regard, previously, we observed a lower percentage of
total omega-3 PUFAs in erythrocyte membranes of patients with colorectal cancer when
compared to subjects with no malignant disease [124]. Moreover, elevated AA/EPA ratio
has been considered an inflammatory biomarker in tumor tissue of metastatic colorectal
cancer patients [125].

Without a doubt, abnormalities in the AA and EPA levels have critical effects on tissue
inflammation status. The oxidative stress, inflammation, and dyslipidemia are the main
hallmarks of NAFLD, and then it is likely that the measurement of circulating fatty acids
can be used as predictive and diagnostic tools in metabolic disease as NAFLD. The rapid
progress of lipidomics technology allows us to expand the identification of specific products
of lipid metabolism pathways involved in the pathogenesis of NAFLD. Figure 3 shows a
schematic representation of the main steps of lipidomic analysis, which is a valid tool for
NAFLD diagnosis. In particular, an altered fatty acid profile observed in membranes of red
blood cells might be indicative of a liver injury.
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6. NAFLD and Microbiota

Gut microbiota dysregulation has many implications in the development and pro-
gression of NAFLD [48]. Gut dysbiosis has been linked to the pathogenesis of NAFLD
and to the progression in more severe forms of the disease [126]. Bacterial overgrowth
may adversely impact metabolic pathways, as well as the immune response, favoring
dysmetabolism-related diseases, including NAFLD [127].

The gut function is considered a crucial factor in the pathogenesis of NAFLD, and po-
tential therapeutic strategies aimed to manage NAFLD by modulating microbiota and gut
mucosa function have been tested in both adult and pediatric populations. Modification of
intestinal barrier integrity has been observed in patients with NAFLD [128]. The increased
gut permeability leads to the translocation of bacteria and their metabolites into circulation,
contributing to the increase of circulating toxins and to the establishment of a chronic
inflammatory state, a peculiar feature of many metabolic diseases [128]. Dysbiosis might
also directly affect adipose tissue, influencing levels of adipokines, pro-inflammatory and
anti-inflammatory cytokines, as well as fatty oxidation, all processes which have important
downstream effects in the liver [129,130].

Several lines of evidence suggest that dysbiosis might increase intestinal production
of ethanol due to specific bacteria [131]. Therefore, ethanol produced in the gut contributes
to liver injury, exerting direct toxic effects in hepatic tissue. Fatty liver damage can be
considered a response to a wide range of insults derivating by different initiating factors.

7. NAFLD and Lifestyle Interventions

The modern lifestyle associated with the use of processed food and lack of physical
exercise play an important role in NAFLD development [132]. The oxidative stress induced
by an unhealthy lifestyle seems to be one of the causes of liver injury [133], as well as the
excessive hepatic lipid accumulation.

At the cellular level, the impact of toxic lipids is detrimental for several cellular dis-
tricts, including cell membrane. Changes in membrane fatty acids composition cause
alteration of physical properties of the cell membrane, increasing their fluidity, and, con-
sequently, the cell is more susceptible to lysis [134]. Therefore, any attempt to counter-
act cellular lipotoxicity and cell oxidative stress is considered as a therapeutic strategy
for NAFLD.

Lipidomic studies have demonstrated that hepatic fat accumulation is influenced by
dietary habits and lifestyle [1,114,123]. Controlled diet aimed to reduce the assumption
of linoleic and arachidonic acid levels may lead to better control of inflammatory and
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vasoactive metabolites associated with NAFLD and with its progression to more severe
forms [46,47].

Functional alterations of lipid peroxidation determine the release of AA from phos-
pholipids which in turn sustains lipotoxicity and liver cell damage. In this regard, diet is
considered as the major factor influencing fatty acid composition in the liver.

Different clinical studies have shown that diets enriched of fruits and vegetables are
able to reduce the cellular mediators of inflammation, alleviating NAFLD and its related
comorbidities [135,136]. Although mostly demonstrated in animal models, flavonoids seem
to have protective effects in NAFLD prevention, development, and complications [137]. It
has been suggested that flavonoids may decrease body weight and fat accumulation in the
liver, partly due to an increased fatty acid β-oxidation and suppressing lipogenesis [137].
The greater effects in reducing NAFLD score were achieved with dietary strategies showing
high adherence to the Mediterranean diet [135]. The nutritional intervention based on the
Mediterranean dietary pattern and aerobic physical activity results to be very efficacious
in the improvement of NAFLD [123]. Particularly, the use of different diets, alone and in
combination with two physical activity programs, demonstrated that the combination of
aerobic physical activity and a Low Glycemic Index Mediterranean Diet (LGIMD) was
more efficacious in reducing AA/EPA levels in erythrocytes membranes of patients with
NAFLD. The reduction of AA/EPA ratio value, after 45 days of treatment, was associated
with the improvement of the score of steatosis in the same subjects [123].

Adherence to a healthy diet has been reported to be essential for the primary preven-
tion of liver steatosis [4,72]. Several studies suggested that the physical exercise might
interfere with the synthesis of fatty acids, exerting a beneficial effect on liver metabolism.
Weight loss is often associated with a reduction of visceral adiposity improving NAFLD
patient outcomes.

Currently, lifestyle modifications remain the main treatment for NAFLD. However, it
is clear that the general recommendations for diet and lifestyle changes must be always
personalized in order to establish a valid therapeutic option.

Our recent study [138] showed that some food groups components were associated
with a lower or a higher risk of developing severe NAFLD, and that, within the same
food group, some components had a protective or promoter action. In addition, we
demonstrated that both the way food is produced and the way animals are bred could play
a role in rendering these foods promoters of the risk of worsening NAFLD.

Correct dietary habits are important for the regulation of cell membrane in the liver,
considered an organ leader in maintaining lipid balance. The combination of diet and
physical activity has been considered effective in the prevention of NAFLD [139], so that,
clinical studies have demonstrated that both the aerobic and a resistance exercise program
physical activity, alone or combined, are capable of reducing NAFLD scores [140,141].

There is evidence of reversal of liver fibrosis with weight loss, so that modification
of diet, physical activity, and weight loss are advocated for patients with NAFLD [142].
Regarding diet, a clinical study reported that a carbohydrate-restricted diet may be more
effective in the reduction of hepatic steatosis than a low fat-diet, probably, due to a reduced
content of fructose [143]. Excessive use of fructose has been demonstrated to increase
plasma triglycerides and de novo lipogenesis in the liver [144].

Furthermore, since alteration of gut microflora composition contributes to liver dam-
age, therapeutic approaches to modulate dysbiosis have been proposed as treatment of
NAFLD [48]. The study of the microbiome, its functions, and interactions with lifestyle
factors will provide further insights into mechanisms underlying steatosis and can offer
new opportunities for therapy. Increasing efforts have been addressed to investigate the
ability of probiotics to reverse gut dysbiosis in NAFLD patients [48,145]. Probiotic bacteria
are capable of stimulating specific and nonspecific defense mechanisms in humans, so that,
their consumption is recommended when the immunity of an organism weakens and in a
condition of inflammation or infection [146].
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It has been widely demonstrated that probiotics exert beneficial effects on dysbiosis
NAFLD-related, likely for their antimicrobial properties, enhancement of mucosal barrier
integrity, and immune modulation [49]. Additionally, different experimental evidence has
suggested that lifestyle factors, as quality of sleep, exercise, or the use of probiotics, prebi-
otics, and symbiotics can have specific gut and liver effects that influence the progression
of NAFLD [147,148].

8. Conclusions

Table 1 summarized the possible biomarkers for NAFLD proposed in this study,
including their location and biological effect.

Table 1. Possible biomarkers and their biological effect in NAFLD.

Biomarkers Main Location Effect

LPL Serum Increases the hydrolysis of triglycerides in
chylomicrons and VLDL

FAS Serum Increases fatty acids synthesis
TBARS Serum Increases cell oxidative stress

Cytokeratins Serum Increases cell death
Exosome Plasma Increases cell lipotoxic lipids

Fatty acids profile Cell membrane Alteration of cell membrane fluidity
Microbiota Gut Dysbiosis and increased gut permeability

LPL: Lipoprotein lipase; VLDL: Very Low Density Lipoprotein; FAS: Fatty acid synthase; TBARS: Thiobarbituric
Acid Reactive Substances.

This review wanted to emphasize the beneficial effects of dietary interventions on
NAFLD, as a therapeutic strategy to introduce in clinical practice and to suggest the analysis
of lipidomic profile, as well as the study of exosomes proteins cargo as fundamental tools
in diagnosis and follow-up of patients with NAFLD. The key message of this review is the
idea that improving defenses against liver fat accumulation, through modulation of lifestyle
and diet, offers a promising means to manage or treat patients with NAFLD. However,
considering that NAFLD involves numerous genetic, epigenetic, and metabolic factors, this
review reports some of the aspects involved in the development of the disease, limiting the
discussion especially on the metabolic alterations occurring in NAFLD pathogenesis.

In conclusion, in the future, undoubtedly new determinants of NAFLD will be identi-
fied, and the accurate assessment of NAFLD-associated risk factors will be useful to target
individualized appropriate treatments.
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