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What was the primary mode of smallpox transmission?
Implications for biodefense
Donald K. Milton1,2,3*

1 Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
2 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
3 Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA

Edited by:

Chad J. Roy, Tulane University, USA

Reviewed by:

Vincent J. Starai, The University of
Georgia, USA
Chengzhi Wang, Cancer Research
Center, USA

*Correspondence:

Donald K. Milton, Maryland Institute
for Applied Environmental Health,
School of Public Health, University
of Maryland SPH Building #255,
College Park, MD 20742, USA.
e-mail: dmilton@umd.edu

The mode of infection transmission has profound implications for effective containment
by public health interventions. The mode of smallpox transmission was never conclusively
established. Although, “respiratory droplet” transmission was generally regarded as the
primary mode of transmission, the relative importance of large ballistic droplets and
fine particle aerosols that remain suspended in air for more than a few seconds was
never resolved. This review examines evidence from the history of variolation, data
on mucosal infection collected in the last decades of smallpox transmission, aerosol
measurements, animal models, reports of smallpox lung among healthcare workers, and
the epidemiology of smallpox regarding the potential importance of fine particle aerosol
mediated transmission. I introduce briefly the term anisotropic infection to describe the
behavior of Variola major in which route of infection appears to have altered the severity
of disease.
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INTRODUCTION
Controversy exists regarding the best method of protecting the
public against the potential release of smallpox as a biological
weapon (Bicknell, 2002; Fauci, 2002; Halloran et al., 2002; Kaplan
et al., 2002; Mack, 2003). Infectious disease modeling plays an
important role in this dialog, and the biology of the transmission
pathway, the focus of this review, is critical to producing appro-
priate predictive models and understanding which controls will
work best under varying conditions (Ferguson et al., 2003).

The rapidity with which smallpox would spread in a developed
nation is not known and is a major source of uncertainty in mod-
els used for public health planning (Ferguson et al., 2003). The
basic reproductive number (R0), which describes the tendency of
a disease to spread, has been estimated for smallpox from histor-
ical data and outbreaks in developing countries (Gani and Leach,
2001; Eichner and Dietz, 2003). Because R0 is a function of the
contact rate between individuals, it can be affected by changes in
the environment (Anderson and May, 1991). A potentially impor-
tant difference between contemporary environments and those
used to estimate R0 is that today many buildings, including hospi-
tals, mechanically recirculate air. If smallpox was almost entirely
transmitted by mucosal contact with large droplets (aerodynamic
diameters >10 µm), which can only occur following “face-to-
face” exposure over distances of a few feet, then change in the built
environment would not change the contact rate between indi-
viduals. If, however, smallpox was frequently transmitted from
person-to-person by airborne droplet nuclei [fine particles with
aerodynamic diameters of ≤2.5 µm capable of remaining sus-
pended in air for hours and of depositing in the lower lung
(Hinds, 1999)] then mechanically recirculated air systems would

increase the contact rate, R0, the risk of epidemic spread, and
the difficulty of hospital infection control. Unfortunately, leading
authorities disagree regarding the relative importance of fine and
large particle routes of transmission; some state that smallpox was
transmitted primarily via airborne droplet nuclei, (Henderson
et al., 1999) while others emphasize “face-to-face” contact and
state that, airborne transmission was rare (Centers for Disease
Control, 2002; Mack, 2003). This paper reviews the evidence for
each of these modes of transmission.

VARIOLATION
Prior to Jenner, variolation, (Fenner et al., 1988) inoculation of
variola into the skin or nasal mucosa, was used to reduce the risk
of smallpox. Jenner himself was variolated as a child. Skin inoc-
ulation with a small amount of fresh pustule fluid, likely to have
contained large numbers of infectious virions, produced a local
lesion with satellite pustules, but generalized rash was reported
to be less severe and mortality rates were usually 10-fold lower
than with naturally acquired disease (Fenner et al., 1988). In
China, variolation was frequently performed by inoculation of
the nasal mucosa. Some accounts describe blowing carefully aged
scabs compounded with plant material into the nose (MacGowan,
1884). Other reports suggests that nasal insufflation was con-
sidered relatively ineffective and that nasal insertion of cotton
pledgets impregnated with powdered scabs or smeared with vesi-
cle contents was preferred (Wong and WU, 1936; Miller, 1957).
Descriptions of the latter method do not include ageing infectious
material before use.

Because natural infection was thought to occur via large
droplets deposited on the upper respiratory mucosal, the success
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of nasal inoculation in producing low mortality rates has been
hard to understand. A theory suggested by Henderson to the
author of a smallpox history, (Hopkins, 1983, p. 114) “is that virus
inhaled naturally was in sufficiently small particles to be deposited
deep within the lung, whereas particles inoculated by nasal insuf-
flation may have been much larger and were likely to implant
in the nose or throat where [only] a local lesion might be pro-
duced.” The relative importance of age and health of inoculated
subjects, infectious dose, and route of exposure are not known.
However, it appears that inoculation via the skin or nasal mucosa
tended to produce modified disease. If true, this would indicate
that natural transmission did not occur via direct skin or mucosal
contact. Figure 1 shows graphically a how these different routes of
exposure may have produced altered patterns of viral replication
within the host and resulted in different risks of extensive viremia
and severe disease.

THE PARADOX OF MUCOSAL INFECTION
If natural smallpox was initiated through the upper respiratory
mucosa, then an early asymptomatic mucosal infection would be
expected. To investigate this, Sarkar and colleagues performed
pharyngeal swab surveys of household contacts (Sarkar et al.,
1973a, 1974) 4–8 days following onset of rash in the index cases.
They found that contacts with positive throat cultures often did
not develop smallpox. In one survey, (Sarkar et al., 1973a) 10%
(Westwood et al., 1966) of 328 contacts had positive swabs, but
only 12% (Kaplan et al., 2002) of those with positive swabs devel-
oped smallpox. Among 59 unvaccinated contacts 27% (Miller,
1957) were culture positive, but only one developed smallpox.
All subjects were vaccinated at the time of examination. However,
vaccination four or more days after exposure is usually considered
to be too late to prevent disease. The observation that disease did
not develop in 94% of persons with mucosal infection suggests
that, even in unvaccinated contacts, mucosal infection may not
have been sufficient to initiate disease.

Sarkar and colleagues also showed that the oropharyngeal
excretion of virus was greatest during the first days after the rash
erupted and generally resolved at most 2 weeks following onset
of rash (Sarkar et al., 1973b). Rao et al. found that oropharyn-
geal excretion was greatest in the most severe, hemorrhagic cases
and corresponded with the period of infectiousness (Rao et al.,
1968). In contrast to oropharyngeal excretion, scabs contained
large quantities of virus regardless of disease severity (Mitra et al.,
1974) and were shed for another week or more after throat cul-
tures were negative. Scabs alone, however, were not associated
with further cases (Rao et al., 1968; Mitra et al., 1974).

The apparent lack of infectiousness of scab associated virus
has been attributed to encapsulation with inspissated pus (Fenner
et al., 1988). Henderson’s theory about the importance of small
particles may provide a straightforward mechanism for why
encapsulated virus, simply by entrapment in large particles, had
low infectious potential.

Sarkar et al. (1973a) were concerned that asymptomatic con-
tacts could have been infectious because their throat swab viral
titers were similar to those of milder smallpox cases. A para-
dox arose from these data because there was never evidence of
infection arising from asymptomatic household contacts. Yet,

oropharyngeal secretions were thought to be the primary source
of infectious virus particles. An explanation may be that oropha-
ryngeal excretion of virus was merely temporally correlated with
excretion of virus from elsewhere in the respiratory tract and not
the actual source of fine particles virus aerosols.

The large spray of particles from sneezing visualized by high
speed photography consists of particles down to about 10 µm
in diameter (Papineni and Rosenthal, 1997). Smaller particles
may also be dislodged from the upper airways by the turbu-
lence of sneezing, coughing, and talking, but will mostly be larger
than 2.5 µm in diameter. Recent studies, however, show that the
healthy lung generates abundant fine particles (100–1000/l with
size <0.3 µm diameter) during normal breathing (Fairchild and
Stampfer, 1987) that do not arise from the oropharynx; conden-
sates of these particles are the subject of recent reviews (Mutlu
et al., 2001; Hunt, 2002). Such particles could carry variola virus
(0.2–0.3 µm diameter), would remain airborne in indoor air for
many hours, and would be deposited primarily in the lower
airways after inhalation.

There is some evidence that variola was present in the lung
and potentially available for aerosolization. Animals infected by
inhalation produced high concentrations of variola in the lung
(Hahon and Wilson, 1960). Fenner et al. (1988) regarded bron-
chitis and pneumonitis as a part of the normal smallpox syn-
drome, especially in the more severe cases which were also the
most infectious, (Rao et al., 1968) although specific lesions were
less frequent in the lower trachea and bronchi. Systematic evalua-
tions of viral excretion in the lower respiratory tract of non-fatal
cases were not reported. Thus, if some degree of pneumonitis with
pulmonary excretion of virus and exhalation of fine particle vari-
ola aerosols was a feature of clinical smallpox but was not a feature
asymptomatic household contact with positive throat cultures,
then the paradox would be resolved.

MEASUREMENT AND HALF-LIFE OF AIRBORNE VARIOLA
Air sampling for viruses is a difficult undertaking and the liter-
ature on the subject remains sparse in comparison with that for
bacteria and fungi (Sattar and Ijaz, 2002). Only three attempts
to detect airborne variola were published. The earliest attempt
used highly inefficient methods and was negative (Meiklejohn
et al., 1961). In a subsequent study, Downie and colleagues used
short duration, low volume air sampling with liquid impingers
and obtained 5 positive samples out of 47 attempts to sam-
ple exhaled breath of patients (Downie et al., 1965). Assuming
that each positive sample represented a single infectious particle,
the concentration of airborne infectious particles was 0.85/m3;
higher concentrations were observed close to shaken bed sheets.
Concentrations were likely to have been underestimated because
of several frequently encountered problems with air sampling
for viruses including failure of impingers to retain particles less
than 1 µm in diameter that represent the majority of particles in
exhaled breath, culture of only a portion of the impinger fluid,
uncertain suitability of sampling fluid for virus survival, and loss
of infectivity due to sampling trauma (Spendlove and Fannin,
1982).

In the 1970s, Thomas adapted Andersen samplers (capable of
colleting submicrometer particles) and slit samplers (with lower
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FIGURE 1 | The spread of variola virus around the body [partially

adapted from Fenner et al. (1988) Figure 3.1] appears to have frequently

been less extensive after dermal inoculation and nasal insufflation

compared with naturally acquired infection. This may have been due to
less extensive lymphatic replication of virus and limited viremia by dermal

and nasal routes as compared with infection via lower respiratory tract
deposition. The size of the arrows represents the historically reported
proportions of cases following each pathway. The size of the X on each image
represents the reported mortality rate from each pathway. For natural
infection, the ordinary-type rash and flat and hemorrhagic rashes are shown.

efficiency for submicrometer particles) for long duration large air
volume viral sampling (Thomas, 1970a). He showed that 23% of
naturally airborne rabbit pox particles were ≤2.5 µm and 71%
were between 2.5 and 10 µm (Thomas, 1970b). Both Thomas and

Westwood et al. (1966) measured concentrations of natural rab-
bit pox aerosols. Thomas observed 12 pock forming units (PFU)
per m3 in a room supplied with six air changes per hour (ACH)
containing 27 ill rabbits. Westwood et al. observed 44 PFU/m3
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in a room supplied with 10 ACH containing 7–9 infected rabbits.
Westwood et al. probably obtained higher concentrations because
they used an electrostatic precipitator allowing higher efficiency
collection of submicrometer particles compared with Thomas’s
slit sampler.

Thomas also studied convalescent cases of variola minor
(Thomas, 1974). One patient with relatively active lesions pro-
duced an average concentration of approximately 1 PFU/m3.
Unfortunately the samples were collected late in the disease when
the patient was probably minimally infectious, based on com-
parison with epidemiological data (Rao et al., 1968; Eichner and
Dietz, 2003). The airborne virus observed appears to have been
due to resuspension and is unlikely to be representative of the air-
borne concentration of respirable variola earlier in the course of
the infection. The method used would also not have been able to
collect submicrometer viral aerosol particles.

Overall, the air sampling studies suggest that animals and peo-
ple infected with poxviruses generated respirable aerosols, but
that air concentrations may have been low, or airborne virus was
present in submicrometer particles that could not be collected the
instruments available. Because detection of virus aerosols is sub-
ject to potentially large losses in sampling equipment, especially
when sampling dilute natural aerosols over extended periods, and
because plaque assays may not accurately represent the infectivity
of virus deposited in human airways at 100% relative humidity,
(Spendlove and Fannin, 1982; Sattar and Ijaz, 1987, 2002) the
available data can be considered a lower limit on concentration
of infectious natural poxvirus aerosols.

Experimental aerosol data suggested that poxvirus, which sur-
vived the trauma of artificial aerosolization, remained infectious
for significant periods of time. Aerosols of vaccinia demonstrated
a half-life of about 6 h at 22◦C and relative humidity ≤50%
with reduced stability at higher relative humidity and tempera-
ture (Harper, 1961). Variola appeared to have a similar half-life
and not to be affected by relative humidity at 26.67◦C (Mayhew
and Hahon, 1970). Other experiments demonstrated that air-
borne vaccinia is highly sensitive to inactivation by germicidal
ultraviolet light (Edward et al., 1943; Jensen, 1964).

ANIMAL MODELS
Westwood et al. (1966) demonstrated that inhalation of a sin-
gle PFU of a submicrometer vaccinia aerosol was sufficient to
infect rabbits. Airborne rabbit pox was similarly infectious. They
demonstrated rabbit-to-rabbit airborne transmission of rabbit
pox in each of seven trials by placing uninfected rabbits in
separate cages in the same room with infected animals. They
also infected rhesus monkeys using submicrometer aerosols of
variola.

In one of the earliest extensive animal models of smallpox,
Brinckerhoff and Tyzzer (1906) reported the effect of inoculating
cynomologus monkeys with variola at different sites. Inoculation
of mucus membranes of the lip, palate, and nose produced local
lesions, but generalized rash occurred in only 10% of animals.
Inoculation through the skin produced a local lesion and a gen-
eralized eruption in 70–80% of animals. Animals inoculated by
scratching the tracheal mucosa through a rigid bronchoscope
all developed a generalized rash, and one developed a variolous

bronchitis and pneumonia. Laryngeal instillation of dry pus-
tule contents produced infections while instillation of powdered
crusts did not. Inhalation exposures to an atomizer spray of vesi-
cle contents infected only one of five monkeys; however, the
particle size distribution and type of atomizer were not reported.

Hahon and Wilson demonstrated that infection of Macaca
irus with high dose [5 × 105 PFU] fine particle (<5 µm) vari-
ola aerosols produced a disease that simulated human smallpox
(Hahon and Wilson, 1960; Hahon, 1961). The initial site of virus
replication was the lung, with subsequent appearance of virus
in the nasopharynx and nares. Peak concentrations of virus per
gram of tissue were higher in the lung than in the upper respira-
tory tract; the peak in lung tissue occurred during the incubation
period and lung levels declined during the secondary viremia
and exanthem. Whether the time course and viral concentra-
tions in lung in this animal model produced by inhalation of high
dose aerosols mimicked that in humans with natural infection is
doubtful. However, it may be relevant to the first generation of
cases exposed to concentrated aerosols in a biological attack. In a
relatively recent experiment, (Kalter et al., 1979) a female chim-
panzee became infected with variola while housed in the same
room, but without direct contact, with two infected chimpanzees.
She developed a generalized rash and was reported to have had
more severe constitutional symptoms than the other chimpanzees
infected by dermal inoculation or direct contact. The authors
concluded that she was infected via aerosol.

The animal data show that artificial respirable aerosols were
effective means of producing poxvirus infections, that the infec-
tious dose by the airborne route could be very low, and that
animal-to-animal airborne transmission of rabbitpox and variola
was observed. They also suggest that inoculation of mucus mem-
branes was less effective at producing a generalized rash than was
exposure of the lower respiratory tract.

“SMALLPOX HANDLER’S LUNG”
Two reports, one from the 1940s and one from the 1960s showed
that, during epidemics, staff in smallpox hospitals who had been
repeatedly vaccinated sometimes developed malaise, fever, and
pneumonitis without evidence of infection with smallpox or
other viruses, and without evidence of allergic reaction to other
agents (Howat and Arnott, 1944; Morris Evans and Foreman,
1963). In one outbreak, after investigation of other possible
causes, the authors attributed the phenomena to an allergic reac-
tion to inhaled variola. The pulmonary focus of the reaction
suggests that there were significant concentrations of respirable
variola in the vicinity of smallpox patients. Concentrations of res-
pirable variola high enough to elicit allergic reactions, if true, raise
a significant concern for the likelihood of airborne transmission.

EPIDEMIOLOGIC EVIDENCE
Fomites, particularly exposure of laundry workers to contam-
inated bedding, were implicated in a few reported outbreaks
(Cramb, 1951). However, during the eradication campaign care-
ful epidemiologic investigation rarely implicated fomites as a
source of infection (Fenner et al., 1988). Laundry was contami-
nated by scabs containing large amounts of virus, (Mitra et al.,
1974) and with respiratory secretions containing virus in smaller
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particles (Downie et al., 1965). Very large particles with diameters
greater than 50–100 µm are easily reaerosolized. Thus, the rarity
of clear evidence of transmission due to fomites would be sur-
prising, if exposure of upper respiratory mucosa to virus in large
particles were an efficient means of initiating infection. However,
the probability of reaerosolizing particles ≤10 µm from surfaces
is extremely low because surface forces tend to bind particles more
avidly the smaller the particle (Hinds, 1999). Thus, the rarity of
smallpox transmission via fomites suggests that mucosal exposure
was not the primary means of transmission and is consistent with
a preference for infection via the lower respiratory tract.

The rarity of transmission on crowded buses and trains
could be evidence that airborne transmission was not impor-
tant. However, Fenner et al. (1988) state that transmission on
public transport was rare because patients seldom traveled after
becoming ill. They showed that transmission did occur on public
transport by reporting a case of confluent smallpox who traveled
early in her illness and infected five persons on a bus. If most
patients who traveled were convalescent so that they no longer
had virus in respiratory secretions and only shed virus in large
particles from scabs, which were rarely associated with transmis-
sion of infection, (Rao et al., 1968) then lack of transmission on
buses and trains was consistent with a preference for airborne
transmission.

Mack (1972) emphasized that 85% of cases had clear-cut
exposures to known cases. However, the remaining 15% had no
obvious exposure suggesting that a small number of more dis-
tant or casual contacts transmitted infection as would be expected
if smallpox were transmitted by dilute virus aerosols. For exam-
ple, in the 1947 New York outbreak one secondary case was seven
floors away in the hospital (Weinstein, 1947). Dispersal of small-
pox downwind of hospitals was the only obvious explanation for
a small number of cases in a British outbreak (Bradley, 1963;
Westwood, 1963). Unexplained introductions of smallpox into
Pakistani towns was greatest in towns with facilities for treatment
of smallpox, (Thomas et al., 1972) which may suggest that rel-
atively casual contact, or down wind dispersal were capable of
occasionally spreading infection.

Some well-known hospital-associated outbreaks make it clear
that airborne transmission at a distance of more than a few feet
did occur occasionally (Wehrle et al., 1970). But, these exam-
ples were rare. However, because highly infectious disseminators
are rare in other airborne infectious diseases, (Riley, 1980; Olsen
et al., 2003) the rarity of superspreaders in smallpox is not an indi-
cation that transmission by less infectious cases was necessarily by
a different route.

To examine whether the available data on variola aerosols is
consistent with Mack’s observation regarding known contacts,
we can apply a standard Poisson probability model of airborne
infection to estimate how long a susceptible person would need
to be in a patient’s room to have a reasonably high probability
of contracting disease (Riley et al., 1978; Rudnick and Milton,
2003). If, we assume that inhalation and lower respiratory depo-
sition of one PFU of variola was sufficient to cause infection,
as for rabbits exposed to vaccinia and rabbit pox, (Westwood
et al., 1966) and if a patient’s room contained between 0.5 and
5 PFU/m3 in particles with a 25% lower respiratory deposition

fraction (consistent with the literature discussed above), a sus-
ceptible individual breathing at 8 l/min would have needed to
spend between 1.7 and 16.7 h in the patient’s room to have a 63%
probability of becoming infected. Outside of the patient’s room,
aerosol concentrations would have been much lower. If most
patients stayed at home in small buildings or in hospitals with-
out mechanically recirculated air, the risk of infection would have
been significantly lower outside of patients’ rooms, consistent
Mack’s (1972) observation that 85% of cases arose from identi-
fiable contacts. Thus, a predominance of identifiable face-to-face
contacts among cases is not strong evidence against transmission
by fine particle aerosols.

The weight of evidence suggests that fine particle aerosols
were the most frequent and effective mode of smallpox trans-
mission because this would explain the relatively low mortality
after variolation, the rarity of transmission by fomites, resolve the
paradox of mucosal infection, and be consistent with “smallpox
handler’s lung” and with animal and virus aerosol experimen-
tal data. Certainly other modes of transmission occurred; full-
blown disease could result from inoculation through the skin,
the nasal mucosa, or the conjunctiva. Thus, smallpox cannot
be classified as an “obligate” airborne infectious disease, such
as tuberculosis (Riley et al., 1995) (sometimes referred to as a
“true” airborne infection), because it was capable of initiating
disease via infection of tissues outside of the lower respiratory
tract. However, smallpox also cannot be classified as an isotropic
infection (formerly termed “opportunistically” airborne infec-
tious disease) because it appeared not to have been transmitted
with equal effectiveness and virulence by all routes, whether
aerosol, large droplet, or direct contact and skin inoculation.
Smallpox appears to have been most effectively and virulently
transmitted by fine particle aerosols and therefore should be clas-
sified as an anisotropic infection; an infection where route of
transmission influences either virulence and or probability of
infection, formerly called a “preferentially” airborne infectious
disease.

Current recommendations for control of secondary smallpox
infections emphasize transmission “by expelled droplets to close
contacts (those within 6–7 feet)” (Centers for Disease Control,
2002, 2003). Recommendations include vigilant maintenance of
standard, droplet, and airborne precautions. However, empha-
sis on spread via large droplets may reduce the vigilance with
which more difficult airborne precautions are maintained. High
concentrations of variola in the lung during the incubation and
prodromal periods in monkeys after simulated use of variola
as a bioweapon (Hahon, 1961) may indicate that first genera-
tion cases after an attack with a concentrated aerosol may be
more infectious than expected based on historical data. Moreover,
because airborne precautions are not routine for all hospitalized
patients, and because first generation cases will probably not be
initially suspected to have smallpox, it is likely that they will not
be placed on airborne precautions until well into their infectious
period. Therefore, the extent of transmission to a second gener-
ation in the contemporary hospital environment may be greater
than expected based on historical estimates.

These considerations suggest that models of a potential small-
pox attack should incorporate an aerobiological perspective to
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predict how the infection might propagate in the modern
environment. It is particularly important to examine smallpox
transmission in hospitals because hospitals have previously been
identified as the major site of transmission in developed coun-
tries and ill patients will inevitably gravitate to hospitals, at least
early in the outbreak before alternatives exist (Mack, 1972, 2003).
Additional attention to prevention of airborne transmission in
hospitals from unrecognized cases may not only be an important
aspect of public health preparedness for smallpox, but may also
benefit society by reduced morbidity and disruption from SARS
and other emergent airborne infections.

ACKNOWLEDGMENTS
This work was funded by pilot study grants from the Alfred P.
Sloan Foundation and the Association of Schools of Public Health
Cooperative Agreement with the Centers for Disease Control,
National Institute for Occupational Safety and Health, by the
National Institute of Allergy and Infectious Diseases Grant R21-
AI053522, and by the National Institute for Environmental Health
Sciences Center Grant 2P30ES00002. I thank F. Fenner, C. Roy,
J. Burstein, E. Nardell, M. Murray, M. First, and S. Rudnick for
helpful discussion and comments and E. Chimiak for scientific
illustration.

REFERENCES
Anderson, R. M., and May, R. M.

(1991). Infectious Diseases of
Humans: Dynamics and Control.
Oxford: Oxford University Press,
757.

Bicknell, W. J. (2002). The case for
voluntary smallpox vaccination.
N. Engl. J. Med. 346, 1323–1325.

Bradley, W. H. (1963). Smallpox in
England and Wales 1962. Proc. R.
Soc. Med. 56, 335–338.

Brinckerhoff, W. R., and Tyzzer, E.
E. (1906). Studies upon exper-
imental variola and vaccinia in
Quadrumana. J. Med. Res. 14,
213–359.

Centers for Disease Control. (2002).
Smallpox fact sheet. Available online
at: http://www.bt.cdc.gov/agent/
smallpox/overview/disease-facts.
asp. (Accessed February 13, 2004).

Centers for Disease Control.
(2003). Draft Guide, C, Part
1 Infection Control Measures
for Healthcare and Community
Settings. Available online at:
http://www.bt.cdc.gov/agent/small
pox/response-plan/files/guide-c-
part-1.pdf. (Accessed February 13,
2004).

Cramb, R. (1951). Smallpox outbreak
in Brighton, 1950–1951. Public
Health 64, 123–128.

Downie, A. W., Meiklejohn, M., St.
Vincent, L., Rao, A. R., Sundara
Babu, B. V., and Kempe, C. H.
(1965). The recovery of small-
pox virus from patients and their
environment in a smallpox hospi-
tal. Bull. World Health Organ. 33,
615–622.

Edward, D., Elford, W., and Laidlaw,
P. (1943). Studies of air-borne
virus infections. J. Hyg. (Lond.) 43,
1–15.

Eichner, M., and Dietz, K. (2003).
Transmission potential of smallpox:
estimates based on detailed data
from an outbreak. Am. J. Epidemiol.
158, 110–117.

Fairchild, C. I., and Stampfer, J. F.
(1987). Particle concentration in

exhaled breath. Am. Ind. Hyg. Assoc.
J. 48, 948–949.

Fauci, A. S. (2002). Smallpox vaccina-
tion policy – the need for dialogue.
N. Engl. J. Med. 346, 1319–1320.

Fenner, F., Henderson, D. A., Arita, I.,
Jezek, Z., and Ladnyi, I. D. (1988).
Smallpox and Its Eradication.
History of international public
health, Vol. 6. Geneva: World Health
Organization, 1460.

Ferguson, N. M., Keeling, M. J.,
Edmunds, W. J., Gani, R., Grenfell,
B. T., Angerson, R. M., et al. (2003).
Planning for smallpox outbreaks.
Nature 425, 681–685.

Gani, R., and Leach, S. (2001).
Transmission potential of smallpox
in contemporary populations.
Nature 414, 748–751.

Hahon, N. (1961). Smallpox and
related poxvirus infections in the
simian host. Bact. Rev. 25, 459–476.

Hahon, N., and Wilson, B. J. (1960).
Pathogenesis of variola in Macaca
irus monkeys. Am. J. Hyg. 71, 69–80.

Halloran, M. E., Longini, I. M. Jr.,
Nizam, A., and Yang, Y. (2002).
Containing bioterrorist smallpox.
Science 298, 1428–1432.

Harper, G. (1961). Airborne micro-
organisms – survival test with 4
viruses. J. Hyg. (Lond.) 59, 479–486.

Henderson, D. A., Inglesby, T. V.,
Bartlett, J. G., Ascher, M. S., Eitzen,
E., Jahrling, P. B., et al. (1999).
Smallpox as a biological weapon:
medical and public health manage-
ment. Working Group on Civilian
Biodefense. JAMA 281, 2127–2137.

Hinds, W. C. (1999). Aerosol
Technology: Properties, Behavior,
and Measurement of Airborne
Particles. New York, NY: Wiley, 483.

Hopkins, D. R. (1983). Princes and
Peasants: Smallpox in History.
Chicago, IL: University of Chicago
Press, 380.

Howat, H. T., and Arnott, W. M.
(1944). Outbreak of pneumonia in
smallpox contacts. Lancet 2, 312.

Hunt, J. (2002). Exhaled breath
condensate: an evolving tool for

noninvasive evaluation of lung
disease. J. Allergy Clin. Immunol.
110, 28–34.

Jensen, M. (1964). Inactivation of air-
borne viruses by ultraviolet irradia-
tion. Appl. Microbiol. 12, 418–420.

Kalter, S. S., Rodriguez, A. R.,
Cummins, L. B., Heberling, R.
L., and Foster, S. O. (1979).
Experimental smallpox in chim-
panzees. Bull. World Health Organ.
57, 637–641.

Kaplan, E. H., Craft, D. L., and Wein,
L. M. (2002). Emergency response
to a smallpox attack: the case for
mass vaccination. Proc. Natl. Acad.
Sci. U.S.A. 99, 10935–10940.

MacGowan, D. J. (1884). Report on the
health of Wênchow. Imp Maritime
Customs II-Special Series: No. 2
Medical Reports 27, 16–18.

Mack, T. (2003). A different view of
smallpox and vaccination. N. Engl.
J. Med. 348, 460–463.

Mack, T. M. (1972). Smallpox in
Europe, 1950–1971. J. Infect. Dis.
125, 161–169.

Mayhew, C. J., and Hahon, N. (1970).
Assessment of aerosol mixtures of
different viruses. Appl. Microbiol.
20, 313–316.

Meiklejohn, G., Kempe, C. H., Downie,
A. W., Berge, T. O., St. Vincent, L.,
and Rao, A. R. (1961). Air sam-
pling to recover variola virus in the
environment of a smallpox hospi-
tal. Bull. World Health Organ. 25,
63–67.

Miller, G. (1957). The Adoption of
Inoculation for Smallpox in England
and France. Philadelphia, PA:
University of Pennsylvania Press.

Mitra, A. C., Sarkar, J. K., and
Mukherjee, M. K. (1974). Virus
content of smallpox scabs. Bull.
World Health Organ. 51, 106–107.

Morris Evans, W. H., and Foreman, H.
M. (1963). Smallpox handler’s lung.
Proc. R. Soc. Med. 56, 274–275.

Mutlu, G. M., Garey, K. W., Robbins, R.
A., Danziger, L. H., and Rubinstein,
I. (2001). Collection and analysis
of exhaled breath condensate in

humans. Am. J. Respir. Crit. Care
Med. 164, 731–737.

Olsen, S. J., Chang, H. L., Cheung, T.
Y., Tang, A. F., Fisk, T. L., Ooi, S.
P., et al. (2003). Transmission of the
severe acute respiratory syndrome
on aircraft. N. Engl. J. Med. 349,
2416–2422.

Papineni, R. S., and Rosenthal, F. S.
(1997). The size distribution of
droplets in the exhaled breath of
healthy human subjects. J. Aerosol.
Med. 10, 105–116.

Rao, A. R., Jacob, E. S., Kamalakshi,
S., Appaswamy, S., and Bradbury.
(1968). Epidemiological studies in
smallpox. A study of intrafamil-
ial transmission in a series of 254
infected families. Indian J. Med. Res.
56, 1826–1854.

Riley, E. C. (1980). The role of ventila-
tion in the spread of measles in an
elementary school. Ann. N.Y. Acad.
Sci. 353, 25–34.

Riley, E. C., Murphy, G., and Riley,
R. L. (1978). Airborne spread of
measles in a suburban elemen-
tary school. Am. J. Epidemiol. 107,
421–432.

Riley, R. L., Mills, C. C., Nyka, W.,
Weinstock, N., Storey, P. B., Sultan,
L. U., et al. (1995). Aerial dissem-
ination of pulmonary tuberculosis.
A two-year study of contagion in
a tuberculosis ward. 1959. Am. J.
Epidemiol. 142, 3–14.

Rudnick, S. N., and Milton, D. K.
(2003). Risk of indoor airborne
infection transmission estimated
from carbon dioxide concentration.
Indoor Air 13, 237–245.

Sarkar, J. K., Mitra, A. C., and
Mukherjee, M. K. (1974). Duration
of virus excretion in the throat of
asymptomatic household contacts
of smallpox patients. Indian J. Med.
Res. 62, 1800–1803.

Sarkar, J. K., Mitra, A. C., Mukherjee,
M. K., and De, S. K. (1973a). Virus
excretion in smallpox. 2. Excretion
in the throats of household con-
tacts. Bull. World Health Organ. 48,
523–527.

Frontiers in Cellular and Infection Microbiology www.frontiersin.org November 2012 | Volume 2 | Article 150 | 6

http://www.bt.cdc.gov/agent/smallpox/overview/disease-facts.asp
http://www.bt.cdc.gov/agent/smallpox/overview/disease-facts.asp
http://www.bt.cdc.gov/agent/smallpox/overview/disease-facts.asp
http://www.bt.cdc.gov/agent/smallpox/response-plan/files/guide-c-part-1.pdf
http://www.bt.cdc.gov/agent/smallpox/response-plan/files/guide-c-part-1.pdf
http://www.bt.cdc.gov/agent/smallpox/response-plan/files/guide-c-part-1.pdf
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Milton Was smallpox airborne?

Sarkar, J. K., Mitra, A. C., Mukherjee,
M. K., De, S. K., and Mazumdar,
D. G. (1973b). Virus excretion
in smallpox. 1. Excretion in the
throat, urine, and conjunctiva of
patients. Bull. World Health Organ.
48, 517–522.

Sattar, S. A., and Ijaz, M. K. (1987).
Spread of viral infections by
aerosols. Crit. Rev. Envron. Control
17, 89–132.

Sattar, S. A., and Ijaz, M. K. (2002).
“Airborne viruses,” in Manual of
Environmental Microbiology, eds C.
J. Hurst, R. L. Crawford, G. R.
Knudsen, M. J. McInerney, and L.
D. Stetzenbach (Washington, DC:
ASM Press), 871–883.

Spendlove, J. C., and Fannin, K. F.
(1982). “Methods of characteriza-
tion of virus aerosols,” in Methods
in Environmental Virology, Vol. 7,
eds C. P. Gerba, and S. M. Goyal

(New York, NY: M., Dekker),
261–329.

Thomas, D. B., Mack, T. M., Ali, A.,
and Muzaffar Khan, M. (1972).
Epidemiology of smallpox in West
Pakistan. 3. Outbreak detection
and interlocality transmission. Am.
J. Epidemiol. 95, 178–189.

Thomas, G. (1970a). An adhesive sur-
face sampling technique for air-
borne viruses. J. Hyg. (Lond.) 68,
273–282.

Thomas, G. (1970b). Sampling rab-
bit pox aerosols of natural origin.
J. Hyg. (Lond.) 68, 511–517.

Thomas, G. (1974). Air sampling of
smallpox virus. J. Hyg. (Lond.) 73,
1–7.

Wehrle, P. F., Posch, J., Richter, K. H.,
and Henderson, D. A. (1970). An
airborne outbreak of smallpox in
a German hospital and its signifi-
cance with respect to other recent

outbreaks in Europe. Bull. World
Health Organ. 43, 669–679.

Weinstein, I. (1947). An out-
break of smallpox in New York
City. Am. J. Public Health 37,
1376–1384.

Westwood, J. C. N. (1963). Smallpox
in England and Wales. Proc. R. Soc.
Med. 56, 346.

Westwood, J. C., Boulter, E. A., Bowen,
E. T., and Maber, H. B. (1966).
Experimental respiratory infec-
tion with poxviruses. I. Clinical
virological and epidemiological
studies. Br. J. Exp. Pathol. 47,
453–465.

Wong, K. C., and WU, L.-T. (1936).
History of Chinese Medicine.
Shanghai: National Quarantine
Service, 906.

Conflict of Interest Statement: The
author declares that the research

was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 13 August 2012; paper pending
published: 12 September 2012; accepted:
13 November 2012; published online: 29
November 2012.
Citation: Milton DK (2012) What was
the primary mode of smallpox transmis-
sion? Implications for biodefense. Front.
Cell. Inf. Microbio. 2:150. doi: 10.3389/
fcimb.2012.00150
Copyright © 2012 Milton. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

Frontiers in Cellular and Infection Microbiology www.frontiersin.org November 2012 | Volume 2 | Article 150 | 7

http://dx.doi.org/10.3389/fcimb.2012.00150
http://dx.doi.org/10.3389/fcimb.2012.00150
http://dx.doi.org/10.3389/fcimb.2012.00150
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

	What was the primary mode of smallpox transmission? Implications for biodefense
	Introduction
	Variolation
	The Paradox of Mucosal Infection
	Measurement and Half-Life of Airborne Variola
	Animal Models
	``Smallpox Handler's Lung''
	Epidemiologic Evidence
	Acknowledgments
	References


