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Leveraging explainable 
machine learning to identify 
gait biomechanical parameters 
associated with anterior cruciate 
ligament injury
Christos Kokkotis1,2*, Serafeim Moustakidis3, Themistoklis Tsatalas2, Charis Ntakolia4,5, 
Georgios Chalatsis6, Stylianos Konstadakos7, Michael E. Hantes6, Giannis Giakas2 & 
Dimitrios Tsaopoulos1

Anterior cruciate ligament (ACL) deficient and reconstructed knees display altered biomechanics 
during gait. Identifying significant gait changes is important for understanding normal and ACL 
function and is typically performed by statistical approaches. This paper focuses on the development 
of an explainable machine learning (ML) empowered methodology to: (i) identify important gait 
kinematic, kinetic parameters and quantify their contribution in the diagnosis of ACL injury and 
(ii) investigate the differences in sagittal plane kinematics and kinetics of the gait cycle between 
ACL deficient, ACL reconstructed and healthy individuals. For this aim, an extensive experimental 
setup was designed in which three-dimensional ground reaction forces and sagittal plane kinematic 
as well as kinetic parameters were collected from 151 subjects. The effectiveness of the proposed 
methodology was evaluated using a comparative analysis with eight well-known classifiers. Support 
Vector Machines were proved to be the best performing model (accuracy of 94.95%) on a group of 21 
selected biomechanical parameters. Neural Networks accomplished the second best performance 
(92.89%). A state-of-the-art explainability analysis based on SHapley Additive exPlanations (SHAP) 
and conventional statistical analysis were then employed to quantify the contribution of the input 
biomechanical parameters in the diagnosis of ACL injury. Features, that would have been neglected 
by the traditional statistical analysis, were identified as contributing parameters having significant 
impact on the ML model’s output for ACL injury during gait.

Anterior cruciate ligament (ACL) tear is a frequent knee injury occurring in young active individuals during sport 
activities like basketball, football, ski and  volleyball1,2. The primary function of the ACL is to confine excessive 
posterior translation and external rotation of the femur relatively to the tibia against forces that act on the joint 
during gait and other  activities3–6. As a result, an ACL deficient knee presents significant reflect on joint stability 
and  biomechanics7–9. Studies utilising three-dimensional (3D) motion analysis have shown altered joint motion 
in ACL deficient knees during daily activities, such as walking, ascending and descending stairs or  jumping10–12. 
This deviation causes a shift on the contact area and magnitude of shear forces at the knee joint which can lead 
to the initiation of  osteoarthritis13–16.

ACL reconstruction (ACLR) aims to lessen these changes in knee biomechanics. Annually 130.000 ACL 
reconstruction surgeries are performed in United  States17. Although ACLR provides an improvement in knee sta-
bility and kinematics it is still questionable if the results are equal to pre-injury  standards18,19. As it was observed 
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in several studies, increase or decrease in peak external knee-adduction moment, peak internal-rotation angle, 
increased medial contact force and decreased knee flexion angles were related to knee-joint cartilage loading 
and  degeneration13,20–22. Reductions in peak knee-flexion angle and external knee-flexion moment during the 
loading phase of gait have been reported at 6 to 60 months after  ACLR23–25.

Machine learning (ML) is an artificial intelligence (AI) analytic tool that constructs algorithms to identify 
patterns and characteristics contained within datasets. The goal is to train and validate prediction algorithms 
to achieve a desired  result26. Musculoskeletal-specific models have already been developed to identify and clas-
sify fractures and predict functional outcomes after primary total knee arthroplasty (TKA)27. In 2017, Olczak 
et al. used deep learning techniques based on medical imaging to examine the feasibility of using AI to identify 
fractures in skeletal  radiographs28. In another study, Kunze et al. based on partially modifiable risk factors 
developed ML algorithms to predict dissatisfaction after  TKA29. Recent studies with individual-level datasets of 
gait analyses from kinetic skeletal tracking and advanced MR imaging (MRI) techniques focused on the deter-
mination of early progression of knee osteoarthritis (KOA)30. Moustakidis et al. proposed a novel fuzzy decision 
tree-based support vector machine (SVM) classifier by using 3-D ground reaction force (GRF) measurements 
to investigate KOA severity and to distinguish between asymptotic and osteoarthritis knee gait  patterns31. Fur-
thermore, Pedoia et al. performed ML multidimensional data analysis by using MR imaging and biomechanical 
 data32. They demonstrated that the analysis potentially indicates that cartilage composition may be an imaging 
biomarker for early KOA.

Machine learning approaches have been also used in studies to identify ACL injury based on MRI and bio-
mechanical data or ACLR gait patterns with the aid of motion sensors. In 2017, Mazlan et al. proposed an ACL 
injury diagnosis system by using ACL injury MRI (normal, partial and crucial ACL) and SVM  algorithm33. In 
another study, Chang et al. used MRI and deep learning techniques for the detection of complete ACL tear and 
achieved 96% test set  accuracy34. Furthermore, Christian et al. used gait kinematics and ML techniques (SVM) 
to develop a pattern recognition system for diagnosis and evaluation of therapeutic treatment  effect35. In another 
study, Zeng et al. proposed an approach for detection of the presence of ACL injury using kinematic features and 
neural  networks36. Moreover, Todesco et al. proposed an ML approach for the identification of ACL gait patterns 
based on motion sensors data for on the field activities in rugby  players37.

Despite the relatively large number of ML studies on the field of ACL, the reported trained ML models are 
treated as black boxes. The lack of transparency and explainability of the models result to poor understanding 
of their inner workings and the rationale behind their decision-making mechanism. This paper focuses on the 
development of an explainable ML-empowered methodology to identify important biomechanical parameters 
associated with ACL injury. The aims of this study are: (i) to estimate the feature importance in the classification 
process and examine how much each of the features contributed to the final ML decisions and (ii) to investigate 
differences in sagittal plane kinematics and kinetics of the gait cycle between different patient groups based on 
a novel approach that combines explainable ML and statistical analytics. To achieve these goals, an extensive 
experimental setup was designed including biomechanical data collection, a thorough comparative analysis with 
seven well-known classifiers and a state-of-the-art explainability analysis.

Results
Comparative analysis. The proposed ML pipeline was initially applied on the three-class problem in 
which the patient groups CON, ACLD and ACLR are considered as separate classes. The proposed FS technique 
was executed on the pre-processed version of the 3-class dataset ranking the available features with respect to 
their relevance. The ML models were trained on feature subsets of increasing dimensionality (with a step of 1) 
and the testing classification accuracies were finally calculated until the full feature set has been tested. The clas-
sification results are given below.

Figure 1 demonstrates the accuracy testing performance (%) of the competing ML models with respect to 
the number of selected features on the 3-class problem. The majority of the ML models had an upward trend in 
the whole feature dimensionality range, followed by steady testing performance in most of the cases. Specifically, 
the SVM model showed an upward trend with respect to the first selected features, with a maximum of 94.95% 
(which was the overall best performance achieved). The second-best accuracy (92.89%) was achieved by the 
NN model, which presented a non-steadily increasing performance with fluctuations for more than 15 selected 
features. LR, DTs, RF, XGboost and KNN models also showed an upward trend with moderate accuracies rang-
ing from 68.18% up to 90.40%. In contrast with the other models, Naïve Bayes failed in this task, recording low 
accuracy testing performances (in the range of 44.44–59.09%).

Table 1 summarizes the results of XGboost, Random Forest, Decision Trees, Naive Bayes, SVM, KNN,Logistic 
regression and NN on the three-class problem. The number of selected biomechanical parameters, on which the 
highest accuracy was obtained, lies within the range of 19–23 for the majority of the ML models (in seven out of 
the eight), whereas the overall maximum performance was achieved by SVM on a group of twenty-one selected 
(21) biomechanical parameters. Naive Bayes selected less features (14) leading to low accuracy (57.58%). Fur-
thermore, the second-highest accuracy was achieved by NN (92.89%), whereas lower accuracies were obtained by 
RF, DTs and XGboost (less than 74.75%). Apart from being the most accurate overall, the SVM model recorded 
the best performance in all the metrics, namely precision (92.16–96.72%), recall (92.19–97.62%) and f1-score 
(93.07–96.47%).

Explainability to quantify the features’ contribution. In this section, we interpret the contribution 
of the biomechanical parameters in shaping the AI model’s output. To cope with this, we used explainability 
analysis on the best performing ML model (SVM). Initially, we performed a global investigation on the 3-class 
problem to quantify the overall features’ contribution to the problem. Then, we performed explainability analy-
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Figure 1.  Learning curves with testing accuracy scores for different ML models trained on feature subsets 
of increasing dimensionality in the 3-class problem (refering to both ACL deficient and ACL reconstructed 
patients).

Table 1.  Best testing accuracies (%) achieved for ML models in 3-class problem along with precision, recall, 
f1-score and the optimum number of features.

Models Accuracy Classes Precision Recall F1-Score Num. of features

XGBoost 74.75

CON 70.80 95.24 81.22

19ACLD 81.48 44.00 57.14

ACLR 79.31 71.88 75.41

Random Forest 86.36

CON 80.00 95.24 86.96

23ACLD 90.00 72.00 80.00

ACLR 94.83 85.94 90.16

Decision Trees 73.74

CON 76.67 82.14 79.31

21ACLD 72.09 62.00 66.67

ACLR 70.77 71.88 71.32

Naive Bayes 57.58

CON 65.69 79.76 72.04

14ACLD 40.91 54.00 46.55

ACLR 66.67 31.25 42.55

SVM 94.95

CON 95.35 97.62 96.47

21ACLD 92.16 94.00 93.07

ACLR 96.72 92.19 94.40

KNN 90.40

CON 85.26 96.43 90.50

19ACLD 95.12 78.00 85.71

ACLR 95.16 92.19 93.65

Logistic Regression 68.18

CON 70.64 91.67 79.79

20ACLD 57.50 46.00 51.11

ACLR 71.43 54.69 61.95

NN 92.89

CON 96.30 92.86 94.55

20ACLD 90.57 96.00 93.20

ACLR 90.48 90.48 90.48
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sis on each one of the three trained binary (one-versus-one) SVM models that constitute the 3-class problem. 
Specifically, we applied SHAP analysis into the following three problems: (i) control group versus ACLD group 
(local problem 1), (ii) control group versus ACLR group (local problem 2), and (iii) ACLD group versus ACLR 
group (local problem 3).

Figure 2a visualises the impact of the feature across all classes and the features were sorted by the sum of their 
SHAP values magnitudes across all instances. In this approach K2, H4, A3, GRF4, GRF7, K1, A4 and GRF6 were 
the parameters that affected the model output with mean SHAP values higher than 0.3.

Figure 2b depicts the mean absolute value of the SHAP values which represents the SHAP global feature 
importance for local problem 1 (CON versus the ACLD). It should be noted that the features H4, K7, GRF3, H1, 
H2 were the most important variables that significantly affected the prediction output. It is also observed that 
the contribution of H4 is 0.3 while the second-best parameter (K7) and all the remaining ones are below 0.18. 
From the above, H4 significantly contributes to the separation between the CON group and the ACLD group.

Figure 2c depicts the mean absolute value of the SHAP values for local problem 2 that focuses on the discrimi-
nation of the CON and ACLR groups. Features K2, GRF7, H4, GRF4 and K1 were the most important variables 
that significantly affected the prediction output for the certain groups. Specifically, K2 records a much higher 
mean absolute value (higher than 0.35) compared to the rest of the features (that exhibit values less than 0.23).

The most important variables that significantly affected the prediction output in the local problem 3 (ACLD 
group versus ACLR group) were K2, H3, K7, A5 and A2, as shown in Fig. 2d. Similarly to local problem 2, 
parameter K2 is again the most important separation factor between individuals from the ACLD group and the 
ACLR group.

Statistical analysis to identify significant differences between selected features. Statistical 
comparisons were also performed to identify whether there exist statistically significant differences between the 
classes considered for the most important features as they have been highlighted by the explainability analysis. 
Table 2 demonstrates the results of the one-way ANOVA tests, which performed to quantify these differences 
at the global level (with all three classes considered). As observed, there were statistically significant differences 
between the group means for all the comparisons.

Then we performed statistical comparisons at the local level putting emphasis on the following tasks: (i) ACL 
diagnosis and (ii) rehabilitation after surgery. Initially, we run independent t-test analysis between the CON 
and the ACLD groups for the first eight significant biomechanical parameters, which were indicated by the 
explainability analysis of the specific binary problem (local problem 1). Subsequentially, we employed independ-
ent t-test analysis between the control and the ACL-reconstructed groups on the same parameters to identify 
which of them were modified and/or restored to their normal state (control level) as a measure of evaluating 
the postoperative progress.

Table 3 summarizes the results of the statistical analysis at the local level. The following remarks can be 
drawn from Table 5: (i) Significant differences were observed between CON and ACLD for half of the features 
considered, specifically the first three (H4, K7 and GRF3) along with GRF4; (ii) Four of the parameters (H1, 
H2, GRF6 and GRF5) that were considered important by the explainability analysis had no significant changes 
between CON and ACLD groups.

Discussion
This paper focuses on the development of a novel approach, which combines an explainable ML-empowered 
methodology and statistical analysis, for identifying important parameters associated with ACL injury. The 
problem has been coped as a three-class classification task where the participants of the study were divided into 
three groups (CON, ACLD and ACLR group). In addition to the classification part, the main contributions of this 
paper are: (i) to investigate how much each of the features contributed to the final ML decisions, (ii) to estimate 
the feature importance in the classification process and (iii) to investigate differences in three dimensional GRFs, 
sagittal plane kinematics and kinetics of the gait cycle for the CON, ACLD and ACLR groups.

Being effective in problems with strong dependencies between features, the ReliefF algorithm was applied to 
serve as a FS technique and thus reduce the dimensionality of the initial feature space. Eight ML models were 
employed to perform the 3-class classification task on the reduced feature space where accuracies up to 94.95% 
were achieved. Specifically, the SVM model had the best performance and it showed an upward trend with respect 
to the first selected features, with a maximum of 94.95% at 21 features (which was the overall best performance 
achieved). Furthermore, the SVM model achieved rates from 92.16% up to 97.62% in each class for the metrics 
precision, recall and f1-score.

Having selected the most accurate ML model, this study attempted to uncover the rationale behind the deci-
sion-making mechanism of the trained model and therefore provide an alternative and a more holistic approach 
of quantifying the contribution of the input biomechanical parameters in the classification process. Specifically, 
explainability analysis was applied on the best performing ML model (SVM) and a global investigation was ini-
tially performed on the 3-class problem to quantify the overall features’ contribution to the problem. As observed 
K2, H4, A3, GRF4, GRF7, K1, A4 and GRF6 were the most important biomechanical parameters that affected the 
model output. In order to estimate the feature importance separately, we also performed explainability analysis 
on each one of the three trained binary (one-versus-one) SVM models that constitute the 3-class problem. Spe-
cifically, we applied SHAP analysis into the following three problems: (i) CON group versus ACLD group (local 
problem 1), (ii) CON group versus ACLR group (local problem 2), and (iii) ACLD group versus ACLR (local 
problem 3). As observed, in the local problem 1 the main biomechanical parameters were H4, K7 and GRF3. 
Furthermore, K2, GRF7 and H4 have the main contribution in local problem 2. In addition, from the third local 
problem K2, H3 and K7 have occurred as the most important biomechanical parameters. Previous studies have 
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Figure 2.  (a) Average feature impact magnitude for all instances in the 3-class problem; (b) Features’ impact 
on SVM model output for local problem 1. This figure shows the average impact magnitude for all instances in 
the task of differentiating the control group vs pre-surgery group; (c) Average feature impact magnitude for all 
instances in the local problem 2 (control versus ACLR); (d) Average feature impact magnitude for all instances 
for local problem 3 (pre-surgery group versus post-surgery group).
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observed altered gait biomechanics in the ACL deficient and ACL reconstructed patients compared to healthy 
 individuals10,11. These findings may indicate that the employed rehabilitation protocols fail to restore normal 
walking biomechanics, resulting in aberrant movement patterns. Several of the most important biomechanical 
parameters of ACL injury diagnosis highlighted by the global as well as the local explainability analysis used in 
our study coincide with the biomechanical outcomes reported in the literature to be related to altered gait pat-
terns following ACLR. For example, maximum knee extension moment during stance phase (K7) significantly 
affected the prediction output in both of the aforementioned local problems examined in our study. K7 has been 
extensively investigated following ACLR and it has been consistently identified as a biomechanical parameter 
that is deceased following surgery and it is associated with poorer knee function in ACLR patients compared 
to healthy  individuals11,38. Additionally, minimum knee flexion angle during stance phase (K2) which had the 
most important contribution in local problem 2 and a significant one in local problem 3 has been reported to 
differentiate gait patterns between ACLR and healthy individuals up to 48 weeks post-surgery38.

Besides explainability analysis, conventional statistical analysis was further performed to determine whether 
there exist significant differences between the three groups of our study for the aforementioned selected biome-
chanical parameters. As it was observed, in most of the cases the outcomes of the explainability and statistical 
analyses coincide. However, no significant differences were identified for many of those important parameters 
as shown in the case of local problem 1 (ACL diagnosis) in which H1, H2, GRF6 and GRF5 were identified as 
important by SHAP whereas their distributions had no significant differences between CON and ACLD. This 
finding implies that the proposed explainable ML methodology goes beyond the way that traditional statistics 
work. Features, that would have been neglected by the traditional statistical analysis, are highlighted as contrib-
uting parameters that have a significant impact on the ML model’s output when they are combined with other 
statistically important ones. Moreover, as a measure of evaluating the postoperative progress, we performed 
statistical analysis for the local problem 1 and local problem 3 on the same parameters to identify which of them 
were modified and/or restored to their normal state (control level) after the surgery. Two (H4 and GRF3) of the 
three most important parameters (H4, GRF3, the third parameter) were restored to their initial state after the 
surgery having no significant differences in the comparison between CON and ACLR groups. This means that 
these two biomechanical parameters (H4 and GRF3) were initially modified after the ACL injury and they were 
subsequently restored to their initial state after the surgery.

The clinical significance of our novel approach discussed in this work, which is based on a combination of an 
explainable ML-empowered methodology and statistical analysis to identify biomechanical parameters during 
walking associated with ACL injury, should be considered with caution. This can be attributed to the fact that 
even though gait biomechanics are altered following ACLR, few biomechanical parameters demonstrate con-
sistent results across studies and various  tasks10. Factors such as, differences in the ACLR techniques (e.g. graft 
type), individual coping strategies among participants during walking, variations in employed rehabilitation 

Table 2.  Statistical comparison at the global level.

Features Statistical comparison

CON ACLD ACLR

Mean (std) Mean (std) Mean (std)

K2 P = 0.004 8.59 ± 3.81 8.35 ± 4.89 9.72 ± 4.70

H4 P = 0.007 37.93 ± 4.93 36.26 ± 6.42 37.03 ± 5.53

A3 P = 0.000 13.81 ± 6.52 15.91 ± 7.43 16.88 ± 7.25

GRF4 P = 0.000 19.61 ± 4.30 16.94 ± 5.17 16.76 ± 4.84

GRF7 P = 0.000 5.19 ± 1.65 5.81 ± 2.03 6.18 ± 2.92

K1 P = 0.001 21.62 ± 5.88 19.73 ± 6.56 19.88 ± 6.27

A4 P = 0.011 0.18 ± 0.08 0.19 ± 0.08 0.20 ± 0.09

GRF6 P = 0.004 5.69 ± 1.43 6.01 ± 2.21 6.36 ± 2.97

Table 3.  Statistical analysis at the local level for ACL diagnosis and rehabilitation.

Features* CON vs ACLD CON vs ACLR

H4 P = 0.002 P = 0.057

K7 P = 0.000 P = 0.001

GRF3 P = 0.000 P = 0.090

H1 P = 0.288 P = 0.792

H2 P = 0.723 P = 0.326

GRF6 P = 0.061 P = 0.001

GRF4 P = 0.000 P = 0.000

GRF5 P = 0.721 P = 0.147
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protocols and gender differences may affect gait biomechanics alterations following ACLR as well as their clini-
cal  interpretation10,11,39.

Explainability via SHAP or other similar tools is a crucial enabler allowing humans to better comprehend the 
decisions generated by black box models. However, SHAP is limited to simple explanations mainly quantifying 
the impact of individual features to the models’  output40. Thus, the inner workings of the trained models and the 
way that the features are combined to reach the final decision remain hidden. Future work includes the combined 
use of graphical modelling with well-known explainability tools with the goal of identifying the relationships 
between features and the possible direct and indirect effect of features to the models’ output. Such graphically-
given explanations would enhance our understanding of the real rationale behind the decision-making mecha-
nism of ML-empowered models acting on the tasks of ACL diagnosis and rehabilitation.

Summary
An explainable ML-empowered methodology was designed, implemented and tested in this paper to identify 
important biomechanical parameters associated with ACL injury. The proposed extensive experimental setup 
included gait biomechanical data, a thorough comparative analysis with seven well-known classifiers and a 
state-of-the-art explainability analysis. According to the findings of the comparative analysis, a 94.95% classi-
fication accuracy was achieved by SVM on a group of twenty-one biomechanical parameters. The nature of the 
selected parameters along with their impact on the prediction outcome (via SHAP) were discussed to uncover 
the rationale behind the decision-making mechanism of the trained model and therefore provide an alternative 
and a more holistic approach of quantifying the contribution of the input parameters in the diagnosis of ACL 
injury. Statistical analysis was further performed to determine whether there exist significant differences between 
ACL deficient, ACL reconstructed and healthy individuals for the aforementioned parameters. Understanding 
the contribution of gait biomechanics is a valuable tool for creating more powerful and non-invasive prognostic 
tools in the hands of physicians, that will point out abnormal gait patterns in patients after ACLR to modify the 
rehabilitation protocol and avoid the development of osteoarthritis.

Methods
Participants. A total of 151 subjects volunteered to participate in this study. Three different groups were 
defined: (i) ACL-deficient prior to surgery (ACLD), (ii) ACL-reconstructed (ACLR) and (iii) control (CON) 
group. Inclusion criteria were as follows: (1) all subjects could be of either gender between 18–50 years old and 
were moderately active, participating in regular activity at least two times per week; (2)The ACLD subjects had 
suffered a unilateral ACL injury confirmed by an orthopedic surgeon as well as via magnetic resonance imaging 
and participated in the present study an average of 30 days after injury, but before surgery; (3)The ACLR subjects 
had a unilateral ACL reconstruction and participated in the present study at least 6 months post-surgery; (4) 
Individuals with different graft types (i.e., hamstring tendon and patellar tendon grafts) were included in the 
ACLR group; (5) Both ACLD and ACLR subjects had a healthy contralateral knee and reported no other history 
of serious lower limb injury, such as bilateral ACL injury or injury to the meniscus, posterior cruciate ligament, 
medial or lateral collateral ligament in either knee; 6) had been cleared to resume their physical activity at the 
time of the measurement. The CON subjects were matched for age, gender, and physical activity status and had 
no history of ACL injury and neurologic disorder or other lower extremity injuries within 12 months prior to 
participating in the study. Prior to participation, all subjects signed a consent form, and all procedures were 
approved by the University of Thessaly ethics committee (approval code: 1660). The subjects’ characteristics are 
presented in detail in Table 4.

Testing procedure and data collection. Upon entering the gait laboratory, the subjects received instruc-
tions regarding the testing procedure and were familiarized with the walking task. ACLD and ACLR subjects 
completed the subjective Knee injury and Osteoarthritis Outcome Score (KOOS) evaluation form, which is 
considered a reliable measure of 5 outcomes, including activities of daily living, sport and recreation, pain, and 
knee-related quality of  life41. Anthropometric measurements were recorded, and 20 spherical retroreflective 
markers were positioned bilaterally on anatomic landmarks and specific locations of the pelvis and lower limbs 
according to the marker set described in the  literature42,43. Subsequently, the subjects walked barefoot along the 
10 m laboratory walkway within ± 5% of their individual self-selected walking speed (SWS). SWS was measured 
during familiarization using infrared timing gates located in the middle of the walkway and was maintained 
throughout data collection via a metronome. Trials were performed until at least 5 complete gait cycles were 
recorded with each foot (left and right side) landing on the force platform. A trial was considered valid if the foot 
of the side being tested made a clean contact with the force platform located in the middle of the walkway and 
the walking speed was within ± 5% of the individual SWS. Kinematic data were collected using 10 optoelectronic 

Table 4.  Subjects’ characteristics.

Characteristics ACLD ACLR CON

Gender 31 males and 13 females 40 males and 14 females 34 males and 19 females

Height 175.3 ± 0.86 cm 177.6 ± 0.80 cm 174.1 ± 0.98 cm

Weight 77.38 ± 14.91 kg 76.37 ± 14.35 kg 72.23 ± 15.81 kg
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cameras (Vicon T-series, Oxford, UK) at 100 Hz and kinetic data were collected at 1000 Hz via a force platform 
(Bertec 4060–10, OH) embedded in the floor synchronized with the kinematic data.

Data analysis. The symmetrical center of rotation estimation (SCoRE)44 and the symmetrical axes of rota-
tion approach (SARA)45 were applied to optimize the calculation of the hip joint center and knee joint flexion 
axis, respectively. The initial contact and toe-off events of stance phase were determined from the vertical GRF 
(20  N threshold) and the subsequent ipsilateral initial contact was determined from motion data using the 
Vicon Nexus software. Kinematic and GRF data were lowpass filtered with a 4th order Butterworth filter at 10 
and 40 Hz, respectively. The SCoRE and SARA approach were combined with the Plug-In-Gait model to gener-
ate motion features according to the Nexus Advanced Gait Workflow (Nexus 2.10, Vicon Metrics Group Ltd, 
Oxford, UK). Inverse dynamics were used combining inertia properties of the segments as well as sagittal plane 
kinematic and GRF data to calculate net joint moments of the lower limbs during the gait cycle. GRFs were 
expressed as a percentage of body weight, while net joint moments were expressed as internal moments and 
were normalized to body mass. Selected gait variables were extracted for each trial of each subject. A total of 155 
trials were analysed for ACLD group, 204 trials for ACLR group and 298 trials for CON group, respectively. The 
three-dimensional GRFs, sagittal plane kinematic and kinetic variables of interest are presented in Fig. 3 and 
Table 5. Data were analyzed from the ACLD/ACLR subjects’ involved limb and for the control subjects, this was 
randomly assigned.

Machine learning workflow. In order to identify knee kinematics associated with ACL injury, we designed, 
implemented and tested a multi-stage ML pipeline. Data were normalised to [0, 1] to build a common basis for 
the feature selection (FS) and the ML estimators. To rank our biomechanical parameters a well-established FS 
technique was applied. ReliefF  algorithm46 is a supervised learning algorithm and it is such effective in problems 

Figure 3.  Three dimensional GRFs (a), sagittal plane kinematic (b) and kinetic (c) variables of interest during 
walking. Ankle dorsiflexion, knee flexion, hip flexion, anterior and medial GRFs, as well as internal ankle 
plantar flexion, knee extension and hip extension moments were all defined as positive.
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where strong dependencies between features are observed. Various well-known ML classifiers were evaluated 
for their suitability. Hyperparameter selection was implemented to avoid bias error, overfitting and optimize the 
performance of our ML models. Specifically, we used XGboost  algorithm47 and Random Forest (RF)48, which are 
ensemble learning algorithms and they are used due to their fast execution speed and increased model perfor-
mance. Decision trees (DTs) were also evaluated providing a more interpretable decision-making  mechanism49. 
Furthermore, we tested Naïve Bayes  algorithm50, which is based on applying Bayes’ theorem and this method 
can be extremely fast. Being effective in high-dimensional spaces, SVM algorithms were also Included in our 
experimental  analysis51. Moreover, Logistic Regression (LR)52 and the K-Nearest Neighbor (KNN)  algorithm53 
were tested. LR was employed to set the baseline performance obtained by a linear model and KNN was selected 
due to its ability to deal with the overfitting problems that appear in high-dimensional spaces. Neural networks 
(NN) were also tested because they can handle complex data using a human brain inspired structure that mimics 
the way that biological neurons communicate to each  other54. Different activation functions were tested (includ-
ing tanh, sigmoid and ReLU) for their suitability as part of the hyperparameter optimisation phase.

For the evaluation of the proposed classifiers, a stochastic 70–30% random data split was applied to generate 
the training and testing subsets,  respectively55. Specifically, the learning was performed on the stratified ver-
sion of the training sets and the final performance was estimated on the accuracy testing sets. Furthermore, the 
performance of the classifiers was also evaluated in terms of the recall (or sensitivity), f1-score and precision as 
additional evaluation  criteria56.

In this paper, we also: (i) investigated how much each of the features contributed to the final decision and (ii) 
estimated the feature importance. In order to achieve this, we used SHapley Additive exPlanations (SHAP) which 
are based on Shapley Values of game  theory57,58. SHAP offers the ability to interpret ML models, which are often 
treated as black boxes. In this paper, we employed SHAP to rank features in terms of their impact on the final ML 
outputs and to build a mini explainer model. This enhances our understanding of the internal decision-making 
rationale of the trained AI models especially with respect to the mechanism with which selected biomechanical 
parameters are combined to produce decisions on ACL diagnosis and rehabilitation.

Statistical analysis. One-way analysis of variance (ANOVA) was used to investigate differences in sagittal 
plane kinematics and kinetics of gait cycle for the CON, ACLD and ACLR  groups59. Furthermore, independent 
sample t-tests were employed to compare the first eight significant biomechanical parameters between the CON 
and the ACLD groups, which were indicated by the explainability analysis. On the same parameters, independ-

Table 5.  Evaluated parameters of the gait cycle for vertical and horizontal GRFs and sagittal plane kinematics 
and kinetics.

Variables Description

GRF1 Local minimum vertical GRF during support (% BW)

GRF2 First vertical GRF peak (% BW)

GRF3 Second vertical GRF peak (% BW)

GRF4 Anterior (propulsive) GRF peak (% BW)

GRF5 Posterior (braking) GRF peak (% BW)

GRF6 First medial GRF peak (% BW)

GRF7 Second medial GRF peak (% BW)

H1 Hip flexion angle at initial contact (°)

H2 Maximum hip flexion angle during stance phase (°)

H3 Maximum hip extension angle during stance phase (°)

H4 Maximum hip flexion angle during swing phase (°)

H5 Maximum hip extension moment during stance phase (Nm/kg)

H6 Maximum hip flexion moment during stance phase (Nm/kg)

H7 Maximum hip extension moment during swing phase (Nm/kg)

K1 Peak knee flexion angle during stance phase (°)

K2 Minimum knee flexion angle during stance phase (°)

K3 Knee flexion angle at foot off (°)

K4 Maximum knee flexion angle during swing phase (°)

K5 Knee flexion angle at first maximum knee extension moment during stance phase (°)

K6 Knee flexion angle at first vertical ground rection force peak (°)

K7 First maximum knee extension moment during stance phase (Nm/kg)

A1 Ankle angle at initial contact (°)

A2 Maximum dorsi-flexion angle during stance phase (°)

A3 Maximum plantar-flexion angle over the entire gait cycle (°)

A4 Maximum dorsiflexion moment during stance phase (Nm/kg)

A5 Maximum plantarflexion moment during stance phase (Nm/kg)
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ent sample t-tests were also employed to evaluate the postoperative  progress60. The significance level in our 
statistical comparisons was set at P < 0.05.

Institutional review board statement. The study was conducted according to the guidelines of the Dec-
laration of Helsinki and approved by the Ethics Committee of the University of Thessaly (protocol code 1660 and 
date of approval 03/06/2020).

Informed consent. Informed consent was obtained from all subjects involved in the study.

Data availability
The dataset generated during and/or analysed during the current study are not publicly available, but are available 
from the corresponding author on reasonable request.

Received: 13 September 2021; Accepted: 11 April 2022
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