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Abstract
There is currently no treatment for effectively slowing the progression of Alzheimer’s disease, so early pre-
vention is very important. Numerous studies have shown that flavonoids can improve memory impairment. 
The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventric-
ular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer’s disease. 
Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated 
with 10 mL/kg saline. Behavioral test (the shuttle box test) was performed on day 22 to examine learning 
and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the 
morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of 
hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alz-
heimer’s disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer’s disease.

Key Words: nerve regeneration; myricetin; Alzheimer’s disease; streptozotocin; hippocampus; pyramidal neurons; 
CA3 region; behavioral test; neural regeneration 

Introduction
Alzheimer’s disease is one of the most prevalent types of 
dementia. It usually occurs in people aged 65 years or old-
er (Newman et al., 2007). Both environmental and genetic 
factors are relevant in the pathogenesis of AD. The unusual 
deposition of amyloid-beta (Aβ) plaques and the abnormal 
aggregation of tau proteins are neuropathological properties 
of AD (Vauzour, 2014). Neuronal degeneration and cogni-
tive impairment are the most typical features of this disorder 
(Song et al., 2014), which can directly affect the patient’s 
ability to recall or recognize new information processed in 
the hippocampus (Machado et al., 2009). The hippocampus 
is a part of the brain consisting of CA1, CA2, and CA3 fields 
and the subiculum. Information originating from dentate 
gyrus is transferred to CA3 and then integrated in CA1 (Mu 
et al., 2011). 

Strong evidence has recently come to light to support 
the positive influences of flavonoids on the brain (Spencer, 
2007; Macready et al., 2009; Rendeiro et al., 2009; Kumar et 
al., 2013; Vauzour, 2014; Rendeiro et al., 2015; Wang et al., 
2016). Flavonoids are rich in compounds that reduce neuro-
degenerative efficacy (Vauzour et al., 2008). In addition, they 
strongly promote neural networks by stimulating neurogen-
esis (Vauzour et al., 2008; Oberbauer et al., 2013). They have 

also been reported to enhance cognitive functions (Macready 
et al., 2009). Flavonoids exist in many vegetables and fruits 
and greatly influence different brain functions, such as cere-
brovascular blood flow and synaptic plasticity, which are 
related to learning and memory (Rendeiro et al., 2015). Par-
ticularly, they are able to control and conserve neuronal sur-
vival, differentiation, and long-term potentiation in memory 
(Krishnaveni, 2012). The first and most important charac-
teristics of flavonoids are their antioxidant activity and their 
ability to suppress reactive oxygen species formation (Kumar 
et al., 2013). 

Numerous studies have confirmed neurogenesis in hip-
pocampal neurons (Eriksson et al., 1998; Dong et al., 2003; 
Bruel-Jungerman et al., 2007; Liu et al., 2011; Mu et al., 
2011). A large body of evidence has shown that flavonoids 
play a key role in neuronal improvement because of their 
high proportion of antioxidant features (Jung et al., 2010; 
Kim et al., 2010; Choi et al., 2012; Huang et al., 2012; Ren-
deiro et al., 2015; Wang et al., 2016). Some studies have also 
shown that flavonoids prevent and restrict neuronal damage 
in the hippocampal pyramidal layer (Rendeiro et al., 2009; 
Tongjaroenbuangam et al., 2011; Lee et al., 2012; Ashrafpour 
et al., 2015; Wang et al., 2016).

Myricetin (3,3′,4′5,5′,7-hexahydroxylflavone) is a com-
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mon natural flavonoid found in many fruits, vegetables, 
and herbs. It is well-known for its antioxidant activity and 
anti-apoptotic effects (Kang et al., 2010). Myricetin plays 
a substantial role in the treatment and prevention of some 
diseases due to its potent iron-chelating capability, antioxi-
dant and free-radical scavenging activities (Yao et al., 2014). 
Myricetin, as a well-known flavonoid with anti-oxidative, 
anti-inflammatory, anti-apoptotic, and neuroprotective 
properties, reportedly plays an important role in the hippo-
campus of stressed mice (Ma et al., 2015). 

According to these studies, we assumed that myricetin as a 
potential flavonoid is beneficial for learning and memory in 
experimental models of Alzheimer’s disease. In addition, it 
can improve neurons in hippocampal CA3 pyramidal layers 
in rats with Alzheimer’s disease. The present study examined 
the possible effects of myricetin on learning and memory 
impairments and hippocampal CA3 pyramidal neurons in 
Wistar rat models of Alzheimer’s disease induced by intrace-
rebroventricular (i.c.v.) streptozotocin (STZ).

Materials and Methods
Animals
Fifty adult male Wistar rats, weighing 220–250 g, were 
provided by Pasteur Institute, Tehran, Iran. The rats were 
housed two per cage in an animal house, kept at 22 ± 2°C 
and a 12 hour dark/light cycle, and were given free access to 
food and water. 

Rats were anesthetized by intraperitoneal (i.p.) injection of 
10% ketamine (50 mg/kg) and 2% xylazine (5 mg/kg) (Struck 
et al., 2011) and all efforts were made to minimize the pain 
and distress of experimental animals. All procedures for 
the treatment of animals were reviewed and approved by 
the Research and Ethics Committee of the Biology School, 
University of Arak, Iran and performed according to the Na-
tional Institute of Health Guidelines for the Care and Use of 
Laboratory Animals.

Treatment 
All rats were equally and randomly divided into five groups. 
In the control group, rats daily received i.c.v. (10 μL for 
each lateral ventricle) and i.p. (10 mL/kg) injections of nor-
mal saline. In the STZ group, rats received injection of STZ 
(3 mg/kg, i.c.v., 10 μL on each side, on first and third days) 
under the stereotaxic surgery and normal saline (10 mL/kg, 
i.p.). In the STZ + 5 mg/kg myricetin and STZ + 10 mg/kg 
myricetin groups, rats received injection of STZ (3 mg/kg, 
i.c.v.) and myricetin (5 and 10 mg/kg respectively, i.p.). In the 
saline + myricetin group, rats received injection of normal 
saline (10 μL for each lateral ventricle, i.c.v.) and myricetin (10 
mg/kg, i.p.). Myricetin/saline i.p. administration started 1 day 
before stereotactic surgery and was performed in the morn-
ing between 9:00 and 12:00 over 21 days. After 21 days, the 
passive avoidance test (the shuttle box test) was performed on 
the 22nd day. Immediately after that, rat brains were removed 
and stained with hematoxylin-eosin to examine the effects of 
myricetin on hippocampal CA3 pyramidal neurons. 

Drugs
The drugs used in the study were STZ (Sigma-Aldrich, St. 
Louis, MO, USA) and myricetin (Sigma-Aldrich). They were 
dissolved in sterile 0.9% saline just before the experiment. 
STZ was administered into the lateral ventricle, and myrice-
tin or saline was i.p. injected.

Stereotaxic surgery
After anesthesia induction, the animal’s head was shaved and 
then placed into a stereotaxic instrument (Stoelting, Chica-
go, IL, USA). 10 μL of STZ (ICV) was injected into each lat-
eral ventricle via a Hamilton syringe. The stereotaxic coordi-
nates were chosen based on the rat brain atlas of Paxinos and 
Watson (1998): anteriorposterior = –0.8 mm; mediolateral = 
± 1.4 mm; dorso-ventral = –3.5 mm from bregma. 

Behavioral test
At the end of the treatment, the passive avoidance test (the 
shuttle box test) was performed. It consisted of two equal-
ly-sized compartments, a bright room (white compartment, 
20 cm × 20 cm × 30 cm), and a dark one (black compart-
ment, 20 cm × 20 cm × 30 cm). The chambers were separat-
ed by a guillotine-type door.

Prior to the experiment, all animals were placed into the 
apparatus for approximately 30 minutes (habituation stage). 
Afterward, each rat was individually placed in the bright 
chamber and the guillotine door was opened. As soon as the 
rat entered the dark chamber, the door was closed, and an 
electric shock was delivered by an isolated stimulator (1Hz, 3 
seconds, 1/5 MA) through the grid floor. Twenty-four hours 
later, each rat was placed in the bright chamber for the reten-
tion test. The step-through latency (STL) and the total time 
spent in the dark chamber (TDC) were measured. 

Tissue preparation and hematoxylin-eosin staining 
Rats were deeply anesthetized with 3.5% chloral hydrate (35 
mg/100 g, i.p.), and vessels were perfusion fixed by intrac-
ardiac infusion with phosphate buffer solution (0.1 M, pH 
7.4) followed by 200 mL of 4% paraformaldehyde fixative 
in phosphate buffer solution (0.1 M, pH 7.4) for 15 min-
utes. Rat brains were removed, isolated, post fixed in 4% 
para formaldehyde (24 hours), and embedded in paraffin. 
Coronal sections, 10 μm in thickness, were taken from the 
dorsal hippocampus and stained with hematoxylin and eo-
sin. Finally, the numbers of damaged and intact neurons in 
the hippocampal CA3 pyramidal layer were counted (Koike 
et al., 2008) using a light microscope (BX40, Olympus, New 
York, USA) connected to a camera (Olympus, DP12), and 
quantitatively analyzed by ImageJ software (Neuroscience 
Center of Shahid Beheshti University, Iran).

Statistical analysis
All results are expressed as the mean ± SEM. For the behav-
ioral test, STL and TDC were analyzed by one-way analysis 
of variance (ANOVA) and Tukey’s post-hoc test. Statistical 
results were analyzed using SPSS 16.0 software (SPSS, Chi-
cago, IL, USA). Differences between groups in the average 
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number of intact and damaged neurons in the hippocampal 
CA3 pyramidal layer were analyzed using GraphPad Prism 
Software (version 5.00) (GraphPad Software Inc., San Diego, 
CA, USA). A value of P < 0.05 was considered statistically 
significant.

Results
Effect of myricetin on cognitive function of rats with 
Alzheimer’s disease
Passive avoidance test results showed that STL was decreased 
and TDC was increased in the STZ group, indicating mem-
ory impairment, than in the control group (P < 0.05). STL 
was significantly increased and TDC was significantly de-
creased in the STZ + 10 mg/kg myricetin group than in the 
STZ group (P < 0.01). There were no significant differences 
in STL and TDC between STZ + 5 mg/kg myricetin and 
STZ groups (P > 0.05). STL was increased and TDC was de-
creased in the saline + 10 mg/kg myricetin group than in the 
STZ group (Figure 1). 

Effect of myricetin on hippocampal CA3 pyramidal 
neuron density in rats with Alzheimer’s disease  
Histological studies revealed striking changes in neuron 
morphology in each group. The number of intact neurons 
in the hippocampal CA3 pyramidal layer was markedly 
decreased in the STZ group, and there were some irregu-
larities in the layer; however, the number of intact neurons 
was significantly increased in the control group and saline + 
myricetin group. Despite the fact that STZ greatly damaged 
neurons, myricetin (10 mg/kg/d, i.p.) significantly increased 
the number of intact neurons containing large, round, and 
regular neurons (Figure 2A–E).

Although i.c.v. injection of STZ resulted in severe hippo-
campal CA3 pyramidal neuronal damage, saline did not lead 
to any severe neuronal damage in this area in control rats; 
the number of damaged neurons in the STZ group was sig-
nificantly increased than that in the control group (P < 0.05). 
However, the number of damaged neurons was significantly 
decreased in the STZ + 10 mg/kg myricetin group than in 
the STZ group (P < 0.01) (Figure 2F). These results suggest 
that myricetin (10 mg/kg/d) exhibited significant protective 
effects on STZ-induced neuronal damage. 

Discussion
The hippocampus plays a vital role in learning and memory. 
Moreover, hippocampal CA3 pyramidal neurons are signifi-
cantly vulnerable to the negative effects of STZ. Therefore, 
hippocampal CA3 neurons located near the DG were the 
target of the current study. Hematoxylin-eosin staining 
showed that the number of intact neurons was greatly de-
creased in the STZ group; however, myricetin (10 mg/kg) 
alleviated neuronal damage in hippocampal CA3 region of 
rats receiving i.p. injection of STZ. This result indicates that 
myricetin at 10 mg/kg/d can promote neuronal recovery and 
at the same time improve neurogenesis in the hippocampus. 
i.c.v. injection of STZ in rats lead to learning, memory and 

cognitive impairments and worsened inflammatory response 
in the central nervous system  (Baluchnejadmojarad., 2009; 
Khalili et al., 2010). The underlying mechanism remains un-
clear; however, it is likely attributed to the peripheral perfor-
mance in the body (Grunblatt et al., 2007).

STZ in rat brain promoted inflammatory response after 3 
weeks (Chu et al., 2005; Lester-Coll et al., 2006).  Following 3 
weeks of i.c.v. injection of STZ, great changes were observed 
in the rat brain (Agrawal et al., 2009). Free radicals induce 
neurotoxicity. Moreover, they lead to the symptoms of Alz-
heimer’s disease (Khalili et al., 2010). There is evidence that 
STZ injections into the brain induce insulin resistance and 
lead to an increase in amyloid precursor protein processing 
to produce beta-amyloid and tau pathology (Kamat, 2015). 
Tau protein and Aβ are the most important pathological 
properties of AD. They are responsible for upcoming patho-
logical events that result in a lack of cognitive performance, 
neuropsychiatric alterations, and eventually lead to neuronal 
death (Kamat, 2015).

Flavonoids can reportedly affect different kinds of synaptic 
plasticity, regulate receptor activation, signaling pathways 
and gene expression, and promote long-term potentiation 
(Rendeiro et al., 2012). In spite of many studies reporting 
flavonoid-mediated neuroprotection, there is no enough 
information regarding the interaction of flavonoids or their 
circulating metabolites with the blood-brain barrier (Youdim 
et al., 2004). Yao et al. (2014) demonstrated that myricetin 
is a lipophilic compound with low water solubility but high 
solubility in organic solvents or with solubilizers. It can pass 
through biological membranes such as the blood-brain barri-
er. Moreover, they show strong neuroprotective effects under 
in vivo conditions (Das et al., 2008; Hamaguchi et al., 2009), 
and their metabolites have been found in the brain tissue of 
rodents after oral administration (Paulke et al., 2006). These 
results display their ability to cross the blood-brain barrier 
(Paulke et al., 2006; Franco et al., 2010). In some age-related 
diseases, oxidative stress may contribute to the breakdown of 
blood-brain barrier, so flavonoids can enter the brain more 
easily than under the healthy state (Youdim et al., 2004).

It is strongly believed that Alzheimer’s disease and other 
neurodegenerative disorders are triggered by multifactorial 
processes, including neuroinflammation, glutamatergic 
excitotoxicity, increases in iron, and/or the depletion of 
endogenous antioxidants (Jellinger, 2001). Flavonoids can 
inhibit apoptosis and other damage in neurons through 
neurotoxic species, but not directly. They modulate a num-
ber of protein kinase and lipid kinase signaling cascades, 
like PI3 kinase (PI3K)/Akt, tyrosine kinase, protein kinase 
C (PKC), and MAPK signaling pathways (Spencer, 2009). 
Spencer (2009) reported that flavonoids induce angiogen-
esis and new nerve cell growth in the hippocampus. Under 
the destructive effects of STZ, microglia and astrocytes pro-
duce cytokines (interleukin-1β, tumor necrosis factor-α) 
and nitric oxide (NO•) that lead to glial-induced neuronal 
death. Flavonoids play a truly significant role in the in-
hibition of NO•, interleukin-1β, and TNF-α in activated 
microglial cells (Spencer, 2009). Flavones have been shown 
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to significantly inhibit 6-hydroxydopamine-induced JNK 
activation and neuronal cell death, and they may suppress 
JNK activity and apoptosis induced by hydrogen peroxide, 
4-hydroxy-2-nonenal, and tumor necrosis factor-α (Kobu-
chi et al., 1999). 

The present study clearly demonstrated that myricetin (10 
mg/kg/d; i.p.) significantly inhibited cognitive impairments 
caused by i.c.v. injection of STZ. It can also increase the sur-
vival of hippocampal CA3 pyramidal neurons. The present 
findings add evidence to treatment of Alzheimer’s disease 
using myricetin as a flavonoid. 
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Figure 1 Effect of myricetin (5 and 10 
mg/kg) on learning and memory of 
Alzheimer’s disease rats measured by 
passive avoidance test (the shuttle box 
test). 

Figure 2 Effect of myricetin (5 and 10 
mg/kg) on morphology of 
hippocampal CA3 pyramidal neurons 
of rats with Alzheimer’s disease 
(hematoxylin-eosin staining, 
original magnification ×40).

(A, B) Step-through latency (A) and total time spent in the dark chamber (B) in passive avoidance test were measured after intracerebroventricular 
injection of STZ followed by 21-day treatment of myricetin. Values are expressed as the mean ± SEM with 10 rats in each group. *P < 0.05, **P < 0.01, 
vs. STZ group (one-way analysis of variance followed by Tukey’s post-hoc test). I–V: STZ (intracerebroventricular injection of STZ + intraperitoneal 
injection of normal saline), control (intracerebroventricular and intraperitoneal injections of normal saline), STZ + 5 mg/kg myricetin (intracerebro-
ventricular injection of STZ + intraperitoneal injection of 5 mg/kg myricetin), STZ +10 mg/kg myricetin (intracerebroventricular injection of STZ 
+ intraperitoneal injection of 10 mg/kg myricetin), saline + 10 mg/kg myricetin (intracerebroventricular injection of normal saline + intraperitoneal 
injection of 10 mg/kg myricetin) groups, respectively. STZ: Streptozotocin.

(A) Control group (natural and intact neurons with arranged CA3 layer); (B) STZ group (significant neural loss and an irregular layer); (C) STZ + 5 
mg/kg myricetin (most of the cells were damaged; however, there were some intact neurons); (D) STZ + 10 mg/kg myricetin (neurons were neatly 
arranged with a lot of intact and round cells); (E) saline +10 mg/kg myricetin (regular layer and significant increases in intact neuron). Black arrows 
indicate intact neurons and red arrows represent damaged neurons (F) The average number of intact neurons in hippocampal CA3 pyramidal layer. 
All data are represented as the mean ± SEM. *P < 0.05, ***P < 0.001, vs. STZ group (one-way analysis of variance followed by Tukey’s post-hoc test). I–
V: STZ (intracerebroventricular injection of STZ + intraperitoneal injection of normal saline), control (intracerebroventricular and intraperitoneal 
injections of normal saline), STZ + 5 mg/kg myricetin (intracerebroventricular injection of STZ +  intraperitoneal injection of 5 mg/kg myricetin), STZ 
+10 mg/kg myricetin (intracerebroventricular injection of STZ + intraperitoneal injection of 10 mg/kg myricetin), saline + 10 mg/kg myricetin (intrace-
rebroventricular injection of normal saline + intraperitoneal injection of 10 mg/kg myricetin) groups, respectively. STZ: Streptozotocin.

160
140
120
100

80
60
40
20

0

180
160
140
120
100

80
60
40
20

0
I                        II                      III                    IV         V I                        II                      III                    IV         V

*
*

*
*

**

**

S
te

p-
th

ro
ug

h 
la

te
nc

y 
(s

ec
on

d)

To
ta

l t
im

e 
sp

en
t i

n 
th

e 
da

rk
 c

ha
m

be
r (

se
co

nd
)

 A    B   

80

60

40

20

0
I                 II              III              IV      V

* *

***

Av
er

ag
e 

nu
m

be
r o

f
 in

ta
ct

 n
eu

ro
ns

 A   

 D   

 B  

 E  

 C  

 F  


