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Abstract

Motivation: DNA barcodes are short, random nucleotide sequences introduced into cell populations to track the
relative counts of hundreds of thousands of individual lineages over time. Lineage tracking is widely applied, e.g. to
understand evolutionary dynamics in microbial populations and the progression of breast cancer in humans.
Barcode sequences are unknown upon insertion and must be identified using next-generation sequencing technol-
ogy, which is error prone. In this study, we frame the barcode error correction task as a clustering problem with the
aim to identify true barcode sequences from noisy sequencing data. We present Shepherd, a novel clustering
method that is based on an indexing system of barcode sequences using k-mers, and a Bayesian statistical test
incorporating a substitution error rate to distinguish true from error sequences.

Results: When benchmarking with synthetic data, Shepherd provides barcode count estimates that are significantly
more accurate than state-of-the-art methods, producing 10–150 times fewer spurious lineages. For empirical data,
Shepherd produces results that are consistent with the improvements seen on synthetic data. These improvements
enable higher resolution lineage tracking and more accurate estimates of biologically relevant quantities, e.g. the
detection of small effect mutations.

Availability and implementation: A Python implementation of Shepherd is freely available at: https://www.github.
com/Nik-Tavakolian/Shepherd.

Contact: cbli@math.su.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA barcodes are short DNA sequences that are introduced into a
cell population to identify individuals and their offspring. These barc-
odes are passed on from generation to generation and can be used to
track the relative counts of lineages over time (Blundell and Levy,
2014; Masuyama et al., 2019; Nguyen Ba et al., 2019; Weinreb and
Klein, 2020). This technology is useful for analyzing the evolutionary
dynamics of a population. For example, it has been used to infer the
effects of mutations in populations of Saccharomyces cerevisiae
(Johnson et al., 2019; Levy et al., 2015) and to track the progression
of breast cancer in humans (Nguyen et al., 2015).

In general, the barcodes are unknown random DNA sequences.
Once established in a population, the barcodes are identified
through sequencing by synthesis, a process which involves generat-
ing millions of copies of each barcode using polymerase chain reac-
tion (PCR) amplification. This is followed by a sequencing step,

whereby each barcode sequence is identified. The counts of the iden-
tified sequences estimate the relative counts of the barcodes in the
population. However, this ignores the fact that the sequencing pro-
cess is error prone and assumes that each identified sequence corre-
sponds to a unique barcode in the population. Both PCR
amplification and sequencing can introduce errors in the identifica-
tion of the barcodes, typically in the form of substitution errors,
through which one or more nucleotides in a barcode are misidenti-
fied as different nucleotides. The substitution error rate for the
Illumina sequencing platform (Bentley et al., 2008) was estimated
by Pfeiffer et al. (2018) to be �0:24% per base and �6:4% of the
sequences were found to contain at least one substitution error. To
correctly determine the relative counts of the barcodes, these errors
must be identified and corrected.

We first define an error sequence as a sequence that originated
through one or more substitution errors in the identification of a
barcode. The original barcode is the source barcode of the error
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sequence. The error correction task can then be viewed as a cluster-
ing problem that groups similar sequences together: All error
sequences that have the same source barcode should belong to the
same cluster, together with their source barcode.

The main challenge of this task is that the number of unique
sequences can be in the millions and the number of barcodes can be
in the hundreds of thousands. Since clustering involves grouping
similar items, a standard approach is to compute all pairwise distan-
ces between the items before applying some clustering algorithm
(Frey and Dueck, 2007). However, this approach is extremely com-
putationally costly with millions of unique sequences. In addition,
the number of barcodes is unknown beforehand, making the task
more difficult since the cluster counts cannot be used as a guide to
find accurate clusters.

Bartender (Zhao et al., 2018) and Starcode (Zorita et al., 2015)
are examples of recent methods for clustering barcode reads. These
methods avoid fully computing all pairwise distances by utilizing
various prioritization schemes. Nevertheless, they do not incorpor-
ate explicit estimates of the error rates associated with PCR amplifi-
cation and sequencing. Explicit error rate estimates enable
approximation of the probability distribution of error sequences.
Knowledge of this distribution allows for more accurate classifica-
tion of a sequence as either a true barcode or an error sequence.

Here we present Shepherd, a new method for error correction of
barcode reads. Shepherd is based on the idea of partitioning the bar-
code sequences into non-overlapping k-mers that are substrings of
length k. These substrings are then used to construct an indexing
system termed the k-mer Index, similar to a book indexing system in
a library, which allows us to efficiently find the local neighborhood
for a given sequence. This local neighborhood includes only sequen-
ces that are within a predefined distance to the sequence under con-
sideration, without having to compute its distance to all other
sequences. Furthermore, Shepherd employs a Bayesian hypothesis
test that explicitly incorporates the substitution error rate to dis-
criminate true barcodes from error sequences.

The main achievement of Shepherd is that it offers a substantial
improvement in error correction accuracy over other state-of-the-art
methods. Specifically, Shepherd offers significant improvements for
tracking low count lineages accurately. When compared with exist-
ing methods, Shepherd achieves 10 to 150 times fewer spurious line-
ages on synthetic single and multiple time point data. Furthermore,
Shepherd provides highly accurate and unbiased barcode count esti-
mates throughout the count range. On the experimental Illumina
HiSeq data (Levy et al., 2015), we obtain results that are consistent
with the improvements in the synthetic data benchmark.

In Section 2, we provide a detailed description of the k-mer
indexing system that enables efficient identification of sequence
neighborhoods, and describe the clustering procedure that uses this
k-mer indexing system to reliably correct substitution errors. In
Section 3.1, we evaluate the error correction accuracy of Shepherd
on synthetic data for both a single time point and multiple time
points. In Section 3.2, cluster validation measures are used to evalu-
ate the error correction accuracy of Shepherd on experimental
Illumina HiSeq data (Levy et al., 2015), with comparisons to
the current state-of-the-art methods, Bartender and Starcode. We
discuss the results and the significance of our new approach in
Section 4.

2 Materials and methods

In this section, we will explain each step performed by Shepherd to
find accurate barcode clusters. In Section 2.1, we introduce the k-
mer indexing system which forms the backbone of the method and
enables efficient identification of neighbors for each sequence. In
Section 2.2, the main clustering procedure is described.

2.1 Finding sequence neighborhoods: the k-mer Index
The purpose of the k-mer indexing system is to enable computation-
ally inexpensive identification of all sequences that are similar to a
given sequence. Before the k-mer Index can be constructed, a

sensible distance metric between the sequences must be defined to
specify what constitutes similarity. With error sequences arising
from substitution errors, it is natural to use the Hamming distance
as our distance metric. Let Sa and Sb denote two sequences with the
same length l, the Hamming distance between the sequences is the
number of nucleotide substitutions needed to convert one sequence
to the other,

hðSa; SbÞ ¼
Xl

j¼1

IðSa½j� 6¼ Sb½j�Þ; (1)

where S½j� is the nucleotide at the jth position of the sequence S and I
denotes the indicator function defined by,

Iðx 6¼ yÞ ¼ 1 if x 6¼ y;
0 if x ¼ y:

�
(2)

We next define the �-neighborhood of a given sequence as the set
of all sequences with Hamming distance smaller than or equal to �
from it. We want to choose � so that all error sequences of a barcode
are within its �-neighborhood. However, we do not want � to be
larger than necessary since the time and memory complexity of the
method increases with larger �. Therefore, a suitable value for �
offers a trade-off between accuracy and performance. For now, we
assume that an appropriate value for � has been chosen and detail
the procedure for determining � in Supplementary Section S3B. Our
goal is to efficiently find the �-neighborhood of each unique
sequence.

To this end, consider each sequence as a set of non-overlapping
k-mers that are substrings of length k. Let l denote the barcode
length, each choice of k partitions the sequence into a set of p k-
mers. One has p ¼ l=k if l is a multiple of k. Otherwise, the integer
quotient defines the number of partitions with length k and there is
one additional partition of length r with r the remainder.

If a sequence is within distance � of another sequence, the num-
ber of k-mers shared by the two sequences is at least p� �. This fol-
lows from the pigeonhole principle exemplified in Figure 1a. The
figure shows an example with Sequences 2 and 3 within a distance
�¼2 from the true barcode. Consequently, these error sequences
share two or more 2-mers with the true barcode. This is because we
have at most two errors that occur in four 2-mers. Placing one error
in each 2-mer minimizes the number of matching 2-mers, but always
leaves two 2-mers error free. In general, the pigeonhole principle
guarantees that the set of sequences sharing p� � or more k-mers
with a given sequence includes all sequences in the �-neighborhood
of the sequence. We call this set the k-mer neighborhood of the given
sequence and require that k is chosen such that p� � > 0, i.e. if two
sequences have Hamming distance �, we require that they share at
least one k-mer.

Note that sequences outside of the �-neighborhood might also be
included in the k-mer neighborhood. For example, this is the case
for Sequence 4 in Figure 1a. This sequence appears in the 2-mer
neighborhood of the true barcode for �¼2, despite having
Hamming distance 3 to the true barcode. Nevertheless, since at least
p� � k-mers match, the k-mer neighborhood is bounded by a cer-
tain Hamming distance threshold. When l is a multiple of k, this
threshold is given by k�. (Given that two sequences share exactly
p� � k-mers, they have � distinct k-mers when l is a multiple of k.
The maximum Hamming distance between them corresponds to the
case when every position in the distinct k-mers is a mismatch.) An il-
lustration of the sequence neighborhoods is shown in Figure 1b.

In general, there can be several values for the substring length k
satisfying the constraint p� � > 0. There are two primary considera-
tions when choosing k. Firstly, k should not be too large such that
the k-mer neighborhood of a sequence contains many more sequen-
ces than its �-neighborhood, as a large k-mer neighborhood
increases the search time for finding the �-neighbors. Secondly, k
should not be too small since small k increases the size of the k-mer
Index defined below by increasing the number of k-mer combina-
tions. In Supplementary Section S3C, we provide details on how k is
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automatically determined to optimize the computational cost of
finding the �-neighborhoods.

For fixed p and � there are pCp�� ways for two sequences to share
p� � k-mers, where mCn denotes the number of possible combina-
tions when choosing n items from a total of m items. Equivalently,
there are pCp�� ways to choose p� � k-mers from a sequence. Each
one of these combinations is called a k-mer combination.

The k-mer Index is a lookup table containing a collection of ID-
set pairs: the ID in the pair is a k-mer combination identification
number, and the corresponding set in the pair is the set of all unique
sequences that contain that k-mer combination. Figure 1d shows the
k-mer Index for the sequences in Figure 1a, excluding the k-mer
combinations that only appear in a single sequence. To construct the
k-mer Index, the following steps are performed for each sequence in
the dataset:

1. Find the pCp�� combinations of k-mers for the sequence under

consideration. For example, if the barcode length is l ¼ 8 and

the number of partitions is p ¼ 4 as in Figure 1a, the number of

2-mer pairs is 4C2 ¼ 6 for � ¼ 2.

2. Convert each of these combinations into a combination ID, a

number that uniquely represents the k-mer combination. This

procedure is illustrated in Figure 1c for the case when l ¼ 8 and

p ¼ 4.

3. Is the combination ID an established ID in the k-mer Index?

No: Add the combination ID to the Index, the corresponding set

is the set containing only the sequence under consideration.

Yes: Query the index using the combination ID to find the set of

sequences from previous iterations that share the k-mer combin-

ation. Then add the current sequence to that set, updating the

set in the Index. Figure 1d shows the final sets that arise from

this procedure for the sequences in Figure 1a.

The k-mer Index is constructed once the above steps are per-
formed for each sequence. Given a sequence, the index can be used
to find its k-mer neighborhood. We query the index with the com-
bination IDs of each sequence to find all sequences that share at least
one combination with the given sequence. These sequences consti-
tute its k-mer neighborhood. Figure 1e shows the process of finding
the k-mer neighborhood of the true barcode from Figure 1a, using
the k-mer Index from Figure 1d. Once the k-mer neighborhood of a
sequence is constructed, its �-neighborhood can simply be found by
keeping the sequences in the k-mer neighborhood that are within
Hamming distance �.

We note that the most direct way of finding �-neighborhoods is
computing all pairwise Hamming distances between the sequences.
However, the method presented here based on the k-mer Index is
significantly more efficient. This is because the construction of the
k-mer Index only requires one pass over the unique sequences. In
contrast, the computation of all pairwise Hamming distances
requires OðN2Þ of iterations, with N the number of unique sequen-
ces in the dataset. Once constructed, the index enables us to effi-
ciently find the k-mer neighborhoods, narrowing the search for the
�-neighbors considerably.

2.2 Clustering using k-mer neighborhoods
In this section, we will describe the simple clustering procedure used
to identify true barcodes and to group them with the error sequences
that originated from them. The procedure is based on the observa-
tion that sequences with very high counts are unambiguously true
barcodes, whereas sequences with low counts may be error

(a)

(b)

(c)

(d)

(e)

Fig. 1. (a) Illustration of the pigeonhole principle for l¼ 8 and k¼2 (i.e. p ¼ l=k ¼ 4). Sequences 2 and 3 are within Hamming distance 2 of the true barcode. It follows from

the pigeonhole principle that these error sequences share two or more 2-mers with the true barcode. Since Sequence 4 has Hamming distance 3 to the true barcode the pigeon-

hole principle only guarantees that it shares one 2-mer with it. Nevertheless, Sequence 4 still shares two 2-mers with the true barcode since two of its errors appear in the same

2-mer. (b) A given sequence (orange square) surrounded by its neighbors (dots) in sequence space. The orange dots are the k-mer neighbors of the given sequence, i.e. all

sequences that share at least p� � k-mers with it. The blue dots are sequences not included in the k-mer neighborhood. The dashed circle is the �-neighborhood of the sequence

and the solid circle is the boundary for the k-mer neighbors, i.e. no k-mer neighbor appears outside the solid circle. Note that l is a multiple of k in this case and that all �-neigh-

bors of the sequence are also k-mer neighbors, this is guaranteed by the pigeonhole principle. (c) Illustration of how a pair of 2-mers are converted into a combination ID. First

a pair of 2-mers is selected. Each 2-mer has a location in the sequence specified by the orange numbers. The 2-mer pair is then converted to an ID by assigning each of its

nucleotides to a number specified by the conversion table on the right. (d) The k-mer Index for the set of sequences from the panel a, including only the 2-mer pairs shared by

at least two sequences in the dataset. The blue numbers correspond to the sequence numbers specified in the panel a. Furthermore, the k-mer Index only includes the combin-

ation IDs with the corresponding sets and the 2-mer pairs (leftmost column) are only included here for illustrative purposes. (e) A schematic showing the process of finding the

k-mer neighborhood of Sequence 1 from the panel a using the k-mer Index from the panel d. First all combination IDs of Sequence 1 are found and the corresponding sets are

obtained from the k-mer Index. The set union of the sets yields the set of all sequences that share at least one combination ID with Sequence 1. By excluding Sequence 1 from

this set we obtain its k-mer neighborhood (A color version of this figure appears in the online version of this article.)
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sequences. We assume that the k-mer Index has already been con-
structed for some distance threshold � and substring length k.
Sequences classified as true barcodes by Shepherd are referred to as
putative barcodes since they could still be error sequences due to
classification errors.

In the first step of the clustering procedure, we iterate over the
unique sequences one by one in descending order of read counts and
use the k-mer Index to find their k-mer neighborhoods. The first se-
quence with the highest read count is always classified as a putative
barcode. Subsequent sequences are also classified as putative barco-
des as long as none of their �-neighbors are putative barcodes.
Indeed, if a sequence is an error sequence, one would expect that its
source barcode is a nearby putative barcode with a higher read
count.

However, if a putative barcode is found in the �-neighborhood of
the sequence under consideration, we cannot conclude if the se-
quence is an error sequence or a true barcode close to a putative bar-
code. Consequently, the naive strategy of classifying a sequence as
an error sequence whenever it has a putative barcode as an �-neigh-
bor can lead to misclassification. The risk of misclassification is
higher when the barcode length is short and � is large, since these
factors increase the likelihood that true barcodes are within distance
� of each other.

To avoid erroneous classification of sequences with nearby puta-
tive barcodes, a Bayesian statistical test is used to determine if the se-
quence under consideration is either a true barcode or an error
sequence originating from its closest putative barcode. If the se-
quence is classified as an error sequence, it is clustered with its clos-
est putative barcode. In the rare cases when two or more putative
barcodes have the same Hamming distance to the sequence under
consideration, the one with the higher read count is considered. We
refer to Supplementary Algorithm S1 for a pseudo-code description
of the procedure.

Our clustering procedure performs a statistical test every time a
putative barcode is in the �-neighborhood of the sequence under
consideration. To reduce computational time, this test can be omit-
ted for cases that are unambiguous, e.g. when the sequence has a
very high read count it is almost certainly a true barcode.
Furthermore, a truncated Hamming distance can be used to reduce
computational time. We refer to Supplementary Section S3D for a
detailed description of how the clustering procedure is optimized.

2.2.1 Correcting insertion and deletion errors

In general, the rate of Indel sequencing errors is significantly lower
than the rate of substitution errors. However, for sequences with
long homopolymers it has been shown that the Indel error rate can
be significantly higher (Minoche, et al., 2011). In these sequences,
single insertion or deletion errors may occur often enough that they
must be corrected for to ensure accurate count estimation.

Shepherd corrects single insertion and deletion errors using a
post-processing procedure. First, all sequences of length lþ1 with
single insertion errors are processed. For each of these sequences, we
consider the lþ1 possible single deletions that yield a sequence of
the correct length l. If one of these sequences is a putative barcode
identified in the main clustering procedure, we assign the sequence
to that putative barcode. Analogously, we correct single deletion
errors by processing all sequences of length l � 1 and considering
the l possible single insertions that yield a sequence of the correct
length.

2.2.2 Bayesian statistical test

When a given sequence is within a Hamming distance � from a puta-
tive barcode, it can either be an error sequence or a true barcode.
Shepherd uses a statistical test to decide between the two cases (or
hypotheses). The test accounts for the sequence under consideration
and its read count, together with the sequence of the closest putative
barcode and its read count. An error rate per nucleotide q, which is
the estimated probability that a substitution error occurs at a nu-
cleotide in a barcode, is also used to determine the likelihood of
each hypothesis. We assume that the combined error rates of PCR

amplification and sequencing are the same at each nucleotide
position.

Let Sc and fc denote the sequence under consideration and its
read count, respectively. Furthermore, let Sp denote the sequence of
the neighboring putative barcode with read count fp. The Hamming

distance between the sequences is given by d, such that d � �.
We will consider two competing models for the sequence under

consideration. In the first model, M1, the sequence Sc is an error se-
quence that originated from the nearby putative barcode Sp through

substitution errors. In the second model, M2, the sequence Sc is a
true barcode. The likelihood of each model, PðSc; fcjSp; fp; q;MiÞ
with i¼1 or 2, is the probability of observing the sequence Sc with

read count fc given each model. The ratio of the likelihoods for each
model is known as the Bayes Factor for decision-making. An expres-

sion for each likelihood can be found (see details in Supplementary
Section S1) allowing us to obtain the following computable form for
the logarithm of the Bayes factor K,

lnK ¼ ln
PðSc; fcjSp; fp;M1Þ
PðSc; fcjSp; fp;M2Þ

¼ lnðn̂Cfc
p̂

fc

pcð1� p̂pcÞ
n̂�fc Þ þ lnp̂pc þ lln4þ lnfmax:

(3)

Here n̂ is an estimate of the true count of the putative barcode Sp

and fmax is the highest read count observed in the data. The prob-
ability of converting the sequence Sp to Sc by substitution errors is
estimated by p̂pc ¼ ðq=3Þ

dð1� qÞl�d (see Supplementary Section

S1A). This estimate is based on the assumption that once a substitu-
tion error occurs, all three nucleotides that could replace the original

one are equally likely to be picked.
To decide if the sequence Sc is a true barcode or an error se-

quence, a threshold for the log-Bayes factor (Eq. 3) must be sup-

plied. In this study, we choose the threshold equal to –4 as suggested
by Kass and Raftery (1995) and refer to Supplementary Section S1

for details regarding the Bayesian statistical test.

2.3 Multiple time point error correction with Shepherd
So far we have covered error correction of barcode reads from a sin-
gle time point. However, for the purpose of lineage tracking, bar-

code reads from multiple time points have to be processed.
Specifically, error correction must be performed at each time point

and the barcodes from one time point should be connected to the
corresponding barcodes from different time points. Furthermore,
some barcodes may not be identified in the first time point due to

low sequencing coverage, but their counts may rise in later time
points. Shepherd has the novel capability of identifying emerging

barcodes at later time points. This enables more accurate lineage
tracking, especially when the sequencing coverage is low.

Shepherd only performs clustering for the first time point
using the procedure described in Section 2.2. For subsequent
time points, Shepherd treats the error correction task as a classi-

fication problem and assigns each sequence to its closest putative
barcode within distance � from the previous time point. If no pu-
tative barcode is within distance � of the sequence, it is added to

the set of unassigned sequences and processed separately at a
later stage. If two or more putative barcodes have the same

Hamming distance to the sequence under consideration and ap-
pear in its �-neighborhood, the sequence is assigned to the one in
the higher count cluster.

Barcodes emerging at later time points may appear within the �-
neighborhoods of existing putative barcodes. To resolve these cases,

Shepherd uses the statistical test from Section 2.2.2 to separate
emerging barcodes from existing ones. This procedure has the add-

itional benefit of correcting false negatives introduced in the first
time point. Specifically, if two true barcodes are merged in the first
time point, they will be separated at a later time point if their count

discrepancy increases. We refer to Supplementary Section S2 for a
detailed description of the error correction procedures for multiple

time points.
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3 Results

In this section, we evaluate the performance of Shepherd and com-
pare it with other state-of-the-art methods for error correction of
DNA barcodes, namely, Bartender and Starcode (Zhao et al., 2018;
Zorita et al., 2015). In Section 3.1, the methods are compared on
synthetic data, for which the true cluster labels, i.e. true sequences,
are known. In Section 3.2, we compare the methods using the lin-
eage tracking data of S.cerevisiae obtained by Levy et al. (2015) and
perform clustering validation to assess the results.

3.1 Synthetic data
The evaluation of the methods for a single time point are based on
three synthetic datasets. The synthetic barcodes have 20 random
nucleotides and 6 constant nucleotides. This configuration was
chosen to imitate barcodes produced in actual sequencing-based lin-
eage tracking systems (Levy et al., 2015).

Once the barcode sequences are generated, each one is assigned a
count by drawing a sample from the exponential distribution with
mean 100, and setting the count to the least integer greater than or
equal to the sample (the ceiling function). To simulate substitution
errors, we assume a constant per nucleotide error rate. Detailed pro-
cedures for generating the synthetic datasets are provided in
Supplementary Section S4A.

The synthetic datasets are summarized in Table 1. The error rate
for Dataset A is chosen to be close to the error rate estimated experi-
mentally by Pfeiffer et al. (2018) for the Illumina sequencing plat-
form. The error rates in Datasets B and C are set to be higher to
account for the error rate differences between sequencing platforms,
and to test the performance of the different error correction methods
in large error conditions. All three methods, Shepherd, Bartender
and Starcode, were tested using their default settings when possible,
to yield results a user would obtain without re-running the algo-
rithms to adjust the parameters.

For Shepherd, the parameter q was estimated from the data using
the procedure described in Supplementary Section S3A. For all data-
sets, the relative difference between the true error rate and the esti-
mated error rate was <1.5%. The threshold for log-Bayes factor was
set to its default value –4. This threshold implies that the likelihood of
model M2 must be at least around 55 times larger than the likelihood
of model M1 for the sequence to be classified as a true barcode.

The motivation for favoring model M1 is that error sequences clas-
sified as true barcodes are generally more disruptive than true barco-
des classified as error sequences for the purpose of lineage tracking.
This is because in the former case an entirely new spurious lineage is
created, whereas the latter case involves a relatively mild distortion of
the estimated barcode counts. The other parameters of Shepherd are
summarized in Supplementary Table S1 and were automatically deter-
mined using the procedures described in Supplementary Section S3.
The parameters of Bartender are set to match the ones used by Zhao
et al. (2018) on similar data and Starcode is applied with its default
settings and the distance threshold set to 2.

To compare the clustering results of the methods, we consider
the false positive count (FPC) and false negative count (FNC) on
each dataset. A false positive is an identified cluster that does not
correspond to a true barcode. A false negative is a true barcode that
is clustered together with another true barcode with higher count. In
other words, a false positive is a spurious lineage and a false negative
is a true barcode that is incorrectly classified as an error sequence. A
higher FPC implies a large number of spurious low count lineages,

since most false positives are small groups of error sequences from a
common source barcode. Furthermore, a high FNC indicates that
the method is under-clustering by merging different barcodes.
Table 2 shows the FPC and FNC for each method on each synthetic
dataset. While the FNC is similar for all methods, the FPC is sub-
stantially lower for Shepherd across all datasets. This difference in
FPC increases with the error rates of the datasets, suggesting that
Shepherd performs better in large error conditions.

Figure 2a shows the count distribution of the low count putative
barcodes identified by each method on Dataset B compared to the
ground truth. For higher count putative barcodes, the cluster read
counts of all methods closely match the ground truth. However, as a
consequence of the high FPCs of Bartender and Starcode when com-
pared with Shepherd (see Table 2), these methods overestimate the
number of clusters with low read counts, as can be seen from
Figure 2a. In particular, the number of single read clusters is esti-
mated to be around four times higher for Bartender and seven times
higher for Starcode, when compared with the ground truth. The cor-
responding plots for Datasets A and C are given in Supplementary
Figures S1 and S2, respectively.

The FPC and FNC provide information about the ability of each
method to distinguish true barcodes from error sequences.
However, error sequences that are assigned to the wrong clusters do
not affect these measures. When error sequences are not grouped
with their source barcodes, the estimated counts of the source barco-
des deviate from the true counts. In order to fully assess the accuracy
of error sequence assignment, the estimated counts of the barcodes
are compared with the true counts in Figure 2b for each method on
Dataset B. For a comparison of the estimated counts on Datasets A
and C, we refer to Supplementary Figure S3. We see that Shepherd is
less prone to overestimation of the barcode counts compared to
existing methods. We attribute this difference to the fact that
Shepherd considers all nearby putative barcodes before assigning an
error sequence to the closest one. Therefore, Shepherd is able to ac-
curately determine which error sequences belong to each putative
barcode in cases when two or more putative barcodes are close in
the sequence space.

Both Shepherd and Bartender support error correction across
multiple time points. We evaluate the multiple time point accuracy
of each method using synthetic data of 500 000 barcoded lineages,
5000 of which were given a growth advantage to simulate selection.
The details of the simulation procedure for the multiple time points
data are given in Supplementary Section S4B. To assess the accuracy
of Shepherd and Bartender, we consider the mean absolute error
(MAE) at each time point (Fig. 2c). One can see that Shepherd
achieves a considerably lower MAE compared to Bartender across
all time points. One can also see that while the MAE of Bartender
remains relatively constant over time, the MAE of Shepherd
decreases with time. This is because false negatives introduced by
Shepherd in the first time point are corrected at later time points as
described in Section 2.3.

3.2 Experimental Illumina HiSeq data
In this section, we compare the methods on the experimental sequenc-
ing data (dataset is available from the NIH Sequence Read Archive
with accession number SRR5747458) obtained by Levy et al. (2015)
using the Illumina HiSeq sequencing platform. In short, genetic barco-
des were inserted into a clonal population of S.cerevisiae, grown in a
serial batch culture setup and transferred every eight generations. At

Table 1. Summary of synthetic datasets

Dataset A B C

Unique sequence count 3 428 741 5 773 822 2 591 318

True barcode count 499 656 499 320 99 507

Error rate 0.33% 0.66% 2%

Note: All datasets have barcodes with a total barcode length of 26, with 20

random nucleotides and 6 constant nucleotides.

Table 2. The false positive count (FPC) and false negative count

(FNC) for each method on each synthetic dataset

Dataset A B C

Measure FPC FNC FPC FNC FPC FNC

Shepherd 45 66 482 82 461 50

Bartender 1979 47 14 100 62 59 554 6

Starcode 7045 91 26 289 99 78 956 4
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each time point, DNA was extracted and sequenced to generate the
barcode datasets. Here we consider the dataset generated in the first
time point. The dataset consists of 2 450 766 unique sequences and
the total read count is �136 million. In contrast to the synthetic data-
sets, the optimal clustering of the barcode reads is unknown in this
case. Therefore, we will check for consistency in performance with the
synthetic data and employ cluster validation measures to evaluate the
clustering quality for each method.

For Shepherd, the log-Bayes Factor is set to its default value –4
and the substring length is set to k¼3. The other parameters of
Shepherd are automatically determined based on the input data and
are summarized in Supplementary Table S2. For Bartender, we use
the same parameter settings used by Zhao et al. (2018) on the same
dataset. Starcode is applied using its default setting and the distance
threshold set to 2.

The number of putative barcodes identified by Shepherd,
Bartender and Starcode are 1 034 911; 1 038 600 and 1 131 999, re-
spectively. The number of barcodes identified in common by the
methods is summarized in Supplementary Figure S5. We evaluate
the clustering of each method using a measure of cluster compact-
ness, termed the effective cluster radius re. For a given cluster, re is
defined as the average Hamming distance between its highest count
sequence and all other sequences in the same cluster, with the

highest count sequence treated as the cluster center. A small re for a
cluster implies that the cluster is compact, i.e. sequences in the clus-
ter are close to the cluster center.

Figure 3a compares the distributions of re for Shepherd and
Bartender. We refer to Supplementary Figure S4 for a plot comparing
all three methods. For Shepherd, re is between 1 and 2 for all clusters.
For Bartender, most clusters have an effective cluster radius close to 1
but 13 205 clusters (�3% of clusters) have values of re >2, with some
clusters having values of re >5. Because clusters with a high re have
low compactness, it is possible that these clusters contain error
sequences that originate from different true barcodes. In that case, one
would expect Bartender to overestimate the counts of the barcodes to
which error sequences are assigned incorrectly. We see from Figure 3b
that Bartender tends to estimate higher barcode counts than
Shepherd, especially for low count barcodes. This is also consistent
with the clustering results on synthetic data (see Fig. 2b).

It should be noted that cluster compactness alone is not suffi-
cient to be a good measure of clustering quality. This is because
increasing the cluster count always increases cluster compactness,
but eventually leads to over-clustering. Therefore, we must also
consider the number of clusters identified by each method to
understand why Shepherd produces more compact clusters than
Bartender. While the total cluster counts of Shepherd and
Bartender are similar, Shepherd identifies 3689 fewer clusters
than Bartender. This suggests that the more compact clustering of
Shepherd should be attributed to superior clustering quality as
opposed to over-clustering.

4 Discussion

In summary, Shepherd exploits the pigeonhole principle to efficient-
ly find neighborhoods for each sequence using the k-mer indexing
system. By utilizing an estimated per nucleotide error rate, Shepherd
can accurately classify sequences as either true barcodes or error
sequences and is able to reliably assign error sequences to their

Fig. 2. (a) The number of clusters with low read counts (<6) for each method com-

pared to the ground truth on Dataset B. (b) Estimated barcode counts compared to

the true counts for each method on Dataset B. Only true barcodes identified by all

three methods are displayed. True barcodes for which all three methods estimated

the same count are excluded to emphasize differences in the estimated counts. (c)

The mean absolute difference between the true barcode counts and the estimated

counts of Shepherd and Bartender at each time point. For each time point, only true

barcodes identified by both methods are included in the comparison

Fig. 3. (a) Distribution of the effective cluster radius re for each method for all clus-

ters containing at least two sequences. There are 439 658 and 446 168 such clusters

for Shepherd and Bartender, respectively. (b) A 2D histogram of the cluster read

counts estimated by Shepherd and Bartender including the barcodes identified by

both methods. The colorbar indicates the number of barcodes in each bin
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source barcodes. In terms of both synthetic data and experimental
sequencing data, we have demonstrated that Shepherd is significant-
ly more accurate than other state-of-the-art methods for DNA bar-

code read clustering.
These improvements in error correction accuracy have a num-

ber of implications for lineage tracking using DNA barcodes.
Fundamentally, these improvements lead to higher resolution

lineage tracking, with more accurate estimates of the relative
counts of lineages in a population. In particular, Shepherd intro-
duces significantly fewer spurious lineages when compared with

previous methods. Notably, Shepherd also introduces the novel
capability of tracking lineages that are undetectable in the first

time point but emerge at later time points. Consequently,
Shepherd enables more reliable estimates of biologically relevant
quantities inferred from lineage tracking data, such as the benefi-

cial mutation rate or the number of lineages without a beneficial
mutation (Levy et al., 2015).

Recall that a number of simplifying assumptions were made to
allow Shepherd to operate using a single per nucleotide error rate
estimate. Specifically, Shepherd assumes that errors are equally

likely at every position of the barcode and that all nucleotides are
equally likely to replace the original one when an error occurs.

Since substitution error rates tend to be higher at the end of a
sequencing read (Pfeiffer et al., 2018), a promising direction for
future work is to explore the possibility of estimating separate

error rates for each nucleotide position. Phred quality scores that
estimate the sequencing error probabilities at each nucleotide pos-

ition could conceivably be used for this purpose (Ewing and
Green, 1998).

While Shepherd is designed for error correction of DNA barc-
odes, its applicability extends to any error correction task involv-
ing errors in short DNA sequences (e.g. <100 nucleotides).

Furthermore, the k-mer indexing system presented here enables
computationally efficient identification of sequence neighbor-
hoods, and can be applied more broadly to any neighborhood

identification task involving the Hamming distance. Such tasks
are not limited to genomics and arise also in transcriptomics

(Macmanes and Eisen, 2013).
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