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Sleep pressure and sleep depth are key regulators of wake and
sleep. Current methods of measuring these parameters in Dro-
sophila melanogaster have low temporal resolution and/or require
disrupting sleep. Here we report analysis tools for high-resolution,
noninvasive measurement of sleep pressure and depth from
movement data. Probability of initiating activity, P(Wake), mea-
sures sleep depth while probability of ceasing activity, P(Doze),
measures sleep pressure. In vivo and computational analyses show
that P(Wake) and P(Doze) are largely independent and control the
amount of total sleep. We also develop a Hidden Markov Model
that allows visualization of distinct sleep/wake substates. These
hidden states have a predictable relationship with P(Doze) and
P(Wake), suggesting that the methods capture the same behav-
iors. Importantly, we demonstrate that both the Doze/Wake prob-
abilities and the sleep/wake substates are tied to specific
biological processes. These metrics provide greater mechanistic in-
sight into behavior than measuring the amount of sleep alone.
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Sleep is a broadly conserved quiescence behavior that is dif-
ferentiated from other forms of quiescence (e.g., anesthesia,

coma) by its internally driven regulation and fast reversibility (1).
In the early 20th century, von Economo argued that control of
the transition between sleep and wake was localized to a single
“nervous center” (2). In contemporary literature, localization of
control over sleep and wake is expressed using the idea of “sleep-
promoting” or “wake-promoting” structures or cells. However,
far from arising from a single center, there are many inter-
connected cell groups in the mammalian brain that participate in
wake/sleep transitions (3). Even in the fruit fly Drosophila mel-
anogaster, which has a much smaller brain than any mammal, the
localization of sleep initiation is complex, with dozens of cellular
loci that can drive sleep or activity (4). To add further layers of
regulation, these neuronal mechanisms are overlaid with a rich
pallet of hormonal and metabolic factors that can tip the balance
between sleep and wake (5, 6). Currently there are no tools for
systematically understanding how the many biological drives to-
ward wake and sleep are integrated in Drosophila, especially how
they combine with, synergize with, or occlude one another.
The difficulty in integrating these different signals may arise

from focusing on a single behavioral measure, the amount of
sleep, rather than capturing the underlying biological processes
that determine the amount of sleep. Human sleep is regulated
both by the intensity of the drive to fall asleep (higher in nar-
colepsy, lower in insomnia) and the tendency to wake up (higher
in insomnia, lower in hypersomnolence and depression) (7, 8).
For mammals, the activity of sleep centers in freely behaving
animals can be measured using implanted electrodes or non-
invasively using electroencephalography (EEG). To capture the
underlying neural processes, conditional probability models us-
ing neuronal firing or EEG data have been used to model the
structure of healthy and disordered sleep in mammals (9–12).
Electrophysiological data have also allowed the definition of

multiple sleep substates in mammals which reflect higher-order
organizational relationships between sleep-regulating nodes.
These types of approaches have not yet been applied to sleep

in Drosophila. In this paper, we use conditional probability of
activity-state switching to measure the biological drives of sleep.
We use Hidden Markov Modeling (HMM) as an independent
probabilistic metric to validate the transition model and addi-
tionally allow us to probe the existence of discrete sleep/wake
substates in Drosophila.
To investigate the underlying drivers of sleep, we initially

consider sleep/wake as a binary choice and define two condi-
tional probabilities: P(Doze), the probability that an active fly
will stop moving, and P(Wake), the probability that a stationary
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fly will start moving. Using an in silico model of sleeping flies, we
demonstrate that the combination of P(Doze) and P(Wake) is
sufficient to explain the total amount of time that flies spend
asleep. We experimentally determine that P(Doze) and P(Wake)
are measures of sleep pressure and sleep depth, respectively. We
find that P(Wake) is strongly influenced by dopamine, the major
neurochemical involved in arousal in Drosophila (13, 14), and
that sleep structure can be regulated by P(Doze) as well as by
P(Wake). We find that age-dependent changes in sleep (15,
16) reflect changes in the balance of P(Doze) and P(Wake) and
that measurement of transition probabilities reveals aging/sleep
interactions.
As a complement and a check on this analysis method, we also

developed a Hidden Markov Model for classifying locomotor
behavior into four hidden states. This offers the possibility of
categorical comparison or real-time perturbation. The HMM
hidden states show the predicted correlations with the scalar
P(Doze) and P(Wake) conditional probabilities, suggesting that
both reflect the same neurological processes. Importantly, the
HMM hidden states, like the transition probabilities, are differ-
entially sensitive to experimental manipulation, as would be
expected for biologically meaningful sleep/wake substates.

Results
Conditional Wake and Doze Probability Determine Drosophila Sleep.
Measurement of the amount of sleep in Drosophila is based on
movement data, typically taken in bins of ≤1 min, where a sleep
episode is defined as a certain period of time without movement,
usually 5 min (17, 18). The locomotor data are intrinsically bi-
nary since only two activity states (active and inactive) can be
directly discriminated. Between each individual observation, the
fly may choose to either remain in its current activity state or
switch. The sequence of activity states reveals not only the
amount of time spent in each state, but also the conditional
probability of switching states, e.g., from active to inactive. We
call the conditional probability P(Movementtime = i = 0 | Move-
menttime = i-1 > 0) P(Doze) because it is the probability that the
fly will switch from the active state to the inactive state. We call
the conditional probability P(Movementtime = i > 0 | Move-
menttime = i−1 = 0) P(Wake) because it is the probability that the
fly will switch from the inactive state to the active state (Fig. 1A).
A detailed explanation of the algorithm for calculating these
probabilities and the rationale for using activity/inactivity as the
input rather than sleep defined by the 5-min threshold is de-
scribed in more detail in Methods and SI Appendix.
These probabilities should change in response to changes in

sleep drive and arousal. In order to assess the pattern of activity-
state transition probability, we analyzed behavioral data acquired
with both the well-characterized Drosophila Activity Monitor
(DAM) system (Canton Special [wild-type, WT] female flies; n =
60; Fig. 1) and with the more recently developed FlyBox (WT
female flies; n = 55; SI Appendix, Fig. S1) (19). Both P(Wake)
and P(Doze) change across the day, but do not exactly replicate
activity, sleep, or one another regardless of the method of data
acquisition (Fig. 1 B and C and SI Appendix, Fig. S1C). Both
P(Wake) and P(Doze) have strong circadian influences, with
P(Wake) showing a similarity to locomotor activity. P(Doze)
cycles more weakly and circumscribes sleep.
In order to assess the degree of interdependence among these

variables quantitatively, we measured the between-animal Pear-
son correlation of the measures. P(Wake) and total sleep are
strongly anticorrelated (R = −0.92, P < 0.0001), while P(Doze)
and total sleep are correlated, but less strongly (R = 0.26, P <
0.0001). Interestingly, P(Wake) and P(Doze) are only moder-
ately anticorrelated with one another (R = −0.18, P < 0.0001).
These relationships, and the shape of the curves in Fig. 1B,
suggest that the transition probabilities are not simply each

other’s inverse, but are instead likely to be driven by distinct sets
of biological mechanisms.
The three-way relationship between P(Wake), P(Doze), and

sleep (calculated using the 5-min inactivity definition) can be
illustrated using a heatmap of total sleep generated at each
combination of probabilities (Fig. 1D). In order to interrogate
the causal relationships between these variables, we used a
Markov-chain model to generate in silico behavior. The Markov-
chain model is intentionally simplified: it has no circadian
rhythms, environmental inputs, etc., making it an ideal envi-
ronment for determining how changes of only one parameter
affect behavior. For the probability bins in which we have in vivo
data, there is a surprisingly good match between the in vivo and
simplified in silico data (root mean square error = 5.8% Time
Asleep, R = 0.99, P < 0.0001). The lack of unexplained variance
in the in vivo data with respect to the in silico data suggests
strongly that the combination of P(Wake) and P(Doze) causally
determines the amount of total sleep for each individual fly. In
addition to the total sleep, sleep episode duration is strongly
regulated by P(Wake) (SI Appendix, Fig. S2). Previous research
has found that each fly has an idiosyncratic preference for a
range of behaviors, including total daily sleep (20, 21). We find
that P(Wake) and P(Doze) are similarly idiosyncratic, but the
population mean is a reasonable estimate of the central tendency
of the P(Wake) and P(Doze) distributions for WT flies (SI Ap-
pendix, Fig. S3).
The daily behavioral cycle of flies can be visualized as trajec-

tories through this probability space (Fig. 1 F–I). In wild-type
animals, the presence of a light cycle generates a double “U”-
shaped trajectory (Fig. 1F). Removing the light cycle results in a
purely linear trajectory through probability space while clock
mutant animals maintain the U-shaped trajectory (Fig. 1 G and
H), indicating that the divergence from linearity is caused by
light and does not require an intact clock. In the absence of both
light cues and a circadian clock, flies simply find their behavioral
set point and remain stationary in the probability space (Fig. 1I).
Given the apparent importance of P(Wake) and P(Doze) in
setting the level of total sleep, we sought to relate each to a
biological process.

Conditional Wake Probability Is a Measure of Sleep Depth. During
sleep, movement and responses to external stimuli are sup-
pressed. The more strongly these behaviors are suppressed, the
“deeper” the sleep. Because the likelihood of waking up is log-
ically linked to the depth of sleep, we hypothesized that P(Wake)
is a measure of sleep depth. Sleep depth is most commonly
measured in flies using arousal threshold (17, 18, 22–25). To
examine the relationship between transition probabilities and
sensitivity to stimuli, we measured P(Wake), P(Doze), and
arousal threshold at two temperatures: a standard temperature
(25 °C) and an elevated temperature (29 to 30 °C). Since ele-
vated temperature increases sleep during the day and decreases
it at night (26), we hypothesized that sleep depth should also be
affected by the change in temperature. As predicted, tempera-
ture affects both P(Wake) and P(Doze). P(Wake) is significantly
decreased during the daytime (P < 0.0001) and elevated during
the nighttime (P < 0.0001) at 29 °C (Fig. 2B). Daytime P(Doze)
is significantly elevated by heat (P < 0.0001), but nighttime
P(Doze) is unchanged (P = 0.057).
Because sensitivity to sensory stimuli is also regulated by time

of day (24, 27, 28), we measured mechanical arousal threshold
with gentle tapping at 3-h intervals across the day using FlyBox
(Zeitgeber time [ZT] 1, 4, 7, 10, 13, 16, 19, and 22; n = 89 WT
female flies). Tapping the flies produced an excess of awakenings
compared to chance at time points across the daily cycle at both
baseline and high temperatures (Fig. 2C). Heat produces sig-
nificantly anticorrelated effects on P(Wake) and P(Doze)
(R = −0.82, P = 0.012), so the method of partial correlations was
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used to determine their independent associations with arousal
threshold. The effect of heat on the response to tapping across
time points is significantly correlated with the effect of heat on
P(Wake) (R = 0.84, P = 0.016) but not the effect of heat on
P(Doze) (P = 0.77; Fig. 2D). When we normalized P(Wake) and
P(Doze) between time points, individual flies that responded to
the tap had a significantly higher P(Wake) and significantly lower
P(Doze) than the nonresponsive flies (P = 0.024 and P < 0.0001,
respectively; Fig. 2E). We conclude from this experiment that
P(Wake) and arousal threshold are regulated identically by heat,
in line with our prediction. As an independent probe of the as-
sociation of transition probabilities with sleep depth, we mea-
sured light-mediated arousal threshold with flashes of red light
across the day using the DAM system (n = 117 WT female flies;
SI Appendix, Fig. S4). The effect of heat on light arousal is highly
correlated with the effect of heat on P(Wake) (R = 0.92, P =
0.02) but not well-correlated with the effect of heat on P(Doze)
(P = 0.06). Within each time point, individual flies that
responded to the light had a significantly higher P(Wake) than
the nonresponsive flies (P < 0.0001), but there was no difference
in P(Doze) (P = 0.15).
In summary, the effect of heat on arousal threshold is tightly

coupled with the effect of heat on P(Wake) regardless of the
sensory modality or monitoring system used. Coupling between
mechanical arousal threshold and P(Doze) was seen only when
normalizing P(Doze) between time points in the comparison of
responding vs. nonresponding individuals (Fig. 2E). We posit
that the association in this experiment is due to the latent cor-
relation between P(Wake) and P(Doze) noted previously and

does not reflect a major role for P(Doze) in regulating arousal
threshold. This latent correlation is removed by the partial linear
correlation method (used to analyze data in Fig. 2D where there
is no P(Doze)/arousal threshold association) but is not removed
in the comparison of responders and nonresponders in Fig. 2E.
We therefore conclude that P(Wake) and arousal threshold, but
not P(Doze), measure the same underlying biological process,
namely, sleep depth.

Conditional Doze Probability Is a Measure of Sleep Pressure. Sleep
deprivation in flies, like in other animals, leads to increased
subsequent sleep (17, 18). A common model for the generation
of increased sleep after release from sleep deprivation posits that
there is an increase in sleep “pressure” which increases sleep drive
(29, 30). Because sleep drive increases the tendency to fall asleep,
we hypothesized that P(Doze) is related to sleep pressure.
To increase sleep pressure and examine its relationship to

P(Doze), we performed a daytime (ZT 0 to 12) sleep deprivation
(SD) experiment (WT female flies; n = 116 SD, 118 controls;
Fig. 3A). Because the expression of recovery sleep is regulated by
time of day (31), we hypothesized that the sleep homeostat
would maintain a “memory trace” of sleep debt during times
of day when recovery sleep is not normally expressed. Flies ac-
quire sleep debt during shaking, P(Wake) is up-regulated, and
P(Doze) is down-regulated (Fig. 3 B and C). Following release
from sleep deprivation at ZT 12, P(Doze) is up-regulated, but
sleep debt is only minimally discharged during the night, with
most of the recovery sleep occurring during the next light period
(Fig. 3B). P(Doze) remains elevated for 24 h until sleep debt is
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fully discharged (P < 0.0005; Fig. 3D). In contrast, P(Wake) is
significantly suppressed only during the times of day when re-
covery sleep is actually being performed, i.e., in the early evening
(ZT 12 to 18; P = 0.0005) and in the morning presiesta (ZT 0 to
6; P < 0.0001; Fig. 3E). We also performed nighttime SD by
shaking flies between ZT 12 and 24 (WT female flies; n = 120
SD, 117 controls; SI Appendix, Fig. S5). As expected, sleep debt
was discharged immediately following release from nighttime
SD, so it did not allow either P(Wake) or P(Doze) to be excluded
as a measure of sleep pressure.

These experiments demonstrate that P(Doze) has properties
consistent with a measure of sleep pressure: it is elevated by
sleep deprivation and returns to baseline only after sleep debt is
discharged. In contrast, suppression of P(Wake) is necessary for
the expression of rebound sleep but does not have the same
memory trace properties as P(Doze). Consistent with P(Wake)
driving the expression of rebound sleep, the total amount of
rebound is more strongly correlated with change in P(Wake) (R =
−0.97, P < 0.0001) than change in P(Doze) (R = 0.19, P = 0.06),
and the effect size of the change in P(Wake) is larger than
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the effect size of P(Doze) (Cohen’s d = −1.46 and 0.81,
respectively) (32).
One implication of this result is that the magnitude of rebound

sleep is a flawed measure of sleep homeostasis, consistent with
recent reports (21). Interestingly, P(Doze) also appears to be
regulated by “wake pressure” in addition to sleep pressure. This
is most obvious during the shaking period, when P(Doze) is
down-regulated because disruptive mechanosensory inputs pro-
vide an environmentally driven wake pressure (Fig. 3C). There
are also likely effects of internally generated wake pressure.
These can also be inferred from the decrease in P(Doze) during
the anticipatory evening activity peak before ZT 12 in un-
perturbed flies (Fig. 1B). We conclude that P(Doze) is a measure
of sleep pressure, with the caveat that strongly wake-maintaining
processes (sensory, circadian, or otherwise) can mask our ability
to detect sleep pressure via behavioral outputs.

Dopaminergic Tone Regulates Sleep Depth. Sleep is regulated by a
multitude of molecular processes, and many null and hypomor-
phic mutations disrupt sleep in flies (33). Dopamine in particular
has a role in regulating sleep quantity by increasing arousal (13,
14), and acute activation of dopaminergic neurons has been
shown to decrease total sleep (16, 34–36). In order to validate
the proposed biological significance of P(Wake) and P(Doze)
described above, we measured the effect of manipulating dopa-
minergic tone on activity-state transition probability by per-
forming a 2-d thermogenetic activation (37) of TH-Gal4–positive
dopamine neurons (Fig. 4A). In order to separate the effect of
dopamine neuron activation from the direct effect of tempera-
ture on sleep (Fig. 2), we compared the effect of our heat ma-
nipulation on the experimental line (TH-Gal4/UAS-dTrpA
female flies, n = 31) with the effect on parental strain controls
(TH-Gal4/+ female flies, n = 31; UAS-dTrpA/+ female flies, n =
61). An effect on behavior was attributed to dopamine neuron
activation only when the experimental line was significantly dif-
ferent from both control genotypes.
As has been previously shown, activating dopamine neurons

significantly reduces total sleep throughout the activation period
(P < 0.0001; Fig. 4B). This is accompanied by a very substantial
increase in P(Wake) throughout the activation period (P <
0.0001; Fig. 4D) with only a modest daytime increase in P(Doze)
(P < 0.0001; Fig. 4C). Sleep episode duration is also significantly
reduced during the daytime by dopamine neuron activation (SI
Appendix, Fig. S6). Following the cessation of activation, the
experimental line had significantly increased sleep (P < 0.0018),
but P(Wake) and P(Doze) were not significantly altered com-
pared to controls. Close examination of the behavioral traces
(Fig. 4A) suggests that there may be transient differences in
P(Wake) and P(Doze) immediately after temperature is restored
to baseline, but the change is not maintained long enough to
reach statistical significance when averaged across the entire
lights-on period. Because temperature has a strong effect on
sleep independent of dopaminergic activation, we also in-
vestigated chronic genetic perturbations of the dopamine system
(SI Appendix, Fig. S7). Both mutants have increased P(Wake)
but have opposite changes in P(Doze) (SI Appendix, Fig. S7 C
and D).
The overall effect of dopamine on P(Doze) is variable and

contingent: only some genetic contexts, time windows, and en-
vironmental conditions produce perturbations. On the other
hand, acute activation of dopamine neurons and chronic in-
creases of dopaminergic tone increase P(Wake) across all ex-
perimental conditions, supporting the idea that P(Wake) is a
measure of sleep depth. The conditional changes in P(Doze) may
reflect indirect processes or network level linkage.

High-Sucrose Diet Promotes Sleep Consolidation by Decreasing Sleep
Pressure. Both sleep deprivation and manipulations of the

dopamine system produce dramatic changes in total sleep (Figs.
3 and 4). In order to test the relationship of P(Wake) and
P(Doze) to sleep structure, we measured behavior of WT flies
fed either a low (2.5%) or a high (30%) concentration of sucrose,
a manipulation which has been shown to regulate sleep frag-
mentation independent of total sleep (23). In agreement with
these findings, we do not observe dramatic changes in the daily
sleep pattern between low- and high-sucrose diet (WT female
flies; n = 90 low sucrose, 94 high sucrose; Fig. 5A). The effects on
the amount of sleep are modest: no effect of diet on daytime
sleep and a small increase in nighttime sleep (P = 0.0001;
Fig. 5B).
There is, however, a large decrease in the number of sleep

episodes both during the day and at night in the high-sucrose
group (P < 0.0001; Fig. 5C). Interestingly, we find that P(Wake)
is unaffected by diet during the daytime but significantly de-
creased at night (P < 0.0001; Fig. 5D), in concordance with the
effect of sucrose on total sleep. P(Doze) is decreased by high
sucrose during both daytime and nighttime, mirroring the effect
of sucrose on sleep structure (P < 0.009; Fig. 5E). In sum, the
effect of sucrose on P(Wake) is variable and contingent—it is
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perturbed only at night—while the effect of sucrose on P(Doze)
and sleep structure is consistent.
This was an unexpected finding because the initial report of a

sucrose effect on sleep structure attributed the effect to sleep
depth (23). This discrepancy is likely due to this prior study
measuring sleep depth (via arousal threshold) only at night, a
time at which we also find a small difference in P(Wake)
(Fig. 5D). With our improved analysis tools, sleep depth and
pressure can be estimated throughout the day, allowing us to
separate the different dimensions of diet/environmental inter-
actions and conclude that the change in sleep structure is more
likely due to P(Doze), a surprising and interesting finding since
fragmentation is usually thought to be due to changes in arousal
(Discussion).

Changes in Sleep with Age Are due to Both Sleep Pressure and Depth.
To test the utility of our analysis tools in understanding a com-
plex, longitudinal biological process, we compared the behavior
of flies of different ages. The total amount and structure of sleep
produced by an individual is strongly regulated by age in many
animals, including flies (15, 16). Sleep was measured in cohorts
of WT flies during weeks 1, 3, 5, and 7/8 post eclosion (n = 48,
30, 30, and 39, respectively; weeks 7 and 8 were combined due to
a low rate of survival to this age). In agreement with prior results,
the daily profile of sleep is altered in aged flies, most dramati-
cally during the day (Fig. 6A). In these cohorts of flies, old flies
slept significantly longer than young flies (P < 0.0002; Fig. 6B).
Perhaps surprisingly, given our results with groups of young flies
(Figs. 1–3) where the amount of sleep was determined largely by
changes in P(Wake), nighttime P(Wake) does not vary signifi-
cantly as flies age, and daytime P(Wake) is significantly de-
creased only in the oldest group of flies (P < 0.0001; Fig. 6E). In
contrast, P(Doze) increases with age during both the day and the
night (P < 0.0001; Fig. 6D).
Plotting the changes in P(Wake) and P(Doze) as a trajectory

through probability space allows us to assess how aging-related
changes in behavioral transition probability are related to total
sleep (Fig. 6F). Nighttime behavior follows a linear path, the
extent of which falls within a rather uniformly high-sleep area of
the probability space, consistent with the relatively modest
changes in sleep quantity at night (Fig. 6 A and B). Daytime
behavior follows a more complex path that moves from a low-
sleep area of the space toward a high-sleep area. In this aging
dataset, changes in behavior are generated by alterations in both
P(Wake) and P(Doze). The effect of aging on nighttime P(Doze)
is much stronger than the effect on the amount of sleep. Our
method of analysis reveals an “invisible” sleep/aging interaction
that would not be apparent with currently used sleep metrics.
Determining the biological basis of this shift in transition prob-
ability will provide insight into the aging process.

A Four-State Hidden Markov Model of Sleep Pressure and Depth.
P(Doze) and P(Wake) provide a continuous integrated view of
the activity of all potential wake- or sleep-promoting systems.
But sleep-regulating centers likely do not operate completely
independently: electrophysiological data in mammals has shown
that coordination of activity in particular sleep circuits can pro-
duce sleep substates with distinct properties. Human sleep is
composed of Rapid-Eye Movement (REM) sleep and either
three or four non-REM stages (38, 39). Rodent sleep is usually
quantified more coarsely using only two substates (REM and
non-REM) (40), but the existence of additional substates has
been proposed (41). Distinct sleep stages have been proposed in
flies (24), but there has not been a method for detecting these
stages in free-behaving animals. Building upon our validation of
P(Wake) and P(Doze) as markers of sleep depth and pressure,
we developed an HMM that classifies fly behavior into one of
four hidden states (Fig. 7).

The four-state model is composed of deep sleep, light sleep,
early wake, and full wake (Fig. 7A). The model definition re-
quires that transitions from wake to sleep must begin in light
sleep and that transitions from sleep to wake must begin in early
wake (a “sleep inertia”-like property). The permitted hidden
state transition probabilities were fitted to the behavior of WT
flies in a 12:12 light:dark cycle and per01 flies in constant dark-
ness. Despite the substantial differences in sleep phenotype be-
tween WT and per01 flies, the inferred hidden state transition
probabilities and emission probabilities were extremely similar
(SI Appendix, Table S1), indicating that the existence and
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properties of these hidden states are robust and both clock and
light independent. The fitted HMM can be used to find the
posterior probability of each hidden state in a behavioral se-
quence of an individual animal, thereby decoding its behavior
into one of four states (Fig. 7B). The average occupancy of each
hidden state varies over the daily cycle, with deep sleep occurring
predominantly at night and full wake occurring primarily during
the morning and evening activity peaks (Fig. 7 C and D). In-
terestingly, the total sleep (light and deep) inferred by the four-
state HMM is identical to the total sleep as measured using the
5-min threshold (17, 18), even though the sleep definitions are
independently derived (Fig. 7E).
We tested the relevance of HMM decoding by testing the

sensitivity of flies to an arousing stimulus in each hidden state
(Fig. 7F). Flies have significantly greater arousal probability in
light sleep than in deep sleep, and greater arousal probability in
full wake than light wake (P < 0.0001). Because the emission
probabilities of deep and light sleep are both zero, the primary
difference between these hidden states is their respective prob-
ability of transitioning to wake (SI Appendix, Table S1). Likewise,
the primary difference between early and full wake is their re-
spective probability to transition to sleep. We hypothesized that
the fraction of sleep in deep sleep and the fraction of wake in full
wake would be the HMM correlates of P(Wake) and P(Doze),
respectively. We tested this hypothesis by examining the sleep
mutants fumin (14), and insomniac (42) (SI Appendix, Fig. S7)
using the HMM. The % deep sleep and % light wake differ
significantly between w1118, fumin, and insomniac flies (P <
0.0001; Fig. 7G). In these disparate groups of flies, P(Wake) is
correlated with % light sleep (R = 0.84, P < 0.0001) while
P(Doze) is correlated with % light wake (R = 0.90, P < 0.0001).
Overall, the HMM approach recapitulates the results of the
P(Wake)- and P(Doze)-based analysis with the benefit of
allowing decoding of behavior into discrete categories that may
be tied to different circuit configurations or balances between
circuits.

Discusssion
Sleep is regulated by a large number of internal and external
forces. Competing or interacting switches which are organized
hierarchically or into distinct units can allow many factors to be
integrated. Understanding the role of a single switch in the sys-
tem can be difficult if only its effect on the amount of sleep is
known. In this paper we address this fundamental problem by
measuring and modeling sleep in terms of the probability of
activity-state transitions. We define two metrics, P(Wake) and
P(Doze), that together can explain the amount of total sleep
expressed by individual animals under a variety of conditions.
We go on to show, using an HMM, that the numerous wake- and
sleep-promoting loci of the fly brain can configure multiple
distinct sleep/wake substates that relate directly to P(Doze) and
P(Wake) processes. Finally, we demonstrate that fly sleep drives
and substates are correlates of underlying biological processes.

Probability of Wake Is a Measure of Sleep Depth. The depth of sleep
is clinically important and tied to its restorative power (3). In
humans, sleep depth is measured using vital signs, EEG, and
behavior, which together provide a holistic view of the process
(43). Sleep depth in flies is more difficult to characterize. Total
local field potential power in flies is significantly reduced im-
mediately after the initiation of sleep, but does not scale to in-
dicate increased depth of sleep even as the arousal threshold
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changes (24, 44). Sleep depth is therefore most commonly
measured in flies using arousal threshold in response to an ap-
plied sensory stimulus (17, 18, 22–25).
Unfortunately, reliance on sensory arousal thresholds incurs

two significant confounds for the experimenter: the regulation of
sensory systems by time of day and the disruptive nature of the
measurement. Like other animals, the sensory systems of Dro-
sophila are regulated by the circadian clock. This has been most
robustly demonstrated in the response to light (27, 45, 46) and to
odors (28, 47). The major confounding feature of sensory arousal
threshold, however, is that it unavoidably disrupts sleep. Rousing
the flies is likely to disrupt the deeper-sleep substates found in
longer-sleep episodes (24). Repeated rousing may activate ho-
meostatic mechanisms that alter sleep depth (18), and frag-
mentation of sleep without sleep loss can even trigger sleep
rebound (48). Finally, the arousing stimulus may act as a Zeit-
geber to the circadian system (49).
In light of these confounds to the sensory arousal threshold, a

noninvasive measure of sleep depth would be extremely helpful
in understanding the function and regulation of sleep in Dro-
sophila. P(Wake) is an attractive alternative measure, and several
lines of evidence reinforce its validity as a measure of sleep
depth. Most directly, our arousal threshold experiments dem-
onstrate that P(Wake) correlates very significantly with ability to
be aroused by either a mechanical or light stimulus (Fig. 2 and SI
Appendix, Fig. S4). We also find that the arousal-associated
molecule dopamine increases P(Wake) in both chronic and
acute activation experiments (Fig. 4 and SI Appendix, Fig. S7).
This is consistent with observations that the rate of spontaneous
self-awakening is lower during deeper sleep stages in humans
(50). Considering this evidence, we propose that P(Wake) is a
behavioral correlate of sleep depth in flies the magnitude of
which is closely aligned with dopaminergic tone.

Probability of Doze Is a Measure of Sleep Pressure. After long pe-
riods of wake, the desire to sleep also increases. This
homeostasis-promoting desire to sleep is described as “sleep
pressure,” or process S, in the influential Borbély two-factor
model of sleep (30). Sleep pressure is difficult to measure di-
rectly because it is an internal drive rather than an external be-
havior. The most common measure of sleep pressure is indirect
—a change in the amount of total sleep from baseline,
i.e., rebound sleep after deprivation (25). However, this metric is
inevitably confounded by sleep depth, which increases in re-
bound sleep and which we show is the major driver of the
amount of sleep across conditions (Figs. 1, 3, and 4). Another
common measure of sleep pressure is the latency to sleep after
an environmental cue, such as lights turning off (23, 51). Sleep
latency is not confounded by sleep depth, but it can only be
measured relative to a predefined marker and only once per fly
per event, limiting both its temporal resolution and statistical
power.
Probability of ceasing activity, P(Doze), is conceptually similar

to sleep latency. The primary difference between the two mea-
sures is that sleep latency is measured against a discrete external
time marker, while P(Doze) is measured using fly-initiated ac-
tivity, providing a continuous readout. Due to this similarity, we
expected that P(Doze) would measure a similar biological pro-
cess to sleep latency, namely sleep pressure. Empirically, we find
that P(Doze) behaves as we would expect a measure of sleep
pressure to behave. First, P(Doze) increases precede sleep in-
creases and P(Doze) decreases lag behind sleep as debt is dis-
charged (Fig. 3C). Second, P(Doze) is not a major determinant
of total sleep in unmanipulated flies, consistent with findings
showing that inhibition of the sleep homeostat has only a mini-
mal effect on baseline sleep (52, 53). Third, and perhaps most
importantly, we show that P(Doze) has “memory trace” properties:

after sleep deprivation it remains elevated until the completion of
rebound sleep (Fig. 3).
While the similarities to process S are striking, the daily pat-

tern of P(Doze) does not have the same shape as Borbély’s
conceptualization (30). Process S is noncircadian and increases
steadily during wakefulness, while P(Doze) is fairly flat with
troughs during the morning and evening peaks of activity (Fig. 1)
(54). This could be due to P(Doze) not being a “pure” sleep
pressure signal: P(Doze) is clearly influenced by the clock and by
light (Fig. 1), tying P(Doze) to the animals’ internal and external
states. This is consistent with the idea that the homeostat has a
relatively minor role in the specification of sleep drive in un-
perturbed animals and is engaged only in the case of deviation
from the norm. Notably, in our sleep deprivation experiments
the trajectory of P(Doze) becomes much more similar to S as
sleep debt builds up (Fig. 3C). Alternatively, it may be that the
two-process model simply does not reflect regulation of sleep
pressure in Drosophila. Recent evidence suggests that sleep
pressure in flies is primarily regulated by the circadian clock
rather than by sleep debt (21). The lack of agreement between
model and empirical results suggests the need for a revised and
more broadly based model of sleep drives.
Counterintuitively for a measure of sleep pressure, P(Doze) is

correlated with increased sleep fragmentation (Fig. 5). P(Doze)
is the probability of initiating sleep episodes, and since the me-
dian sleep episode is shorter than the mean episode in the typical
distribution of episode durations for normal animals (55, 56), it
follows that increasing P(Doze) will usually result in shorter
mean sleep episode duration. The important implication of this
finding is that sleep fragmentation is not, on its own, evidence of
a wake-promoting process. Our results indicate that fragmented
sleep can be the result of decreased sleep depth [i.e., high
P(Wake)], increased sleep pressure [i.e., high P(Doze)] or a
combination of the two. In line with this, we have recently shown
that activation of serotonergic neurons that fragment sleep
without changing its total amount primarily increases P(Doze)
(48). Biologically, this may make sense. Allowing fragmentation
of sleep (which can have advantages under some conditions, e.g.,
starvation) to be generated by a process untethered to arousal
threshold or dopaminergic tone gives the brain more degrees of
freedom in determining sleep patterns.

Integration of P(Wake) and P(Doze). Our transition-probability an-
alytical method defines two parameters that can assess the core
drives that determine sleep and wake. Importantly, these pa-
rameters are only moderately correlated with one another at
baseline and are not always affected in concert by perturbations.
Some perturbations appear to act primarily on P(Wake) and
some primarily on P(Doze). For example, acute increases in
dopaminergic tone have strong and consistent effects on
P(Wake) and variable effects on P(Doze). In contrast, other
perturbations of the system (e.g., aging and mechanical sleep
deprivation) alter both P(Doze) and P(Wake). During sleep
deprivation, P(Doze) measures sleep need, but decreased
P(Wake) is the primary driver of the amount of rebound sleep
(Fig. 3), indicating that the two processes interact. These inter-
actions may give additional insight into the privileged roles of
some neural circuits in increasing total sleep after sleep depri-
vation (34) and into the ability of some forms of sleep depriva-
tion to bypass engaging the homeostat (57).

A Hidden Markov Model for Drosophila Sleep Substates. P(Wake)
and P(Doze) are of only limited utility for classifying flies as
being in discrete sleep/wake substates. The P(Wake)/P(Doze)/
Sleep landscape (Fig. 1) shows smooth gradients without clear
breakpoints or substates. The technical ability to identify and
perturb sleep substages in real time has yielded significant insight
into the neurophysiology of sleep in mammals (58, 59), so we
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developed a tool for classifying fly sleep into hidden states using
a HMM. The hidden states decoded by the HMM are distinct in
their responses to outside stimuli and internally generated
movement in a way that is extremely similar to P(Wake) and
P(Doze) (Fig. 7).
Despite their similarities, the conditional probability approach

and the HMM have different strengths and weaknesses. Condi-
tional probabilities are naturally scalar, agnostic with regard to
underlying biology, and can be estimated from relatively small
samples of flies. However, the conditional probabilities are
sometimes undefined (Methods) and are of limited usefulness in
real-time applications. The HMM excels in classifying behavior
into distinct hidden states for post hoc analysis or real-time
perturbation using the short-time Viterbi algorithm (60). The
HMM also requires significant training data if the genetic
background or baseline conditions of an experiment preclude
reusing a previously trained network model. Importantly, how-
ever, we find that the conditional probability and HMM ap-
proaches appear to respond to the same underlying drives and
are altered in similar manners by experimental perturbations.
The complementary strengths of each approach will allow
greater flexibility for investigators in experimental design and
analysis.

Conclusions
Classifying behavior into discrete units to determine transition
probabilities and pathways is an approach that has been applied
to many behaviors, including swimming (61), grooming (62),
feeding (63), and navigation (64, 65). Use of Hidden Markov
Modeling to decode coherent brain or behavioral states has also
been widely applied (66–70). In this report, we utilize locomotor
data to measure the probability that an animal transitions be-
tween sleep and wake states and build an HMM that allows us to
identify multiple distinct wake and sleep states. As our un-
derstanding of sleep grows, it has become clear that two indi-
viduals displaying the same amount of sleep may have arrived at
that amount on very different paths. The ability to characterize a
sleep set point in terms of the animal’s underlying arousal level
and sleep drive will help tease apart the complexities of the
circuits that specify sleep under different environmental and
internal conditions.

Methods
Animals. Flies were raised on cornmeal–dextrose–yeast food in a 25 °C in-
cubator. The incubator maintained a 12 h:12 h light:dark cycle. Transgenic
flies used were the following: per01(CS)—a gift of Michael Rosbash (Brandeis
University, Waltham, MA) —w1118 and w1118; datfmn

—gift of Amita Sehgal

(University of Pennsylvania, Philadelphia, PA) —PBac{WH}incf00285, w1118

(inc2; BDSC # 18307), TH-Gal4 (BDSC # 8848), and UAS-dTrpA (37).

Sleep Data Collection. Data were collected using the DAM system and Flybox
as previously reported (19, 71). Unless otherwise specified, experiments were
carried out at 25 °C with a 12 h:12 h light:dark cycle. The light-driven arousal
threshold in the DAM system was measured in a dimly lit incubator by de-
livering 3-s pulses of red light. The mechanical arousal threshold in the Fly-
box was measured by applying a single tap to the side of the 96-well plate
using a solenoid.

Generation of In Silico Data. Simulation data were generated by custom
programs written in Matlab (MathWorks, Natick, MA). The simulation was
initialized in a random statewith equal probability ofwake and sleep. At each
subsequent time step, the simulator checked the current state of the fly,
generated a random number between 0 and 1, and compared the value with
P(Wake) or P(Doze) to determine if the in silico fly woke or dozed, as
appropriate.

Data Analysis. DAM system, Flybox, and in silico data were analyzed with a
common set of modular programs written in Matlab. P(Wake) was calculated
as follows: 1) Every bin of inactivity was counted except the last one: this
quantity was the denominator, the total number of state transitions from
inactivity; 2) For every bin of inactivity, the number of times the fly was active
were counted in the subsequent bin: this quantity was the numerator, the
total number of state transitions from inactive to active; 3) The total of state
transitions from inactive to active were divided by the total state transitions
from inactive. If there were no bins where the fly did not move
(i.e., denominator is zero), the transition probability was considered un-
defined. P(Doze) was calculated identically, but with activity and inactivity
reversed. The choice of using 1-min activity bins instead of 5-min sleep/wake
as the basis for the analysis was made after considering both methods (SI
Appendix, Fig. S8).

Statistical Analysis. Statistical analysis was performed using the Matlab sta-
tistics toolbox. Fitting of HMMs and decoding of hidden states were per-
formed using the Matlab Statistics and Machine Learning Toolkit.

Data Sharing and Code. Statistical treatments and information are provided
for each figure in SI Appendix, Supplemental Statistical Tables. The MATLAB
scripts for analysis of P(Wake)/P(Doze) and for HMM functions have been
deposited in GitHub and can be accessed at https://github.com/Griffith-Lab/
Fly_Sleep_Probability.
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