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ABSTRACT
The martensite start temperature (MS) plays a pivotal role in formulating heat treatment regimes for 
steel. This paper, through the compilation of experimental data from literature and the incorpora
tion of expert knowledge to construct features, employs machine learning algorithms to predict the 
MS of steel. The study highlights that the ETR algorithm attains optimal prediction accuracy, and the 
inclusion of atomic features enhances the model’s performance. Feature selection is accomplished 
by evaluating linear and nonlinear relationships between data using the Pearson correlation 
coefficient (PCC), variance inflation factor (VIF), and maximum information coefficient (MIC). 
Subsequently, the performance of machine learning models on unknown data is compared to 
validate the model’s generalization ability. The introduction of SHAP values for model interpret
ability analysis unveils the influencing mechanisms between features and the target variable. Finally, 
utilizing a specific steel type as an illustration, the paper underscores the practical value of the 
model.

IMPACT STATEMENT
This study innovatively integrates experimental data, expert knowledge, and ETR algorithm for 
accurate MS prediction in steel, enhancing model performance with systematic feature selec
tion and interpretability analysis, demonstrating practical utility.
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1. Introduction

The martensite start temperature (MS) holds signifi
cant importance in analyzing the martensitic phase 

transformation process, guiding alloy design, formu
lating heat treatment processes, and welding applica
tions. Currently, experimental determination of MS 
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relies on various methods such as metallography, dila
tometry, hardness testing, and thermal analysis [1–4]. 
The entire process demands considerable human and 
material resources. Therefore, researchers are now 
exploring methods for accurately predicting MS.

Numerous factors influence the MS, with the most 
crucial being the chemical composition of the steel. 
Since the 1940s, researchers have proposed numerous 
empirical formulas relating MS to chemical composi
tion, as illustrated in Table 1. Initially, the calculation 
formulas mostly utilized linear regression to establish 
multivariate linear equations between alloy elements 
and MS, as seen in No. 1 ~ No. 6, No. 8~No. 11 and 
No. 14 ~ 15. However, such purely linear relationships 
neglect the interactions among alloy elements. 
Consequently, some scholars improved traditional lin
ear regression models by introducing nonlinear terms, 
as shown in No. 7, No. 12, No. 13 and No. 16. 
Additionally, aside from alloy composition, studies 
indicate that the austenite grain size (dr) also influences 
MS [21–24], leading to the development of the empirical 
model shown in No. 18. In summary, while there are 
numerous empirical formulas for calculating MS, most 
of them have specific applicability ranges, exhibiting 
optimal predictive performance only within certain 
composition limits. As a result, they still face challenges 
in meeting the increasingly precise requirements of 
scientific research and production.

The development of the martensitic phase transfor
mation nucleation thermodynamic theory has laid the 
foundation for the thermodynamic models of MS. In 
the early stages, Bhadeshia et al. [25] investigated the 
driving forces of martensitic phase transformation in 
different carbon steels. They established a functional 

relationship for describing the martensitic phase 
transformation driving force (Gc) with carbon content 
as the independent variable. This formula is applicable 
for predicting MS in low-alloy steels. However, given 
that steel contains alloy elements beyond C, Si, Mn, 
Ni, etc., other alloy elements such as Cr, Mo, also 
impact MS. To broaden the applicability range of the 
thermodynamic model for MS calculation, Ghosh et al. 
[26,27], combining solid-solution strengthening the
ory, proposed a new martensitic phase transformation 
free energy, as shown in Equation (1). 

Where K1 is a constant, Xi is the molar fraction of 
element i, Wμ represents temperature-independent 
resistance work, and Wth represents temperature- 
dependent resistance work, which can be neglected 
when MS exceeds 300 K. Ghosh and Olson, based on 
the empirical formula for the resistance work in binary 
systems, utilized the Pythagorean iteration method to 
derive a mathematical model for the martensitic phase 
transformation free energy in multicomponent systems, 
as shown in Equation (2). This model demonstrates 
effective predictions for the MS of multicomponent 
alloy steels; however, its predictive performance for 
highly alloyed steel MS is somewhat unsatisfactory. 

Table 1. Empirical equation of MS calculation.
No. Equation Ref.

1 MSð
oCÞ ¼ ð930 � 570C � 60Mn � 20Si � 30Ni � 50Cr � 20Mo � 20W � 32Þ=1:8 [5]

2 MSð
oCÞ ¼ ð930 � 600C � 60Mn � 20Si � 30Ni � 50Cr � 20Mo � 20W � 32Þ=1:8 [6]

3 MSð
oCÞ ¼ ð1000 � 650C � 70Mn � 35Ni � 70Cr � 50Mo � 32Þ=1:8 [7]

4 MSð
oCÞ ¼ ð930 � 540C � 60Mn � 20Si � 30Ni � 40Cr � 20Mo � 32Þ=1:8 [8]

5 MSð
oCÞ ¼ 561 � 474C � 33Mn � 17Ni � 17Cr � 21Mo [9]

6 MSð
oCÞ ¼ 539 � 423C � 30:4Mn � 17:7Ni � 12:1Cr � 7:5Mo [10]

7 MSð
oCÞ ¼ 512 � 453C � 71:5CMn � 16:9Ni þ 15Cr � 9:5Moþ 217C2 � 67:6C � Cr [10]

8 MSð
oCÞ ¼ 539 � 423C � 30:4Mn � 7:5Si � 17:7Ni � 12:1Cr � 7:5Moþ 10Co [11]

9 MSð
oCÞ ¼ 545 � 330C � 23Mn � 7Si � 13Ni � 14Cr � 5Mo � 13Cuþ 4V þ 7Co [12]

10 MSð
oCÞ ¼ 520 � 320C � 50Mn � 5Si � 20Ni � 30Cr � 20Mo � 5Cu [13]

11 MSð
oCÞ ¼ 491:2 � 302:6C � 30:6Mn � 14:5Si � 16:6Ni � 8:9Cr þ 2:4Moþ 7:4W � 11:3Cuþ 8:6Co [14]

12 MSð
oCÞ ¼ 565 � 600ð1 � expð� 0:96CÞÞ � 31Mn � 13Si � 8Ni � 10Cr � 12Mo [15]

13 MSð
oCÞ ¼ 545 � 601:2ð1 � expð� 0:868CÞÞ � 34:4Mn � 13:7Si � 17:3Ni � 9:2Cr � 15:4Moþ 10:8V

þ 4:7Co � 16:3Cu

[16]

14 MSð
oCÞ¼ð2381:3 � 3000C � 60Mn � 50Si � 110Ni � 75Cr � 32Þ=1:8 [17]

15 MSð
oCÞ ¼ 635 � 474 C þ 0:86ðN � 0:15ðNbþ ZrÞÞ � 0:066ðTaþ HfÞ½ � � ð17Cr

þ 33Mnþ 21Moþ 17Ni þ 39V þWÞ

[18]

16 MSð
oCÞ ¼ 692 � 37Mn � 14Si þ 20Al � 11Cr � 502

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ 0:86N
p

[19]
17 MSð

oCÞ ¼ 523:73 � 521:33C � 23:18Mnþ 20:65Si � 11:93Ni � 11:56Cr

� 7:49Mo � 102:20Cu � 21:80Vþ8:47W þ 1:75Coþ 169:53C2 þ 14:33C � Cr

þ 2:06C �Moþ 36:53C � V � 13:69C �W

[20]

18 MSð
oCÞ ¼ 475:9 � 335:1C � 34:5Mn � 1:3Si � 15:5Ni � 13:1Cr � 10:7Mo

� 9:6Cuþ 11:67 lnðdγÞ

[21]
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Where i represents C and N; j represents Cr, Mn, Mo, 
Nb, Si, Ti, V; k encompasses Al, Cu, Ni, and W; Ki, Kj 
and Kk are the corresponding calculation coefficients, 
respectively.

Both empirical formulas and thermodynamic 
models fall within the realm of statistical mathe
matics, traditionally applied to relatively simple 
problems that assume data follows a normal dis
tribution. However, due to the multitude of factors 
influencing MS and their complex interactions, it is 
challenging to derive a universal predictive model. 
The advent of Machine Learning (ML) effectively 
addresses this issue by autonomously learning pat
terns and rules from data for prediction, classifica
tion, and decision-making [28–32]. ML does not 
rely on explicit rules but extracts information from 
data, making it suitable for handling nonlinear 
problems and high-dimensional data. Capdevila 
et al. [33], utilizing a neural network model, 
obtained a highly accurate prediction formula by 
considering the impact weights of each element on 
MS. Rahaman et al. [34] employed a random forest 
model for MS prediction, and their results outper
formed those of thermodynamic models. However, 
these predictions only consider the influence of 
alloy composition and lack integration with expert 
knowledge and prior information, requiring further 
model refinement.

In this study, we combine expert knowledge and 
machine learning to predict steel MS. We propose 
features related to MS based on expert knowledge 
and enhance the model’s performance by introdu
cing atomic features. Through feature selection, we 
identify the optimal subset of features. 
Additionally, we conduct interpretability analysis 
on the machine learning model to determine fea
ture importance ranking and understand the 
underlying mechanisms influencing MS. Finally, 
we compare the predictive results of our proposed 
model with those of existing models to demon
strate its advantages and application prospects.

2. Data and methods

2.1. Data collection and analysis

The dataset used in this study is derived from the litera
ture data published by Lu et al. [35]. The majority of MS 
values in the dataset were obtained from Continuous 
Cooling Transformation (CCT) diagrams. MATLAB 
code was employed to analyze the CCT diagrams and 
extract the MS information. The dataset comprises 1157 
entries, including chemical compositions, austenitizing 
temperature (TAust), and corresponding MS data for 
various steels. The specific distribution ranges are out
lined in Table 2. As there are orders of magnitude 
differences among features, the features are processed 
by normalization and scaled to 0 ~ 1. The calculation 
formula is shown in Equation (3) [30]. Figure 1 shows 
the distribution of each feature after normalization. 
According to the maximum value and minimum value 
of the feature, the value of the feature in the data set can 
be given intuitively. Figure 2 depicts the distribution of 
MS in the dataset, which overall conforms to a normal 
distribution pattern. 

Where X* represents the normalized feature, while 
min(X) and max(X) denote the minimum and max
imum values of the original feature X, respectively.

2.2. Feature construction and selection

As mentioned earlier, both austenite grain size and mar
tensitic phase transformation driving force have 
a significant impact on MS. Therefore, incorporating 
both factors into the features is crucial to enhance the 
predictive performance of the model. The parameter 
TAust, determining dr [36,37], is utilized in place of dr. 
Gc is computed based on Equation (2), with the para
meters from Equation (2) listed in Table 3. The original 
features of the dataset include TAust, Gc, and alloy element 

Table 2. Spatial distribution range of data set.
Feature Description Max Min Mean

TAust Austenitizing temperature (K) 1673 1023 1256.94
C wt.% of C 2.25 0.01 0.37
Si wt.% of Si 3.8 0 0.33
Mn wt.% of Mn 8 0 0.80
Ni wt.% of Ni 10 0 0.83
Cr wt.% of Cr 17 0 1.24
Mo wt.% of Mo 5.75 0 0.26
V wt.% of V 5.05 0 0.11
Cu wt.% of Cu 1.49 0 0.054
W wt.% of W 19.2 0 0.46
Al wt.% of Al 1.26 0 0.013
Ti wt.% of Ti 0.2 0 0.0018
Nb wt.% of Nb 0.167 0 0.0015
N wt.% of N 0.287 0 0.0020
Co wt.% of Co 11.35 0 0.081
MS Martensite start temperature (K) 819 335 613.26
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compositions. Additionally, studies indicate that incor
porating atomic features can significantly improve the 
model’s predictive performance [31,38,39]. Factors such 
as electronegativity, atomic mass, and atomic radius can 
influence the process of austenite-to-martensite transfor
mation. Hence, this study introduces a series of atomic 
features, as shown in Table 4. The calculation of lattice 
parameters for Face centered cubic (FCC) and Body 
centered cubic (BCC) is expressed in Equations (4) and 
(5) [40,41].  

Where FCC is the lattice parameter of austenite and wi 
are the mass fraction of element i; B.B.C. is the lattice 
parameter of ferrite; xi is the molar fraction of element 
i; aFe is the lattice parameter of ferrite in pure iron, 
taking 2.8664.

After creating the necessary input features, subse
quent steps involve feature selection to eliminate 

Figure 1. Distribution of normalized features.
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Figure 2. Distribution of MS in data set.

Table 3. Parameters used in equation (2).
Parameter Value (J/mol) Parameter Parameter

KC 4009 KAl 280
KN 3097 KCu 752
KCr 1868 KNi 172
KMn 1980 KW 714
KMo 1418 KCo 352
KNb 1653 KTi 1473
KSi 1979 KV 1618
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potentially irrelevant features and reduce the model’s 
complexity. Firstly, Pearson correlation coefficient 
(PCC) [42,43] is computed to measure the linear cor
relation between features, as shown in Equation (6). 
Generally, a PCC absolute value greater than 0.8 [32] 
suggests the presence of multicollinearity among vari
ables, which can be addressed using Variance Inflation 
Factor (VIF) [44]. VIF represents the ratio of the 
variance when there is multicollinearity among expla
natory variables to the variance when there is no 
multicollinearity. A higher VIF indicates more severe 
collinearity, and it can be calculated using Equation 
(7). After eliminating linearly correlated features, the 
presence of nonlinear correlations between variables is 
assessed using the Maximum Information Coefficient 
(MIC) [45]. MIC is based on mutual information, 
measuring the mutual dependence between two vari
ables. Mutual information quantifies the information 
gain for one variable given the values of another vari
able. MIC uses mutual information as a foundation 
and undergoes normalization and maximization 
through a series of steps. For continuous variables, 
the mutual information between X and Y can be cal
culated using Equation (8). The range of I(X;Y) is [0, 
+∞], with a higher value indicating a stronger correla
tion between the two variables. MIC is then computed 
based on I(X;Y) using Equation (9). The range of MIC 
is [0,1], with a higher value indicating a stronger cor
relation between the two variables. 

Where n is the sample size; a and b are two feature 
variables; a and b are the mean values of the feature 
variables; Sa and Sb are the standard deviations of the 
feature variables; R2

i represents the determination 
coefficient of the i-th explanatory variable as the 
dependent variable, obtained by performing linear 
regression with the other k-1 explanatory variables; 
p(x,y) is the joint probability density function of 
X and Y; p(x) and p(y) are the marginal probability 
density functions of X and Y; f and g are monotonic 
functions mapping X and Y to the [0,1] interval; k1 and 
k2 are the possible number of values for X and Y, 
respectively.

2.3. Machine learning model

With the advancement of computer science and tech
nology, numerous machine learning algorithms have 
emerged, each with its own set of applicable scenarios. 
Therefore, it is essential to compare machine learning 
algorithms and select the most suitable one for a given 
dataset.

This study employed four machine learning 
algorithms: Extremely Randomized Trees(ETR), 
Gradient Boosting Machine(GBT), Support Vector 
Machine(SVR), and Lasso Regression(LSO). Using 
features as input and MS as output, the predictive 
performance of different algorithms was compared 
to identify the optimal predictive model. Among 
the four algorithms, ETR and GBT belong to 
ensemble methods, where GTR falls under the 
Bagging algorithm and GBT falls under the 
Boosting algorithm. The individual learners estab
lished by Bagging algorithms are independent of 
each other, allowing for parallelized computations. 
In contrast, Boosting algorithms involve strong 
interdependence among individual learners, 
restricting computations to a sequential, serialized 
manner. SVR seeks to find a hyperplane in a high- 
dimensional space that separates different cate
gories in the dataset while maximizing the distance 
to the two closest data points. LSO, on the other 
hand, is a form of linear regression that introduces 
an L1 norm term in the model’s loss function to 
control model complexity.

To compare the predictive performance of different 
models, this study selected the coefficient of determi
nation (R2) and mean absolute error (MAE) as evalua
tion metrics, assessing the goodness of fit of the 
models. The specific calculation formulas are outlined 
in Equations (10) and (11). 

Table 4. Atomic feature.
Abb. Description

mAW mean Atomic Weight
mC mean Column
mR mean Row
rN range Number
mN mean Number
rAR range Atomic Radius
mAR mean Atomic Radius
rE range Electronegativity
mE mean Electronegativity
asve avg s valence electrons
apve avg p valence electrons
adve avg d valence electrons
fsve frac s valence electrons
fpve frac p valence electrons
fdve frac d valence electrons
FCC FCC lattice parameters
BCC BCC lattice parameters
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where fi represents the predicted value; yi is the actual 
value; yi,ave is the mean value of the actual values. 
Additionally, during the model development process, 
the dataset was partitioned into a training set and 
a test set in an 8:2 ratio. The model was fitted using 
the training set, and subsequently, the effectiveness of 
the model was validated using the test set.

In machine learning, hyperparameters are para
meters that need to be set before model training, and 
they are not learned by the model but are manually 
defined by practitioners. Examples of hyperpara
meters include learning rate, regularization para
meters, tree depth, etc. Current methods for 
optimizing hyperparameters include grid search, ran
dom search, and Bayesian optimization. In contrast to 
the first two, Bayesian optimization [46,47] leverages 
previous observations and intelligently selects the next 
point for evaluation by continuously adjusting candi
date points in the search space. Compared to grid 
search and random search, which uniformly sample 
the search space, Bayesian optimization may require 
fewer iterations to find the optimal solution. The 
advantage of Bayesian optimization lies in its ability 
to discover better hyperparameter configurations with 
relatively fewer iterations. Therefore, this study 
chooses Bayesian optimization as the method for 
hyperparameter tuning. Additionally, to mitigate the 
potential impact of randomness in data partitioning 
on model performance, cross-validation is combined 
with Bayesian optimization to jointly search for the 
best hyperparameters. Table 5 presents the hyperpara
meter search results for the four algorithms.

3. Result and discussion

3.1. Model prediction

Figure 3 presents the comparison between model pre
dictions and measured values when using the original 
feature inputs. The x-axis represents measured data, 
and the y-axis represents predicted data. Closer align
ment to the diagonal indicates smaller prediction 
errors. Among the four machine learning models, 
the ETR model consistently outperforms others, exhi
biting the best performance in both the training and 
test sets. Particularly on the test set, it achieves an R2 of 
0.91 and MAE of 16.58 K, indicating excellent predic
tive capability. Thus, the ETR algorithm is selected as 
the optimal algorithm for this study. The outstanding 
performance of the ETR model primarily stems from 
its characteristics as an ensemble learning algorithm. 
ETR exhibits remarkable flexibility, allowing it to 
seamlessly adapt to diverse data types and effectively 
handle complex nonlinear relationships. This inherent 
flexibility empowers ETR to excel in addressing intri
cate problems. Moreover, ETR leverages the use of 
multiple decision trees, employing randomized feature 
and data subset selection during tree construction to 
mitigate the risk of overfitting. This feature enables 
ETR to perform exceptionally well, particularly in 
scenarios involving high-dimensional data and noisy 
datasets. Conversely, other models, notably SVR, often 
struggle with high-dimensional data due to factors 
such as the sparsity induced by the curse of dimen
sionality, escalating computational complexity, and 
challenges in parameter selection. To further enhance 
the model’s predictive ability, atomic features are 
introduced in addition to the original features. 
Figure 4 illustrates the comparison between model 
predictions and test values in this scenario. 
Compared to Figure 3(a), the R2 increases to 0.94, 
and the MAE decreases to 13.71 K, indicating an 
improved model performance with the introduction 
of atomic features.

3.2. Feature selection

When introducing atomic features, the consideration 
of inter-feature correlation was overlooked, necessitat
ing feature selection. Figure 5 shows the PCC heat 
map between data set variables. It is worth noting 
that there are multiple collinearity problems between 
some features, for example, the PCC between mAW 
and mN is 1, which indicates that there is a complete 
linear correlation between them. Therefore, we can 
consider deleting one of the features to avoid the 
influence of redundant information. After PCC 
screening, it is found that the features with multiple 
collinearity include W, mAW, afve, ffve, C, FCC, mR, 
mN, apve, fsve, fpve, mAR and BCC. In view of these 

Table 5. Hyperparametric adjustment.

Model Hyperparameter Search range
Optimal 

hyperparameter

LSO alpha [0.1,50] 0.1
ETR n_estimators [6], 8000] 1494

max_depth [2], 100] 74
min_samples_split [2], 100] 2
min_samples_leaf [1], 100] 1
max_features [0.1,1] 0.82

SVR C [1000,8000] 5000
gamma [0.1,20] 0.1

GBT n_estimators [22], 8000] 3321
learning_rate [0.001,1] 0.1
max_depth [2,48] 22
subsample [0.5,1.0] 0.5
min_samples_split [2,48] 19
min_samples_leaf [1,16] 1
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characteristics, it is necessary to further analyze and 
decide how to deal with them to ensure the robustness 
and prediction performance of the model. VIF calcu
lations were then performed for these features, and 
Figure 6 shows the corresponding VIF values. With 
a threshold of 100, only BCC, C, ffve, and W were 
retained. Subsequently, MIC values were calculated for 

the remaining features to assess their nonlinear rela
tionships with the target variable, as depicted in 
Figure 7. Using 0.1 as the threshold, features with 
MIC less than 0.1 were considered unrelated to MS 
and were thus discarded. The final retained features 
are C, Gc, TAsut, BCC, mE, Mn, Cr, fdve, mC, asve, Si, 
Ni, adve, Mo, V, rN, and Al. Figure 8 illustrates the 
comparison between model predictions and measured 
values after feature selection. Despite the reduction in 
input feature dimensions, the model’s predictive per
formance has not deteriorated. The effectiveness of 
feature selection is demonstrated by maintaining pre
diction accuracy while reducing model complexity.

3.3. Validation of generalization ability

To validate the predictive capability of the model on 
unknown data, this study collected 89 sets of data 
from other literature sources [18,48–51], and the 
disparity between measured and calculated values of 
MS is depicted in Figure 9. Despite the model not 
being trained on these samples, it still exhibits com
mendable predictive performance, indicating robust 
generalization ability to effectively forecast unknown 
data. Additionally, Figure 9 compares the results 
with those computed using JmartPro and empirical 
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Figure 3. Comparison of predicted and measured values of four machine learning models with original feature input (a) ETR(b) 
GBT(c) SVR(d) LOS.
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formulas, highlighting that the proposed model’s 
accuracy surpasses both alternatives by a significant 
margin.

3.4. Model interpretable analysis

In the realm of MS prediction, machine learning exhi
bits higher predictive accuracy compared to 

traditional empirical formulas. However, due to its 
nature as a ‘black-box model’, where complex map
ping relations exist between inputs and outputs, it 
lacks transparency and interpretability in internal 
decision-making. Researchers face challenges in com
prehending how the model makes specific predictions 
or decisions based on input data. Therefore, alterna
tive methods are needed to enhance interpretability. 

Figure 5. PCC heat map between features.

Figure 6. VIF value of multicollinearity feature. Figure 7. MIC analysis of features and target variables.
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SHapley Additive exPlanations (SHAP) values [52,53] 
offer an approach to elucidate the outputs of machine 
learning models. Rooted in cooperative game theory’s 
Shapley values, SHAP values provide a framework to 

allocate contributions of each feature to the model’s 
output, aiding in understanding the model’s decision- 
making process. The central idea behind SHAP values 
is to simulate the impact of incorporating different 
features on the model output, assigning a Shapley 
value to each feature. This method possesses proper
ties like consistency, balance, and linearity, making it 
a potent tool for model interpretation.

Figure 10 provides a summary of feature SHAP 
values. Figure 10a illustrates the distribution of aver
age SHAP values for each feature, with the length of 
the axis representing the magnitude of average SHAP 
values, reflecting feature importance. The descending 
order of feature importance from top to bottom is C, 
Gc, Ni, TAust, mE, Cr, BCC, adve, Mn, fdve, Al, asve, 
rN, V, Si, Mo, mC. Figure 10(b) displays the distribu
tion of SHAP values for each sample in the dataset. 
Each point represents a sample, and the color of the 
point corresponds to the feature value. The redder 
the color, the larger the corresponding feature value, 
while the bluer the color, the smaller the feature 
value. The x-axis represents the distribution of 
SHAP values, where SHAP > 0 indicates a positive 
impact of the feature on the target variable, leading 
to an increase, and vice versa when SHAP < 0, indi
cating a negative impact causing a decrease. Taking 
feature C as an example, points with a predominantly 
blue color are distributed on the positive half-axis of 
the x-axis, while points with a reddish color are dis
tributed on the negative half-axis of the x-axis. This 
indicates that an increase in the C content in steel 
tends to decrease MS. For the top eight features, 
Figure 11 illustrates the distribution of SHAP values 
corresponding to each feature. Using the sign of 
SHAP values as a boundary, one can determine the 
range of feature values where the target variable 
increases or decreases. For instance, when C > 0.3, 
Gc > 5000, Ni > 1.3, mE > 1.85, Cr > 3.3, BCC > 10, 
adve > 5, the corresponding SHAP values are less 
than 0, leading to a decrease in MS. Furthermore, 

Figure 8. Comparison between predicted values and mea
sured values of the model after feature selection.
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Figure 10. Summary chart of characteristic SHAP values (a) average SHAP(b) SHAP of each sample.
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Figure 11. Distribution of SHAP values corresponding to features (a) C (b) gc (c) Ni (d) taust (e) mE (f) Cr (g) BCC (h) adve.
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Figure 11d shows the distribution of SHAP values 
with TAust. There is no distinct boundary line 
between positive and negative SHAP values corre
sponding to TAust. This is because, for MS, dr is one 
of its influencing factors, and this study approximates 
TAust as a substitute for dr. Apart from TAust, auste
nitizing time also affects dr, making it challenging to 
clearly demonstrate how TAust influences MS.

3.5. Model application

The primary objective of this study is to establish 
a unified prediction model for MS that can accurately 
predict across various steel types, including low- 
carbon steel, high-carbon steel, low-alloy steel, and 
high-alloy steel. This section illustrates the model’s 
application using a specific steel type as an example. 
Data for 63 steel samples were collected from the 
literature, encompassing low-carbon steel, high- 
carbon steel, low-alloy steel, and high-alloy steel 
[4,54–72]. Figure 12 depicts the disparity between 
the model’s predictions and measured values, along 
with the corresponding carbon and alloy element con
tent. The machine learning model demonstrates 
robust predictive performance even for special steel 
types that may pose challenges for empirical formulas 
or thermodynamic models. This validates the broad 
applicability and value of the model.

4. Conclusion

(1) The ETR algorithm establishes a model with 
optimal predictive performance among the four 
machine learning algorithms. Additionally, the 
introduction of atomic features proves advanta
geous in enhancing the model’s performance.

(2) Feature selection was achieved through PCC, 
VIF, and MIC, effectively reducing the model’s 
complexity without compromising predictive 
accuracy.

(3) Comparative analysis of model predictions on 
an unknown dataset against JmartPro and 
empirical formulas validates the model’s strong 
generalization capabilities.

(4) SHAP values were employed for interpretabil
ity analysis, providing insights into feature 
importance rankings and critical value ranges.

(5) Using a special steel type as an example demon
strates the model’s universality, affirming its 
extensive practical value.
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