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Abstract Vitamin D deficiency is more common among
African Americans (AAs) than among European Ameri-
cans (EAs), and epidemiologic evidence links vitamin D
status to many health outcomes. Two genome-wide asso-
ciation studies (GWAS) in European populations identified
vitamin D pathway gene single-nucleotide polymorphisms
(SNPs) associated with serum vitamin D [25(OH)D] levels,
but a few of these SNPs have been replicated in AAs. Here,
we investigated the associations of 39 SNPs in vitamin D
pathway genes, including 19 GWAS-identified SNPs, with
serum 25(OH)D concentrations in 652 AAs and 405 EAs.
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Linear and logistic regression analyses were performed
adjusting for relevant environmental and biological fac-
tors. The pattern of SNP associations was distinct between
AAs and EAs. In AAs, six GWAS-identified SNPs in GC,
CYP2RI1, and DHCR7/NADSYNI were replicated, while
nine GWAS SNPs in GC and CYP2RI were replicated in
EAs. A CYP2RI SNP, rs12794714, exhibited the strong-
est signal of association in AAs. In EAs, however, a dif-
ferent CYP2RI SNP, rs1993116, was the most strongly
associated. Our models, which take into account genetic
and environmental variables, accounted for 20 and 28 % of
the variance in serum vitamin D levels in AAs and EAs,
respectively.
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Introduction

Many chronic diseases are disproportionately distributed
in the US populations. Diabetes mellitus, cardiovascu-
lar diseases, several malignancies, and other diseases are
more prevalent among African Americans (AAs) relative
to European Americans (EAs) and Asian Americans. Dif-
ferences in serum vitamin D [25(OH)D] concentration
among racial/ethnic groups are suspected to be one of the
sources of health disparities (Grant and Peiris 2010; Harris
2011). Numerous studies demonstrated that AAs have sig-
nificantly lower serum 25(OH)D levels than EAs (Benja-
min et al. 2009; Chan et al. 2010; Ginde et al. 2009; Harris
et al. 2000; Looker et al. 2008; Murphy et al. 2012; Nesby-
O’Dell et al. 2002; Shea et al. 2011; Tseng et al. 2009).
Vitamin D deficiency is common even among AAs who live
in sunlight intense southern and southwestern states or who
have higher dietary vitamin D intake than the longstanding
recommended daily allowance (>400 IU/day) (Egan et al.
2008; Jacobs et al. 2008; Tseng et al. 2009). Although the
causal mechanism involved in risk is unknown, there is also
epidemiologic evidence linking vitamin D status to several
types of cancer (e.g., breast, colon, and prostate cancer),
bone diseases (e.g., rickets, osteomalacia, and osteoporo-
sis), cardiovascular diseases, diabetes, autoimmune dis-
eases, microbial infections, childhood asthma and allergy,
and other health conditions (Grant and Peiris 2010, 2012;
Hossein-nezhad and Holick 2013; Litonjua 2012). High
disease burden in AAs could be due to the contrasting
effects of dark skin pigmentation which evolved in their
ancestral African environment and low ultraviolet radiation
(UVR) in their new environment (Jablonski and Chaplin
2012).

Circulating levels of 25(OH)D are strongly influenced
by multiple factors. Various studies have demonstrated that
dietary intake, dietary supplement use, season of blood
draw, UVR exposure, smoking, sex, age, body mass index
(BMI), and race/ethnicity are important predictors of serum
25(OH)D levels (Chan et al. 2010; Egan et al. 2008; Mur-
phy et al. 2012; Shea et al. 2011). Of these predictors,
many studies repeatedly demonstrated the strong associa-
tions of vitamin D intake and season of blood draw with
serum 25(OH)D levels.

Genetic epidemiological studies also identified vari-
ants that were associated with serum 25(OH)D levels. Two
meta-analyses of genome-wide association studies (GWAS)
in European descent populations found single-nucleotide
polymorphisms (SNPs) in vitamin D pathway genes associ-
ated with serum 25(OH)D levels (Ahn et al. 2010; Wang
et al. 2010). In these GWAS meta-analyses, the strongest
signals of association were observed in GC (vitamin D
binding protein), DHCR7 (7-dehydrocholesterol reductase)
and NADSYNI region, and CYP2RI (cytochrome P450,
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family 2, subfamily R, polypeptide 1). Smaller scale rep-
lication and candidate gene studies in European and Asian
populations also demonstrated the association of variants in
these gene regions with serum 25(OH)D levels (Bu et al.
2010; Cooper et al. 2011; Engelman et al. 2013; Lu et al.
2012; Zhang et al. 2012). On the other hand, in AAs, stud-
ies have shown that genetic ancestry contributes to serum
25(OH)D variation (Signorello et al. 2010; Yao et al. 2012),
but the association of the GWAS-identified SNPs with
serum 25(OH)D levels has not been fully explored. Only
a few GWAS-identified variants, located in GC, show sig-
nificant association with serum 25(OH)D levels in AAs
(Engelman et al. 2008; Powe et al. 2013; Signorello et al.
2011). Here, we investigated if 39 SNPs in eight vitamin D
pathway genes were associated with serum 25(OH)D con-
centrations in AAs and EAs.

Materials and methods
Subjects

A total of 652 AA men (226 AAs from Washington, D.C.
and 426 AAs from Chicago) and 405 EA men from Chi-
cago were included for this study. The subjects from Wash-
ington, D.C. were recruited at Howard University Hospital
(Bonilla et al. 2011; Robbins et al. 2011). The participants
from Chicago were recruited at University of Illinois Hos-
pital and Health Sciences System, Northwestern Memorial
Hospital, Cook County Health and Hospital System, Jesse
Brown Veterans Affairs Medical Center, and University
of Chicago Hospital (Murphy et al. 2012). All of the par-
ticipants were unrelated and self-identified as AA or EA.
Individuals with liver and/or chronic kidney disease were
excluded from the analyses.

Blood samples for 25(OH)D assays and DNA analy-
sis, demographic information, and information on poten-
tial modifiers of serum 25(OH)D were collected at the
time of recruitment. Research coordinators conducted
in-person interviews, administered structured question-
naires, and obtained information on ancestry, medical his-
tory, income, education, marital status, and lifetime history
of sun exposure (Murphy et al. 2012). Skin color of upper
inner arm was measured using a portable narrow-band
reflectometer, called DermaSpectrometer (Cyberderm,
PA) (Shriver and Parra 2000; Shriver et al. 2003). Dietary
vitamin D intake was assessed using a Block calcium and
vitamin D screener validated for use in the AA popula-
tion (Block et al. 1990; Coates et al. 1991). UVR exposure
was assessed using a questionnaire that evaluates outdoor
activities and geographic residence. The serum samples
were stored at —20 °C until 25(OH)D measurement. Total
25(OH)D concentration was assessed using the Diasorin®
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Table 1 Vitamin D pathway genes investigated

Chromosome Gene Number of SNPs Full name of gene
CYP27A1 1 Cytochrome P450, family 27, subfamily A, polypeptide 1
GC 9 Vitamin D binding protein
7 CYP3A4 1 Cytochrome P450, family 3, subfamily A, polypeptide 4
11 CYP2RI 5 Cytochrome P450, family 2, subfamily R, polypeptide 1
DHCR7/NADSYN1 8 7-Dehydrocholesterol reductase/NAD synthetase 1
12 VDR 7 Vitamin D receptor
CYP27B1 2 Cytochrome P450, family 27, subfamily B, polypeptide 1
20 CYP24A1 6 Cytochrome P450, family 24, subfamily A, polypeptide 1

chemiluminescence immunoassay method in the Depart-
ment of Pathology NorthShore University HealthSystem.
We defined vitamin D deficiency as serum 25(OH)D lev-
els <50 nmol/l (<20 ng/ml) and vitamin D insufficiency as
25(0OH)D levels between 50 and 75 nmol/l (20 and 30 ng/
ml) (Holick 2007; Holick et al. 2011).

Genetic analysis

We genotyped 39 SNPs in eight vitamin D metabolic
pathway genes (GC, DHCR7/NADSYNI, VDR, CYP2RI,
CYP27A1, CYP27B1, CYP3A4, and CYP24AlI), includ-
ing 19 GWAS-identified variants (Table 1; Supplementary
Table 1) (Ahn et al. 2010; Wang et al. 2010). SNP selection
process was previously described in Pibiri et al. (2014).
Individual genetic ancestry was determined for each per-
son using 105 autosomal DNA ancestry informative mark-
ers (AIMs) for West African, Native American, and Euro-
pean genetic ancestry using published methods (Giri et al.
2009; Tian et al. 2006). All the genotyping was performed
using iPLEX Sequenome MassARRAY. All the individuals
included in the study had genotyping calling rate of >95 %.

Statistical analysis

Allelic association tests were performed using linear
regression models to investigate the association with log-
transformed serum 25(OH)D levels and logistic regression
models to test the association with vitamin D deficiency
(<50 nmol/l). We performed separate analyses for AAs
and EAs because of differences in linkage disequilibrium
(LD), allele frequencies, and biological and environmental
factors contributing to serum 25(OH)D levels in the two
populations. For the analyses of AAs, we adjusted for age,
West African ancestry (WAA), and study site (Model 1,
n = 652). We also tested for association adjusting for age,
WAA, study site, and environmental predictors (Model 2,
n = 557). We adjusted for WAA to control for population
stratification in the admixed AA populations. For the analy-
ses of EAs, we adjusted for age (Model 1, n = 405), and

we performed analyses further adjusting for environmental
predictors (Model 2, n = 385). We treated total vitamin D
intake, season of blood draw, and UVR exposure as binary
variables. We treated total vitamin D intake as a binary var-
iable (<400 IU/day vs. >400 IU/day, Institute of Medicine
Estimated Average Requirement), because it was not nor-
mally distributed. We defined from June to November as
UVR high months and from December to May as low UVR
months to account for serum 25(OH)D decay time. Mean
serum 25(OH)D levels were not different between individ-
uals with UVR medium and low exposure, so the levels of
UVR exposure were categorized into high vs. low/medium
exposure. For GWAS-identified SNPs, we considered the
P < 0.05 as the threshold for statistical significance. For
other SNPs, pointwise empirical P values and empirical P
values corrected for multiple testing were obtained using
the max(7T) permutation procedure (10,000 permutations)
using PLINK (Purcell et al. 2007). Additional statistical
analyses were conducted using IBM SPSS Statistics, ver-
sion 21.0 (IBM Corp., Armonk, NY). We derived a Genetic
Risk Score for vitamin D deficiency by adding the number
of risk alleles of the top two most significantly associated
SNPs in AAs and EAs. Power analysis was performed
using SPSS SamplePower (IBM Corp., Armonk, NY).

Genetic ancestry was estimated using STRUCTURE
software from the AIMs genotyped (Falush et al. 2003;
Pritchard et al. 2000). We ran STRUCTURE under the
admixture model using prior population information and
independent allele frequencies with Markov Chain Monte
Carlo (MCMC) method using K = 3 parental populations
(West African, European, and Native American) and a burn-
in length of 30,000 for 70,000 repetitions. Each partici-
pant was scored from 0 to 100 % for individual estimates
of West African, Native American and European ancestry.
Mean WAA in AAs was 0.79, which was similar to previ-
ous estimates in the study populations (Batai et al. 2012).
LD patterns were examined using HaploView (Barrett et al.
2005). Synthesis-View was used to visualize the results of
SNP associations in linear regression models (Pendergrass
et al. 2010).
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Table 2 Study participants’ characteristics

African Americans (n = 652) European Americans (n = 405) P values?

Age, mean (SD) 59.0 (10.0) 60.9 (8.4) 0.001
25(OH)D (nmol/l), mean (SD) 47.8 (24.2) 64.9 (28.2) <0.001
Vitamin D status®, % <0.001

Severe deficient 14.1 4.2

Deficient 434 24.7

Insufficient 28.3 38.8

Sufficient 13.2 324
UV high season, from June to November, % 62.1 39.0 <0.001
Total vitamin D intake > 400 I[U/day, % 36.4 49.7 <0.001

@ P values were calculated from independent sample 7 test for continuous variables and x> test for categorical variables
® Vitamin D severe deficient (<25.0 nmol/l), deficient (25.0-49.9 nmol/l), insufficient (50.0-74.9 nmol/l), and sufficient (>75.0 nmol/l)

Results

Vitamin D deficiency and insufficiency were more com-
mon in AAs than in EAs (Table 2; Supplementary Fig. 1).
The majority of our AA study participants (85.8 %) were
vitamin D insufficient or deficient with 25(OH)D levels
<75 nmol/l. Although many of them were recruited in the
high UV months, more than half of them (57.5 %) were
vitamin D deficient with 25(OH)D levels <50 nmol/l. Mean
serum 25(OH)D levels was significantly higher in EAs than
in AAs, and only 28.9 % of EA study participants were
vitamin D deficient. Total vitamin D intake was lower in
AAs than in EAs, and significantly higher proportion of
EAs had total vitamin D intake >400 IU/day (P < 0.001). A
much smaller proportion of AAs (14.9 %) had the Institute
of Medicine Recommended Dietary Allowance (>600 IU/
day) compared to EAs (25.4 %).

Before we tested SNP associations, we performed mul-
tiple linear regression analyses to identify biological and
environmental modifiers of serum 25(OH)D concentrations
(Supplementary Table 2). Among AAs, study site, total
vitamin D intake and season of blood draw were signifi-
cantly associated with serum 25(OH)D levels (P < 0.001).
Skin pigmentation and WAA were not associated with
serum 25(OH)D levels. In EAs, age (P = 0.006), season of
blood draw (P < 0.001), total vitamin D intake (P < 0.001),
and body mass index (BMI) (P < 0.001) were significantly
associated with serum 25(OH)D levels. Also, UVR expo-
sure was marginally associated with serum 25(OH)D lev-
els (P = 0.06) in EAs. These significant modifiers of serum
25(OH)D levels were included in the linear and logistic
regression models in our genetic association analyses.

Of the 39 SNPs genotyped, two SNPs in VDR,
1s2228570 (Fokl) and rs1989969, were hypervariable
loci exhibiting more than two alleles, and we removed
them from our analyses. We also excluded rs11568820
(Cdx2) from the analyses in AAs, because it deviated from
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Hardy—Weinberg Equilibrium (P < 0.001). A CYP27A1
SNP, rs116071925, was excluded in the analyses of EAs,
because it was monomorphic.

In the linear regression models among AAs, we observed
stronger associations of SNPs with serum 25(OH)D lev-
els when we additionally adjusted for vitamin D intake
and season of blood draw (Model 2) than when only age,
WAA, and study site were included (Model 1). In Model
1, three GWAS-identified SNPs (1 in CYP2RI and 2 in
DHCR7/NADSYNI) were significantly associated with
serum 25(OH)D levels (Supplementary Table 3). Although
the number of individuals included was smaller in Model
2 than in Model 1, five GWAS-identified SNPs (1 in GC
and 4 in CYP2RI) and one non-GWAS-identified SNP in
GC were significantly associated with serum 25(OH)D
levels in Model 2 (Fig. 1; Table 3). Two CYP2RI SNPs,
rs12794714 and rs10741657, equally showed strong asso-
ciation (P = 0.01). These two SNPs were weakly linked
(*? = 0.07) (Supplementary Fig. 2). When these two SNPs
were included in the regression model, they showed inde-
pendent association (P = 0.04 for both rs10741657 and
rs12794714). The logistic regression analysis for vitamin
D deficiency supports the strong associations of CYP2RI
SNPs, and rs12794714 showed the strongest associa-
tion with vitamin D deficiency (P = 0.003, OR = 1.72,
95 % C.I.; 1.20-2.47). A previously reported GC SNP,
rs115563, was weakly associated with serum 25(OH)D
levels (P = 0.048). Although not significant after correct-
ing for multiple testing, another SNP in GC, rs115316390,
that was not reported in the GWAS meta-analyses showed
stronger association with serum 25(OH)D levels. This SNP
was not in LD with rs1155563 (#* < 0.001), and they were
independently associated (P = 0.03 for both rs1155563
and rs115316390), when they were adjusted for each
other in the regression model. Although the two SNPs in
DHCR7/NADSYNI were not associated with 250HD in
Model 2 in the linear regression analysis, rs12800438
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Fig.1 —log,, P value from linear regression analysis (Model 2) in
African Americans (Blue) and European Americans (Red). Additive
effect of minor allele was tested, and the friangles indicate direction
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Table 3 SNPs associated with serum 25(OH)D levels in African Americans and European Americans

shows the statistical significance

b

Chromosome  Gene SNPs Position African Americans® European Americans
(BP)° MAY B Pvalues P4  MAY B Pvalues  Piyp
4 GC rs17467825 72605517 G —-0.01  0.62 G -0.04  0.003
12282679 72608383  C —-0.01  0.68 C —-0.05  0.001
1s3755967 72609398 A —-0.02 030 A —0.04  0.002
1s2298850 72614267 G —0.01  0.65 G —0.03  0.04
rs7041 72618334 G 0.01 057 T —0.04  0.0007
rs1155563 72643488 C —0.04  0.048 C —-0.02 031
rs115316390 72651159 A 0.17  0.03 0.33 A 0.07 044 1.00
11 CYP2RI rs1993116 14910234 T 0.03  0.02 T 0.04  0.0006
112794714 14913575 A -0.04  0.01 A —-0.04  0.005
rs10741657 14914878 A 0.04  0.01 A 0.04  0.003
152060793 14915310 A 0.03  0.02 A 0.04  0.005
20 CYP24A1 1873913757 52790518 T 0.00 099 1.00 T —-0.09  0.04 0.49

Statistically significant P values at o = 0.05 are bolded

% Adjusted for age, WAA, study site, total vitamin D intake, and season of blood draw (Model 2)
b Adjusted for age, total vitamin D intake, season of blood draw, BMI, and UVR exposure (Model 2)

¢ Base pair position on the chromosome is based on GRCh37/hg19
¢ Minor Allele

¢ Empirical P values obtained using max(7) permutation procedure (10,000 permutations) correcting for multiple testing. Permutation test was

not performed for GWAS-identified SNPs
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was significantly associated with vitamin D deficiency
(P =0.04, OR =0.76,95 % C.1.; 0.58-0.99) in AAs.

A contrasting pattern of associations was observed
in EAs. Compared to AAs, there were more SNPs with
stronger signal of association in both Models (Fig. 1;
Supplementary Table 4), and different SNPs from those
found in AAs showed stronger association. Nine GWAS-
identified SNPs were significantly associated with serum
25(OH)D concentrations. A CYP2R1 SNP, rs1993116,
showed the strongest evidence of association (P = 0.0006).
After adjusting for rs1993116, no other SNP in CYP2RI
remained significant. The logistic regression analysis con-
firmed the strongest association of this SNP (P = 0.0008,
OR = 0.51, 95 % C.I; 0.35-0.76). A GC SNP, 157041,
showed the second strongest association (P = 0.0007), and
after conditioning on this SNP in the regression analyses,
other GC SNPs were no longer significantly associated
with serum 25(OH)D levels. Figure 1 shows the different
directions of association (8) in AAs and EAs for rs7041.
However, different alleles were tested in AAs and EAs,
because the minor allele in AAs was the major allele in
EAs, and rs7041 was not associated with serum vitamin D
levels in AAs. In addition, a CYP24A1 SNP, rs73913757,
was associated with serum 25(OH)D levels (P = 0.04), but
it was not significant after controlling for multiple testing.

To understand the additive effects of the significant vita-
min D pathway gene variants on serum 25(OH)D levels,
we performed linear regression analysis by adding the top
two independently associated SNPs to the linear regres-
sion model with the biological and environmental modi-
fiers. In AAs, the model including age, WAA, study site,
total vitamin D intake, and season of blood draw explained
19.1 % of the variance in serum 25(OH)D levels (adjusted
R? = 0.191). We added a CYP2RI SNP, rs12794714,
that showed the strongest association in single SNP lin-
ear regression and logistic regression analysis, and a GC
SNP, rs115316390, to the linear regression model. The
two SNPs together explained an additional 1.1 % of the
serum 25(OH)D variation (adjusted R? = 0.202). Genetic
Risk Score was calculated using the top two SNPs by add-
ing the number of A alleles for rs12794714 (CYP2RI) and
G alleles for rs115316390 (GC). The Genetic Risk Score
ranged from one to four (Fig. 2a). As the Genetic Risk
Score increased, proportion of vitamin D-deficient indi-
viduals increased. A small proportion (28.6 %) of AAs who
carry one risk allele was vitamin D deficient. Vitamin D
deficiency was very common in AAs who carry four risk
alleles (76.0 %). In linear regression model adjusting for
age, WAA, study site, season, and vitamin D intake, the
Genetic Risk Score was significantly associated with serum
25(OH)D levels (B = —0.044, P = 0.005). The regression
coefficient (8) estimates for these two SNP were different,
so we weighted the Genetic Risk Score using f estimates.
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Fig. 2 Percent vitamin D deficiency for each unweighted Genetic
Risk Score using top two SNPs; rs12794714 (CYP2RI) and
rs115316390 (GC) in African Americans (a), and rs1993116
(CYP2RI1) and 157041 (GC) in European Americans (b)

In the same linear regression model, the weighted Genetic
Risk Score was also significantly associated with serum
25(0OH)D levels (B = —0.947, P = 0.001).

Similarly, compared to biological and environmental
modifiers, genetic variation explained a small proportion
of serum 25(OH)D variation in EAs. SNPs and biologi-
cal and environmental modifiers, however, accounted for
greater serum 25(OH)D variation in EAs than in AAs.
Adjusted R? in the linear regression model including the
age, total vitamin D intake, season of blood draw, BMI, and
UVR exposure was 0.241. The model including two SNPs,
rs7041 (GC) and rs1993116 (CYP2RI) and environmen-
tal variables accounted for 28.2 % of variance (adjusted
R? = 0.282). Genetic Risk Score was calculated with sum
of the number of C alleles for rs1993116 (CYP2RI) and T
alleles for rs7041 (GC). A very small proportion (9.1 %)
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of EAs who had zero risk allele was vitamin D deficient
(Fig. 2b). Vitamin D deficiency was less common in EAs
than in AAS, and less than half (42.9 %) of EAs who had
four risk alleles were vitamin D deficient. The Genetic Risk
Score was also strongly associated with serum 25(OH)D
levels (8 = 0.043, P < 0.001) in linear regression model
adjusting for age, BMI, season, vitamin D intake, and UV
exposure. Because the regression coefficient was virtually
identical for two SNPs, we did not perform analysis with
weighted Genetic Risk Score.

Increments of R? for rs12794714 and rs115316390,
when they were added to the regression model (Model 2)
in AAs, were 0.008 and 0.006, respectively. Our AA sam-
ples provide only 65 and 56 % power for these two SNPs
to detect the effect size at a significance level of « = 0.05.
In EAs, increments of R for the top two SNPs were larger.
When rs7041 and rs1993116 were added to the regression
models with the other modifiers, R increase were 0.022
and 0.021, respectively. Our EA samples have 90 and 89 %
power to detect the observed R? increment.

Discussion

In this study of 652 AAs and 405 EAs, we investigated the
association of 37 candidate SNPs in eight vitamin D path-
way gene regions, and we successfully replicated GWAS
findings in our AA and EA populations demonstrating that
six SNPs in three vitamin D pathway genes in AAs and
nine SNPs in two genes in EAs were significantly associ-
ated with serum 25(OH)D levels or vitamin D deficiency
(Supplementary Table 5). We also found a previously unre-
ported SNP in GC among AAs and a SNP in CYP24A]
among EAs that were associated with serum 25(OH)D
levels, though they were not significantly associated after
correcting for multiple testing. The strength of associations
and the SNPs that showed the strongest signal of associa-
tion were, however, different between AAs and EAs.

When human skin is exposed to UVR, 7-dehydrocho-
lesterol is converted to pre-vitamin D, (Holick 2007). Also
within the skin, the enzyme, 7-dehydrocholesterol reductase
(DHCR?7) catalyzes the conversion of 7-dehydrocholesterol
to cholesterol. Thus, increased activity of DHCR7 poten-
tially lowers the bioavailability of 7-dehydrocholesterol for
vitamin D synthesis. Two GWAS meta-analyses identified
SNPs in DHCR7 and a nearby gene, NADSYNI, strongly
associated with serum 25(OH)D levels in European popu-
lations (Ahn et al. 2010; Wang et al. 2010). We, however,
failed to replicate these findings in our EA samples. In our
AA sample, one SNP in this region was weakly associated
with vitamin D deficiency (P = 0.04). Decreased ability to
synthesize vitamin D due to older age and/or darker skin
pigmentation may explain the inconsistent results between

our study and the two GWAS meta-analyses (Armas et al.
2007; Clemens et al. 1982; MacLaughlin and Holick 1985).
Our study participants are older individuals living in urban
areas at northern latitudes where high UVR is available
for only several months of the year (Fioletov et al. 2010).
Also, in our study participants, skin pigmentation was not
associated with serum 25(OH)D levels. A major source of
vitamin D among them appears to be dietary intake rather
than UVR, and in the linear regression analysis, vitamin D
dietary intake explained a higher proportion of serum vita-
min D variance than season of blood draw or UVR. None-
theless, this is the first study to investigate the association
of DHCR7/NADSYNI SNPs with serum 25(OH)D levels
among people of African descent.

Vitamin D that is synthesized in the skin or consumed
from the diet is converted to a circulating form of vitamin
D, 25(OH)D, in the liver with the enzyme, hydroxylase, and
DNA sequence variants in these hydroxylase genes, such as
CYP2RI1, may impact vitamin D metabolism. In our study,
SNPs in CYP2RI showed the strongest signal of associa-
tion in both AAs and EAs. The CYP2RI SNP, rs1993116,
was most strongly associated with serum vitamin D sta-
tus in our EA subjects and also showed the strongest sig-
nal of association within this gene in one of the GWAS
meta-analyses (Ahn et al. 2010). However, rs12794714,
the CYP2RI SNP that consistently showed the strong-
est association with serum 25(OH)D levels and vitamin D
deficiency in our AA subjects, was not the most strongly
associated SNP in either GWAS meta-analyses. Two other
studies investigated the association of CYP2RI SNPs and
serum 25(OH)D levels in AAs, but none of the associations
were significant (Pillai et al. 2011; Signorello et al. 2011).
The different associations observed for these two CYP2RI
SNPs between AA and EA populations maybe due to dif-
ferences in LD across populations. While rs1993116 and
rs1279714 were moderately linked in EAs (¥ = 0.46), the
two SNPs show weak linkage in AAs (#* = 0.05) (Supple-
mentary Fig. 2). The LD difference suggests that a func-
tional variant exists in the vicinity of these SNPs.

After vitamin D is converted to 25(OH)D, 25(OH)D
binds to the vitamin D binding protein and is transported
to target tissues through the circulation system. Sequence
variants may reduce expression of GC or ability of vita-
min D binding protein to bind to 25(OH)D. Thus, SNPs
within GC may reduce circulating 25(OH)D levels. The
two GWAS meta-analyses found the strongest signal of
association with SNPs in GC (Ahn et al. 2010; Wang et al.
2010). In these GWAS, rs2282679 had the lowest P value,
but other GC SNPs showed stronger associations than
rs2282679 in our AA and EA populations. Although the
association of rs2282679 has been consistently replicated
in many smaller scale replication and candidate gene stud-
ies in African Americans, European Americans, and Asians,
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these studies often find other SNPs in GC showing stronger
association than the GWAS top hit (Bu et al. 2010; Lu et al.
2012; Signorello et al. 2011; Zhang et al. 2012, 2013).

The SNP, rs7041, in exon 11 of GC creates an
Asp — Glu amino acid change in the vitamin D binding
protein. In our EA population, rs7041 showed the strong-
est association with serum 25(OH)D levels. The association
of this SNP with 25(OH)D levels was consistently demon-
strated in the two GWAS meta-analyses (Ahn et al. 2010;
Wang et al. 2010) and in smaller studies in European popu-
lations (Cooper et al. 2011; Engelman et al. 2013; Sinotte
et al. 2009) as well as in AAs (Engelman et al. 2008; Powe
et al. 2013). Along with this SNP, another missense muta-
tion at rs4588 (Thr — Lys) was associated with serum
25(0OH)D and vitamin D binding protein levels in AAs and
other racial/ethnic groups, demonstrating the functional
importance of these two SNPs (Carpenter et al. 2013; Powe
et al. 2013). We note that the minor allele of rs7041 (G) in
our AAs was the major allele in EAs, and this allele was
positively correlated with serum 25(OH)D in our EAs, but
not in our AA samples or in another study in AAs (Signo-
rello et al. 2011). Instead, Signorello et al. (2011) found
the strongest association with rs2298849, which is less
than 1 kb away from rs1155563, the SNP that was signifi-
cantly associated with 25(OH)D levels in our AAs. These
two GC SNPs exhibited very little LD in African descent
populations (+* = 0.03 in YRI and 7 = 0.04 in ASW). The
SNP, rs115316390, located in the intron region showed the
strongest GC association in our AA population (P = 0.03).
Although the association was not significant after correct-
ing for multiple testing, this study is the first to report the
evidence of association of rs11531690 with serum 25(OH)
D concentrations. These data suggest that there could
be other functional variants in the vicinity of these SNPs
affecting serum 25(OH)D and vitamin D binding protein
levels. It should also be noted that while serum vitamin
D binding protein levels stay relatively stable over time,
serum 25(OH)D levels can seasonally fluctuate (Harris and
Dawson-Hughes 1998; Sonderman et al. 2012).

Contrasting patterns between AAs and EAs were also
observed when significantly associated SNPs in CYP2RI
and GC were added to our full linear regression model with
the relevant covariates. Two SNPs, one each from CYP2RI1
and GC, together explained more of the variation in serum
25(OH)D levels in EAs than in AAs (4.1 % increase in R?
among EAs compared to a 1.1 % increase among AAs).
Nevertheless, these SNPs account for a very small propor-
tion of variation in serum 25(OH)D levels in both popula-
tions compared to behavioral, biological, and environmen-
tal predictors.

Several studies have shown that an increasing Genetic
Risk Score, or number of risk alleles, is associated with
decreased serum 25(OH)D levels or vitamin D deficiency/
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insufficiency using the candidate SNPs (Engelman et al.
2013; Lu et al. 2012; Signorello et al. 2011; Zhang et al.
2013). Each study used a different set of SNPs, and the
strongest signals of association were found at different
SNPs. There is heterogeneity in the study of SNP allele fre-
quencies and LD variation across the studied populations.
Without knowing the causal variants, such analyses may
provide a limited interpretive value for prevention strate-
gies or recommendations for vitamin D supplementation.

Differences in behavioral and environmental factors,
variation in LD across different populations, and the small
sample size of this study likely caused the inconsistencies
observed for associations across studies. Our EA study par-
ticipants were more likely to have higher education levels
and income, and more prevalent use of vitamin D supple-
mentation than AA study participants (Murphy et al. 2012).
Moreover, many believe that consistently significant dif-
ferences in serum 25(OH)D levels between AAs and EAs
even after adjusting for relevant behavioral, biological, and
environmental variables suggest that skin pigmentation is
one of the major contributing factors (Harris 2011; Harris
and Dawson-Hughes 1998; Signorello et al. 2010). How-
ever, the impact of skin pigmentation differences between
AAs and EAs on the observed difference in serum vita-
min D levels and contrasting pattern of associations is still
not clear. In this project, we used an objective method of
measuring skin pigmentation and skin pigmentation was
not associated with serum vitamin D levels in AAs. Our
AA subjects exhibited large variation in skin color and thus
more analyses are necessary to understand the role of skin
pigmentation on vitamin D disparities.

The limitations of this study are the low number of tag-
ging SNPs genotyped and small sample size. We selected a
small number of tagging SNPs that are most likely in LD
with causal variants, but the tagging SNPs selected based
on the GWAS in European populations may not be suitable
in AAs. Fine mapping around the region with strong sig-
nals of association in our AAs may help identify other vari-
ants that show stronger association and find functional vari-
ants that may affect vitamin D synthesis and metabolism.
Compared to the previous GWAS meta-analyses (Ahn et al.
2010; Wang et al. 2010), our study had small sample size.
Despite small sample size, our EA samples size was suf-
ficient to observe the significant associations for the GWAS
top hint in GC and CYP2RI. The genetic effect in AAs,
on the other hand, was smaller, and we may not have had
enough statistical power. This study, however, is the second
largest that examined association of circulating 25(OH)D
levels and genetic variations in AA populations. This study
also incorporated many biological and environmental mod-
ifiers of serum 25(OH)D levels, including objective meas-
urements of skin pigmentation, into the analyses. Com-
bined effect of gene and environment likely explains the
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difference in prevalence of vitamin D deficiency between
AAs and EAs (Moonesinghe et al. 2012). Our future stud-
ies will explore whether gene—environment interactions
play a role in vitamin D disparities between AAs and EAs.

Vitamin D deficiency is very common among AAs and
is considered to be a potential contributor to health dispari-
ties. For EA adults, increasing vitamin D intake from sup-
plementation or diet to more than 600 IU/day is necessary
to keep serum 25(OH)D levels at 50 nmol/l (20 ng/ml), but
maintaining levels >75 nmol/l (30 ng/ml) likely requires
more than 1,500 IU/day of vitamin D (Holick et al. 2011;
Institute of Medicine 2011; Ross et al. 2011). Administer-
ing 2,000 IU/day of vitamin D supplementation is shown to
raise serum vitamin D to sufficient levels in AA populations
(Dong et al. 2010; Talwar et al. 2007), and 4,000 IU/day of
vitamin D supplement intake eliminated the differences in
serum 25(OH)D levels between AA and EA men (Garrett-
Mayer et al. 2012). These studies, however, observed a
considerable variation in serum 25(OH)D levels, even after
accounting for vitamin D supplement intake. Another study
investigating the impact of vitamin D supplementation also
observed high variation in serum 25(OH)D levels within
each category of vitamin D supplement dose (Garland et al.
2011). UVR exposure, skin color, season, BMI, and other
environmental factors contribute to the variation, but bio-
logical factors and genetic variation in vitamin D pathway
genes affecting rate of 25-hydroxylation likely play a role
in dose response to vitamin D supplementation (McDon-
nell et al. 2013; Nimitphong et al. 2013). For instance, AA
individuals who carry genetic variants that reduce vitamin
D hydroxylation and binding protein stability may require
substantially higher doses of vitamin D supplementation to
maintain optimal serum 25(OH)D levels.

In summary, this study successfully replicated several
GWAS-identified SNPs associated with 25(OH)D levels in
AA and EA populations. The results also provide evidence
that CYP2RI and GC contribute more to serum 25(OH)D
variation than other genes in the vitamin D pathway in our
study populations. The contrasting pattern of associations
between AAs and EAs suggests that additional studies are
warranted to identify the causal variants affecting vitamin
D binding and enzymatic activities.

Acknowledgments We are grateful to all individuals who partici-
pated as research subjects in this study. The authors would also like
to thank the urologists and clinic staff at all the participating sites,
and Dr. Nathan Ellis for helpful discussion and manuscript edits. This
work was supported by grants from the National Institutes of Health
(1IR01IMDO007105-01) and the United States Department of Defense
(W81XWH-10-1-0532; DAMD W81XWH-07-1-0203). KB was sup-
ported by the NCI Training Program: Cancer Education and Career
Development Program (5R25 CA057699).

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,

distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

References

Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML,
Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB,
Li Q, Weinstein SJ, Purdue M, Virtamo J, Horst R, Wheeler W,
Chanock S, Hunter DJ, Hayes RB, Kraft P, Albanes D (2010)
Genome-wide association study of circulating vitamin D levels.
Hum Mol Genet 19:2739-2745. doi:10.1093/hmg/ddq155

Armas LAG, Dowell S, Akhter M, Duthuluru S, Huerter C, Hol-
lis BW, Lund R, Heaney RP (2007) Ultraviolet-B radiation
increases serum 25-hydroxyvitamin D levels: the effect of
UVB dose and skin color. ] Am Acad Dermatol 57:588-593.
doi:10.1016/j.jaad.2007.03.004

Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and
visualization of LD and haplotype maps. Bioinformatics 21:263—
265. doi:10.1093/bioinformatics/bth457

Batai K, Shah E, Murphy AB, Newsome J, Ruden M, Ahaghotu C,
Kittles RA (2012) Fine-mapping of /L/6 gene and prostate can-
cer risk in African Americans. Cancer Epidemiol Biomarkers
Prev 21:2059-2068. doi:10.1158/1055-9965.epi-12-0707

Benjamin A, Moriakova A, Akhter N, Rao D, Xie H, Kukreja S,
Barengolts E (2009) Determinants of 25-hydroxyvitamin D levels
in African—American and Caucasian male veterans. Osteoporos
Int 20:1795-1803. doi:10.1007/s00198-009-0873-6

Block G, Hartman AM, Naughton D (1990) A reduced dietary ques-
tionnaire: development and validation. Epidemiol 1:58-64

Bonilla C, Hooker S, Mason T, Bock CH, Kittles RA (2011) Prostate
cancer susceptibility loci identified on chromosome 12 in African
Americans. PLoS One 6:e16044

Bu F-X, Armas L, Lappe J, Zhou Y, Gao G, Wang H-W, Recker R,
Zhao L-J (2010) Comprehensive association analysis of nine
candidate genes with serum 25-hydroxy vitamin D levels
among healthy Caucasian subjects. Hum Genet 128:549-556.
doi:10.1007/s00439-010-0881-9

Carpenter TO, Zhang JH, Parra E, Ellis BK, Simpson C, Lee WM,
Balko J, Fu L, Wong BYL, Cole DEC (2013) Vitamin D bind-
ing protein is a key determinant of 25-hydroxyvitamin D lev-
els in infants and toddlers. J Bone Miner Res 28:213-221.
doi:10.1002/jbmr.1735

Chan J, Jaceldo-Siegl K, Fraser G (2010) Determinants of serum
25 hydroxyvitamin D levels in a nationwide cohort of blacks
and non-Hispanic whites. Cancer Causes Control 21:501-511.
doi:10.1007/s10552-009-9481-1

Clemens TL, Henderson SL, Adams JS, Holick MF (1982) Increased
skin pigment reduces the capacity of skin to synthesise vitamin
D3. Lancet 319:74-76. doi:10.1016/S0140-6736(82)90214-8

Coates RJ, Eley JW, Block G, Gunter EW, Sowell AL, Grossman C,
Greenberg RS (1991) An evaluation of a food frequency ques-
tionnaire for assessing dietary intake of specific carotenoids and
vitamin E among low-income Black women. Am J Epidemiol
134:658-671

Cooper JD, Smyth DJ, Walker NM, Stevens H, Burren OS, Wal-
lace C, Greissl C, Ramos-Lopez E, Hypponen E, Dunger DB,
Spector TD, Ouwehand WH, Wang TJ, Badenhoop K, Todd JA
(2011) Inherited variation in vitamin D genes is associated with
predisposition to autoimmune disease type 1 diabetes. Diabetes
60:1624-1631. doi:10.2337/db10-1656

Dong Y, Stallmann-Jorgensen IS, Pollock NK, Harris RA, Keeton D,
Huang Y, Li K, Bassali R, Guo DH, Thomas J, Pierce GL, White
J, Holick MF, Zhu H (2010) A 16-week randomized clinical trial
of 2000 international units daily vitamin D3 supplementation in

@ Springer


http://dx.doi.org/10.1093/hmg/ddq155
http://dx.doi.org/10.1016/j.jaad.2007.03.004
http://dx.doi.org/10.1093/bioinformatics/bth457
http://dx.doi.org/10.1158/1055-9965.epi-12-0707
http://dx.doi.org/10.1007/s00198-009-0873-6
http://dx.doi.org/10.1007/s00439-010-0881-9
http://dx.doi.org/10.1002/jbmr.1735
http://dx.doi.org/10.1007/s10552-009-9481-1
http://dx.doi.org/10.1016/S0140-6736(82)90214-8
http://dx.doi.org/10.2337/db10-1656

1404

Hum Genet (2014) 133:1395-1405

black youth: 25-hydroxyvitamin D, adiposity, and arterial stiff-
ness. J Clin Endocrinol Metab 95:4584-4591. doi:10.1210/
j¢.2010-0606

Egan K, Signorello L, Munro H, Hargreaves M, Hollis B, Blot W
(2008) Vitamin D insufficiency among African—Americans in the
southeastern United States: implications for cancer disparities
(United States). Cancer Causes Control 19:527-535. doi:10.1007/
$10552-008-9115-z

Engelman CD, Fingerlin TE, Langefeld CD, Hicks PJ, Rich SS,
Wagenknecht LE, Bowden DW, Norris JM (2008) Genetic
and environmental determinants of 25-hydroxyvitamin D and
1,25-dihydroxyvitamin D levels in Hispanic and African Ameri-
cans. J Clin Endocrinol Metab 93:3381-3388. doi:10.1210/
j€.2007-2702

Engelman CD, Meyers KJ, Iyengar SK, Liu Z, Karki CK, Igo RP,
Truitt B, Robinson J, Sarto GE, Wallace R, Blodi BA, Klein ML,
Tinker L, LeBlanc ES, Jackson RD, Song Y, Manson JE, Mares
JA, Millen AE (2013) Vitamin D intake and season modify the
effects of the GC and CYP2RI genes on 25-hydroxyvitamin D
concentrations. J Nutr 143:17-26. doi:10.3945/jn.112.169482

Falush D, Stephens M, Pritchard JK (2003) Inference of population
structure using multilocus genotype data: linked loci and corre-
lated allele frequencies. Genetics 164:1567-1587

Fioletov VE, McArthur LJB, Mathews TW, Marrett L (2010) Esti-
mated ultraviolet exposure levels for a sufficient vitamin D sta-
tus in North America. J Photochem Photobiol B 100:57-66.
doi:10.1016/j.jphotobiol.2010.05.002

Garland CF, French CB, Baggerly LL, Heaney RP (2011) Vitamin D
supplement doses and serum 25-hydroxyvitamin D in the range
associated with cancer prevention. Anticancer Res 31:607-611

Garrett-Mayer E, Wagner CL, Hollis BW, Kindy MS, Gattoni-Celli
S (2012) Vitamin D3 supplementation (4000 IU/d for 1 y) elimi-
nates differences in circulating 25-hydroxyvitamin D between
African American and white men. Am J Clin Nutr 96:332-336.
doi:10.3945/ajcn.112.034256

Ginde AA, Liu MC, Camargo CA Jr (2009) Demographic differ-
ences and trends of vitamin D insufficiency in the US population,
1988-2004. Arch Intern Med 169:626-632. doi:10.1001/archinte
rnmed.2008.604

Giri VN, Egleston B, Ruth K, Uzzo RG, Chen DY, Buyyounouski
M, Raysor S, Hooker S, Torres JB, Ramike T, Mastalski K, Kim
TY, Kittles R (2009) Race, genetic West African ancestry, and
prostate cancer prediction by prostate-specific antigen in pro-
spectively screened high-risk men. Cancer Prev Res 2:244-250.
doi:10.1158/1940-6207.CAPR-08-0150

Grant WB, Peiris AN (2010) Possible role of serum 25-hydroxyvita-
min D in Black—White health disparities in the United States. J Am
Med Dir Assoc 11:617-628. doi:10.1016/j.jamda.2010.03.013

Grant WB, Peiris AN (2012) Differences in vitamin D status may
account for unexplained disparities in cancer survival rates between
African and white Americans. Dermatoendocrinol 4:85-94

Harris SS (2011) Does vitamin D deficiency contribute to increased
rates of cardiovascular disease and type 2 diabetes in African
Americans? Am J Clin Nutr 93:11755-1178S. doi:10.3945/
ajen.110.003491

Harris SS, Dawson-Hughes B (1998) Seasonal changes in plasma
25-hydroxyvitamin D concentrations of young American black
and white women. Am J Clin Nutr 67:1232-1236

Harris SS, Soteriades E, Coolidge JAS, Mudgal S, Dawson-Hughes B
(2000) Vitamin D insufficiency and hyperparathyroidism in a low
income, multiracial, elderly population. J Clin Endocrinol Metab
85:4125-4130. doi:10.1210/jc.85.11.4125

Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266-281.
doi:10.1056/NEJMra070553

Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley
DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation,

@ Springer

treatment, and prevention of vitamin D deficiency: an Endocrine
Society clinical practice guideline. J Clin Endocrinol Metab
96:1911-1930. doi:10.1210/jc.2011-0385

Hossein-Nezhad A, Holick MF (2013) Vitamin D for health:
a global perspective. Mayo Clin Proc 88:720-755.
doi:10.1016/j.mayocp.2013.05.011

Institute of Medicine (2011) Dietary reference intakes for calcium and
vitamin D. National Academy, Washington

Jablonski NG, Chaplin G (2012) Human skin pigmentation, migra-
tion and disease susceptibility. Philos Trans R Soc B Biol Sci
367:785-792. doi:10.1098/rstb.2011.0308

Jacobs ET, Alberts DS, Foote JA, Green SB, Hollis BW, Yu Z, Mar-
tinez ME (2008) Vitamin D insufficiency in southern Arizona.
Am J Clin Nutr 87:608-613

Litonjua AA (2012) Vitamin D deficiency as a risk factor for child-
hood allergic disease and asthma. Curr Opin Allergy Clin Immu-
nol 12:179-185

Looker AC, Pfeiffer CM, Lacher DA, Schleicher RL, Picciano MF,
Yetley EA (2008) Serum 25-hydroxyvitamin D status of the US
population: 1988-1994 compared with 2000-2004. Am J Clin
Nutr 88:1519-1527. doi:10.3945/ajcn.2008.26182

Lu L, Sheng H, Li H, Gan W, Liu C, Zhu J, Loos R, Lin X
(2012) Associations between common variants in GC and
DHCR7/NADSYNI and vitamin D concentration in Chinese
Hans. Hum Genet 131:505-512. doi:10.1007/s00439-011-1099-1

MacLaughlin J, Holick MF (1985) Aging decreases the capacity of
human skin to produce vitamin D3. J Clin Invest 76:1536-1538.
doi:10.1172/JCI112134

McDonnell SL, French CB, Heaney RP (2013) Quantifying the food
sources of basal vitamin D input. J Steroid Biochem Mol Biol.
doi:10.1016/j.jsbmb.2013.10.017 (in press)

Moonesinghe R, Ioannidis JPA, Flanders WD, Yang Q, Truman BI,
Khoury MJ (2012) Estimating the contribution of genetic variants
to difference in incidence of disease between population groups.
Eur J Hum Genet 20:831-836

Murphy AB, Kelley B, Nyame YA, Martin IK, Smith DJ, Castaneda
L, Zagaja GJ, Hollowell CMP, Kittles RA (2012) Predictors
of serum vitamin D levels in African American and European
American men in Chicago. Am J Mens Health 6:420-426.
doi:10.1177/1557988312437240

Nesby-O’Dell S, Scanlon KS, Cogswell ME, Gillespie C, Hollis BW,
Looker AC, Allen C, Doughertly C, Gunter EW, Bowman BA
(2002) Hypovitaminosis D prevalence and determinants among
African American and white women of reproductive age: third
National Health and Nutrition Examination Survey, 1988-1994.
Am J Clin Nutr 76:187-192

Nimitphong H, Saetung S, Chanprasertyotin S, Chailurkit LO, Ong-
phiphadhanakul B (2013) Changes in circulating 25-hydroxyvi-
tamin D according to vitamin D binding protein genotypes after
vitamin D3 or D2 supplementation. Nutr J 12:39

Pendergrass S, Dudek S, Crawford D, Ritchie M (2010) Synthesis-
view: visualization and interpretation of SNP association results
for multi-cohort, multi-phenotype data and meta-analysis. Bio-
Data Min 3:10

Pibiri F, Kittles RA, Sandler RS, Keku TO, Kupfer SS, Xicola RM,
Llor X, Ellis NA (2014) Genetic variation in vitamin D-related
genes and risk of colorectal cancer in African Americans. Cancer
Causes Control 25:561-570. doi:10.1007/s10552-014-0361-y

Pillai DK, Igbal SF, Benton AS, Lerner J, Wiles A, Foerster M,
Ozedirne T, Holbrook HP, Payne PWIJ, Gordish-Dressman H,
Teach SJ, Freishtat RJ (2011) Associations between genetic vari-
ants in vitamin D metabolism and asthma characteristics in young
African Americans: a pilot study. J Investig Med 59:938-946.
doi:10.231/JIM.0b013e318220df4 1

Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls
M, Tamez H, Zhang D, Bhan I, Karumanchi SA, Powe NR,


http://dx.doi.org/10.1210/jc.2010-0606
http://dx.doi.org/10.1210/jc.2010-0606
http://dx.doi.org/10.1007/s10552-008-9115-z
http://dx.doi.org/10.1007/s10552-008-9115-z
http://dx.doi.org/10.1210/jc.2007-2702
http://dx.doi.org/10.1210/jc.2007-2702
http://dx.doi.org/10.3945/jn.112.169482
http://dx.doi.org/10.1016/j.jphotobiol.2010.05.002
http://dx.doi.org/10.3945/ajcn.112.034256
http://dx.doi.org/10.1001/archinternmed.2008.604
http://dx.doi.org/10.1001/archinternmed.2008.604
http://dx.doi.org/10.1158/1940-6207.CAPR-08-0150
http://dx.doi.org/10.1016/j.jamda.2010.03.013
http://dx.doi.org/10.3945/ajcn.110.003491
http://dx.doi.org/10.3945/ajcn.110.003491
http://dx.doi.org/10.1210/jc.85.11.4125
http://dx.doi.org/10.1056/NEJMra070553
http://dx.doi.org/10.1210/jc.2011-0385
http://dx.doi.org/10.1016/j.mayocp.2013.05.011
http://dx.doi.org/10.1098/rstb.2011.0308
http://dx.doi.org/10.3945/ajcn.2008.26182
http://dx.doi.org/10.1007/s00439-011-1099-1
http://dx.doi.org/10.1172/JCI112134
http://dx.doi.org/10.1016/j.jsbmb.2013.10.017
http://dx.doi.org/10.1177/1557988312437240
http://dx.doi.org/10.1007/s10552-014-0361-y
http://dx.doi.org/10.231/JIM.0b013e318220df41

Hum Genet (2014) 133:1395-1405

1405

Thadhani R (2013) Vitamin D-binding protein and vitamin D
status of Black Americans and White Americans. N Engl J] Med
369:1991-2000. doi:10.1056/NEJMoal1306357

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population
structure using multilocus genotype data. Genetics 155:945-959

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender
D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007)
PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am J Hum Genet 81:559-575

Robbins CM, Hooker S, Kittles RA, Carpten JD (2011) EphB2 SNPs
and sporadic prostate cancer risk in African American men. PLoS
One 6:¢19494. doi:10.1371/journal.pone.0019494

Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clin-
ton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G,
Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011
report on dietary reference intakes for calcium and vitamin D
from the Institute of Medicine: what clinicians need to know. J
Clin Endocrinol Metab 96:53-58. doi:10.1210/jc.2010-2704

Shea MK, Houston DK, Tooze JA, Davis CC, Johnson MA, Haus-
man DB, Cauley JA, Bauer DC, Tylavsky F, Harris TB, Kritch-
evsky SB, Health Aging, Body Composition Study (2011) Cor-
relates and prevalence of insufficient 25-hydroxyvitamin D
status in Black and White older adults: the Health, Aging and
Body Composition Study. J Am Geriatr Soc 59:1165-1174.
doi:10.1111/j.1532-5415.2011.03476.x

Shriver MD, Parra EJ (2000) Comparison of narrow-band reflec-
tance spectroscopy and tristimulus colorimetry for measure-
ments of skin and hair color in persons of different biologi-
cal ancestry. Am J Phys Anthropol 112:17-27. doi:10.1002/
(sici)1096-8644(200005)112:1<17:aid-ajpa3>3.0.co;2-d

Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C, Pfaff C,
Jones C, Massac A, Cameron N, Baron A, Jackson T, Argyropou-
los G, Jin L, Hoggart CJ, McKeigue PM, Kittles RA (2003) Skin
pigmentation, biogeographical ancestry and admixture mapping.
Hum Genet 112:387-399. doi:10.1007/s00439-002-0896-y

Signorello LB, Williams SM, Zheng W, Smith JR, Long J, Cai
Q, Hargreaves MK, Hollis BW, Blot WJ (2010) Blood vita-
min D levels in relation to genetic estimation of African
ancestry. Cancer Epidemiol Biomarkers Prev 19:2325-2331.
doi:10.1158/1055-9965.epi-10-0482

Signorello LB, Shi J, Cai Q, Zheng W, Williams SM, Long J, Cohen
SS, Li G, Hollis BW, Smith JR, Blot WJ (2011) Common varia-
tion in vitamin D pathway genes predicts circulating 25-hydroxy-
vitamin D levels among African Americans. PLoS One 6:€28623.
doi:10.1371/journal.pone.0028623

Sinotte M, Diorio C, Bérubé S, Pollak M, Brisson J (2009) Genetic
polymorphisms of the vitamin D binding protein and plasma con-
centrations of 25-hydroxyvitamin D in premenopausal women.
Am J Clin Nutr 89:634-640. doi:10.3945/ajcn.2008.26445

Sonderman JS, Munro HM, Blot WJ, Signorello LB (2012) Repro-
ducibility of serum 25-hydroxyvitamin D and vitamin D-binding
protein levels over time in a prospective cohort study of Black
and White adults. Am J Epidemiol 176:615-621. doi:10.1093/aje/
kws141

Talwar SA, Aloia JF, Pollack S, Yeh JK (2007) Dose response to vita-
min D supplementation among postmenopausal African Ameri-
can women. Am J Clin Nutr 86:1657-1662

Tian C, Hinds DA, Shigeta R, Kittles R, Ballinger DG, Seldin MF
(2006) A genomewide single-nucleotide-polymorphism panel
with high ancestry information for African American admixture
mapping. Am J Hum Genet 79:640-649. doi:10.1086/507954

Tseng M, Giri V, Bruner D, Giovannucci E (2009) Prevalence and
correlates of vitamin D status in African American men. BMC
Public Health 9:191

Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry
D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, Peltonen L,
Cooper JD, O’Reilly PF, Houston DK, Glazer NL, Vandenput
L, Peacock M, Shi J, Rivadeneira F, McCarthy MI, Anneli P, de
Boer IH, Mangino M, Kato B, Smyth DJ, Booth SL, Jacques PF,
Burke GL, Goodarzi M, Cheung C-L, Wolf M, Rice K, Goltz-
man D, Hidiroglou N, Ladouceur M, Wareham NJ, Hocking LJ,
Hart D, Arden NK, Cooper C, Malik S, Fraser WD, Hartikainen
A-L, Zhai G, Macdonald HM, Forouhi NG, Loos RJF, Reid
DM, Hakim A, Dennison E, Liu Y, Power C, Stevens HE, Jaana
L, Vasan RS, Soranzo N, Bojunga J, Psaty BM, Lorentzon M,
Foroud T, Harris TB, Hofman A, Jansson J-O, Cauley JA, Uit-
terlinden AG, Gibson Q, Jirvelin M-R, Karasik D, Siscovick DS,
Econs MJ, Kritchevsky SB, Florez JC, Todd JA, Dupuis J, Hyp-
ponen E, Spector TD (2010) Common genetic determinants of
vitamin D insufficiency: a genome-wide association study. Lan-
cet 376:180-188

Yao S, Zirpoli G, Bovbjerg D, Jandorf L, Hong CC, Zhao H, Suches-
ton L, Tang L, Roberts M, Ciupak G, Davis W, Hwang H, John-
son C, Trump D, McCann S, Ademuyiwa F, Pawlish K, Bandera
E, Ambrosone C (2012) Variants in the vitamin D pathway, serum
levels of vitamin D, and estrogen receptor negative breast cancer
among African—American women: a case—control study. Breast
Cancer Res 14:R58

Zhang Y, Wang X, Liu Y, Qu H, Qu S, Wang W, Ren L (2012) The
GC, CYP2R1 and DHCR?7 genes are associated with vitamin
D levels in northern Han Chinese children. Swiss Med Wkly
142:w13636

Zhang Z, He J-W, Fu W-Z, Zhang C-Q, Zhang Z-L (2013) An analy-
sis of the association between the vitamin D pathway and serum
25-hydroxyvitamin D levels in a healthy Chinese population. J
Bone Miner Res 28:1784-1792. doi: 10.1002/jbmr.1926

@ Springer


http://dx.doi.org/10.1056/NEJMoa1306357
http://dx.doi.org/10.1371/journal.pone.0019494
http://dx.doi.org/10.1210/jc.2010-2704
http://dx.doi.org/10.1111/j.1532-5415.2011.03476.x
http://dx.doi.org/10.1002/(sici)1096-8644(200005)112:1%3c17:aid-ajpa3%3e3.0.co;2-d
http://dx.doi.org/10.1002/(sici)1096-8644(200005)112:1%3c17:aid-ajpa3%3e3.0.co;2-d
http://dx.doi.org/10.1007/s00439-002-0896-y
http://dx.doi.org/10.1158/1055-9965.epi-10-0482
http://dx.doi.org/10.1371/journal.pone.0028623
http://dx.doi.org/10.3945/ajcn.2008.26445
http://dx.doi.org/10.1093/aje/kws141
http://dx.doi.org/10.1093/aje/kws141
http://dx.doi.org/10.1086/507954
http://dx.doi.org/10.1002/jbmr.1926

	Common vitamin D pathway gene variants reveal contrasting effects on serum vitamin D levels in African Americans and European Americans
	Abstract 
	Introduction
	Materials and methods
	Subjects
	Genetic analysis
	Statistical analysis

	Results
	Discussion
	Acknowledgments 
	References


