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Summary

 

Telomerase, which maintains the ends of chromosomes,
consists of two core components, the telomerase reverse
transcriptase (

 

TERT

 

) and the telomerase RNA (

 

TERC

 

).
Haploinsufficiency for 

 

TERC

 

 or 

 

TERT

 

 leads to progressive
telomere shortening and autosomal dominant dyskeratosis
congenita (DC). The clinical manifestations of autosomal
dominant DC are thought to occur when telomeres become
critically short, but the rate of telomere shortening in this
condition is unknown. Here, we investigated the conse-
quences of 

 

de novo TERT

 

 gene deletions in a large cohort
of individuals with 5p– syndrome. The study group included
41 individuals in which the chromosome deletion resulted in
loss of one copy of the 

 

TERT

 

 gene at 5p15.33. Telomere
length in peripheral blood cells from these individuals,
although within the normal range, was on average shorter
than in normal controls. The shortening was more significant
in older individuals suggesting an accelerated age-dependent
shortening. In contrast, individuals with autosomal dominant
DC due to an inherited 

 

TERC

 

 gene deletion had very short
telomeres, and the telomeres were equally short regardless
of the age. Although some individuals with 5p– syndrome
showed clinical features that were reminiscent of auto-
somal dominant DC, these features did not correlate with
telomere length, suggesting that these were not caused
by critically short telomeres. We conclude that a 

 

TERT

 

gene deletion leads to slightly shorter telomeres within
one generation. However, our results suggest that several
generations of 

 

TERT

 

 haploinsufficiency are needed to pro-
duce the very short telomeres seen in patients with DC.

Key words: 5p– syndrome; dyskeratosis congenita; haplo-
insufficiency; telomerase reverse transcriptase; telomerase
RNA component, telomere.

 

Introduction

 

Telomerase is a ribonucleoprotein complex that maintains the

ends of chromosomes. It consists of two core components, the

telomerase reverse transcriptase (

 

TERT

 

) and the telomerase RNA

(

 

TERC

 

), that serves as a template for the synthesis of telomeric

DNA repeats at chromosome ends (Greider & Blackburn, 1987).

Loss of telomerase activity leads to progressive telomere short-

ening and loss of telomere integrity (Blackburn, 2001). When

telomeres become critically short, cell cycle arrest or cell death

occurs (Kim 

 

et al

 

., 1994). Haploinsufficiency for 

 

TERC

 

 causes the

autosomal dominant variant of dyskeratosis congenita (DC)

(Vulliamy 

 

et al

 

., 2001).

DC is a rare inherited bone marrow failure syndrome. In addi-

tion to progressive bone marrow failure, clinical features include

nail dystrophy, abnormal skin pigmentation and mucosal

leukoplakia (Knight 

 

et al

 

., 1998). Patients with DC have very

short telomeres (Vulliamy 

 

et al

 

., 2001), suggesting that excessive

premature telomere shortening is responsible for the develop-

ment of the disease in these individuals (for review, see Mason

 

et al

 

., 2005). More recently, 

 

TERT

 

 gene mutations have been

identified in rare individuals with autosomal dominant DC and

in sporadic cases of bone marrow failure (Armanios 

 

et al

 

., 2005;

Vulliamy 

 

et al

 

., 2005; Yamaguchi 

 

et al

 

., 2005; Liang 

 

et al

 

., 2006;

Vulliamy & Dokal, 2006; Xin 

 

et al

 

., 2007). In autosomal domi-

nant DC, the age of onset is earlier and the disease is more severe

in later generations who carry the pathogenic mutation, a

phenomenon known as anticipation (Vulliamy 

 

et al

 

., 2001;

Mason, 2003). Disease anticipation in autosomal dominant DC

is thought to be due to the inheritance of increasingly short

telomeres in subsequent generations (Vulliamy 

 

et al

 

., 2004;

Goldman 

 

et al

 

., 2005). The rate of telomere shortening has been

extensively studied in telomerase-deficient mice. Mice with no

telomerase function, either because of a 

 

Terc

 

 gene deletion

(

 

Terc

 

 RNA–/– mice) or due to a null mutation in the 

 

Tert

 

 gene

(

 

Tert–

 

/– mice), showed no obvious phenotype in the early gen-

erations of inbreeding despite progressive telomere shortening.

Three to six generations of inbreeding were necessary to produce

telomeres sufficiently short to cause a ‘short telomere pheno-

type’ (Blasco 

 

et al

 

., 1997; Herrera 

 

et al

 

., 1999; Liu 

 

et al

 

., 2000;

Niida 

 

et al

 

., 2000). The rate of telomere shortening in human

haploinsufficiency for 

 

TERC

 

 or 

 

TERT

 

 is not known. Similarly, the

number of generations that of haploinsufficiency and increas-

ingly short telomeres has to be inherited before telomeres

become critically short is unknown.
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To explore the impact of 

 

de novo TERT

 

 haploinsufficiency on

telomere shortening, we studied a large number of individuals

with 5p– syndrome having a 

 

TERT

 

 gene deletion. The 5p–

syndrome, also know as Cri du Chat syndrome, or monosomy

5p, is one of the most frequent autosomal deletion syndromes.

The deletions involve the short arm of chromosome 5 and

usually encompass 

 

TERT

 

 gene located at 5p15.33 (Meyerson

 

et al

 

., 1997; Zhang 

 

et al

 

., 2003). This syndrome has several

phenotypic components including the characteristic cry that gives

the syndrome its name, facial dysmorphology, speech delay and

mental retardation (Mainardi 

 

et al

 

., 2006). Clinical manifesta-

tions vary with the size and location of the chromosomal dele-

tion (Overhauser 

 

et al

 

., 1994; Gersh 

 

et al

 

., 1995; Kim & Wu,

1997; Mainardi 

 

et al

 

., 2006). The deletion in individuals with

5p– syndrome is either a 

 

de novo

 

 event or is inherited from a

parent with a balanced translocation (Mainardi 

 

et al

 

., 2006).

Consequently, individuals with 5p– syndrome whose deletion

includes the 

 

TERT

 

 gene are the first generation to be haplo-

insufficient for 

 

TERT

 

 (

 

de novo

 

 

 

TERT

 

 gene deletion). Classical

features of DC have not been associated with the syndrome;

however, only few individuals have been followed into adult-

hood and no hematological assessments have been performed.

We were, therefore, interested in the degree of telomere

shortening in individuals with 5p– syndrome due to the phe-

nomenon of anticipation in autosomal dominant DC and in

whether haploinsufficiency for 

 

TERT

 

 may contribute to the clin-

ical spectrum of the 5p– syndrome. Our investigations demon-

strate that the majority of individuals with 5p– had only one

copy of the 

 

TERT

 

 gene. Telomeres measured in peripheral blood

cells from individuals with 5p– syndrome and a 

 

TERT

 

 gene dele-

tion, although significantly shorter than age-matched controls,

remained within normal levels and did not approach the severely

shortened telomeres seen in patients with autosomal dominant

DC. We conclude that a 

 

de novo TERT

 

 gene deletion, although

associated with shorter telomeres, does not lead to critically

short telomeres within one generation and that clinical mani-

festations of the 5p– syndrome are unlikely to be caused by pre-

mature shortening of telomeres.

 

Results

 

Individuals with 5p– syndrome have clinical 
manifestations consistent with premature aging

 

Fifty-one families with at least one family member affected with

the 5p– syndrome participated in our study. Fifty-two particip-

ants had 5p– syndrome; 79 were unaffected family members.

The median age of participants with 5p– syndrome was 9 years

old (range, 1–42 years), and that of unaffected family members

(parents and siblings) was 41 years old (range, 2–70 years). All

individuals with 5p– syndrome showed typical clinical features

(Mainardi 

 

et al

 

., 2006) including, on review, the cat-like cry and

specific alteration of the voice, facial anomalies (i.e. epicanthal

folds, microretrognathia), and psychomotor and mental retar-

dation. In addition to the classical features of 5p– syndrome,

ridging of the fingernails was noted in 14 individuals with 5p–

syndrome and early hair graying in 10 individuals. Both ridging

of the fingernails and early hair graying are early cutaneous

manifestations characteristic of DC. The youngest participant

with ridged fingernails was 2 years old and the youngest with

early graying of the hair was 12 years old. Telomere lengths in

individuals with 5p– syndrome having ridged finger/toe nails

were not significantly different from the individuals without

ridged nails (

 

P = 

 

0.92). Similarly, there was no statistically significant

difference of telomere length between individuals with 5p– syn-

drome having early hair graying/loss and without this feature

(

 

P = 

 

0.80). Leukoplakia, another characteristic manifestation of

DC, was not seen in any of the participants with 5p– syndrome.

 

Deletion of one copy of 

 

TERT

 

 in individuals with 5p– 
syndrome

 

We determined the copy number of the 

 

TERT

 

 gene by quanti-

tative polymerase chain reaction (Q-PCR). While the 79 un-

affected family members had an average copy number of 

 

TERT

 

of 1.89 

 

±

 

 0.26, the 42 individuals with 5p– syndrome had an

average of 1.00 

 

±

 

 0.14 (

 

P = 

 

4.5 

 

×

 

 10

 

–39

 

, Fig. 1). The result sug-

gests that there is a concomitant deletion of 

 

TERT

 

 in the majority

of participants having deletion of 5p. We identified three indi-

viduals with 5p– having two copies of the 

 

TERT

 

 gene (Fig. 1,

open circles), indicating an interstitial deletion sparing the 

 

TERT

 

locus was responsible for the syndrome, as confirmed by fluo-

rescence 

 

in situ

 

 hybridization (FISH) analysis. Representative

examples are shown in Fig. 2. Figure 2A,B shows FISH analysis

of activated lymphocytes from an unaffected family member

with two copies of 5p and two copies of 5q, labeled by green

and pink, respectively. The two copies of the 

 

TERT

 

 gene hybrid-

izing to the respective probe are shown in red (Fig. 2B).

Figure 2C,D shows an example of an individual with 5p– whose

Fig. 1 Copy number of TERT in individuals with 5p– syndrome and family 
members. Gene copy number was determined by quantitative polymerase 
chain reaction (PCR). The majority of 5p– individuals have only one copy of 
the TERT gene (�, n = 41), whereas there are two copies of TERT in family 
members (×, n = 70). In three individuals with 5p– syndrome (�, n = 3), two 
copies of TERT were identified, suggesting that 5p– was due to interstitial 
deletion on 5p–.
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deletion of chromosome 5p includes the 

 

TERT

 

 gene. Figure 2E,F

illustrates an example of a balanced translocation including

chromosome 5p in an unaffected parent who has a child with

5p– due to the inheritance of an unbalanced translocation. In

the parent, 5p and 5q are found on two different chromosomes,

similarly, the 

 

TERT

 

 gene is found on two different chromosomes.

Figure 2G,H shows FISH analysis of metaphases of lymphocytes

from an individual with 5p– due to an interstitial deletion with

two hybridization signals for the 

 

TERT

 

 gene, but on one chro-

mosome 5 the hybridization signal for 5p is missing.

In humans after birth 

 

TERT

 

 has been shown to be expressed

in germ cells, stem cells and their immediate progeny, and in

activated lymphocytes and monocytes (Kim 

 

et al

 

., 1994; Feng

 

et al

 

., 1995; Nakamura 

 

et al

 

., 1997; Masutomi 

 

et al

 

., 2003). To

investigate whether haploinsufficiency for the 

 

TERT

 

 gene is

associated with a reduced level of 

 

TERT

 

 mRNA and reduced

levels of telomerase activity, we measured the levels of 

 

TERT

 

 mRNA

and telomerase activity in activated T cells after incubations with

anti-CD3 and anti-CD28 antibodies. The levels of 

 

TERT

 

 mRNA

as measured by Q-PCR and of telomerase activity as determined

by Q-PCR (Kim & Wu, 1997; Uehara, 2006) were highly variable

and not significantly different in individuals with 5p– syndrome

vs. normal controls (see Supplementary Fig. S1A). However, our

finding of accelerated telomere shortening (see below) indirectly

indicates that functional haploinsufficiency is likely to operate

in individuals with 5p– syndrome.

 

Shortened telomeres in individuals with 5p– syndrome

 

It has been well established that telomere length shortens

with age in somatic cells (Harley 

 

et al

 

., 1990; Hastie et al., 1990;

Nordfjall et al., 2005). Telomere lengths were determined from

105 healthy individuals aged from 3 to 94 years. The 5th, 10th,

25th, 50th, 75th and 90th percentiles of the age-dependent

distribution of telomere lengths are shown in Fig. 3. We have

used the general linear model (GLM) procedure to analyze the

association between telomere length and TERT gene deletion,

age, gender and race. Consistent with previous reports, we

found a negative association between telomere lengths and age

(P < 0.001). In contrast, gender and race were not significant

predictors of telomere lengths (P = 0.993 and 0.239, respec-

tively). Although at first glance telomere lengths in individuals

with 5p– seemed not to differ much from normal controls by

either flow cytometry FISH or Southern blot analysis (Fig. 3A,B),

statistical analysis revealed a significant association between

telomere length and the copy number of TERT (P = 0.0066).

Furthermore, age-dependent telomere shortening in individuals

with 5p– syndrome and a concomitant TERT gene deletion seemed

to be accelerated compared to normal controls (r = –0.09,

P = 0.0046 vs. r = –0.07, P < 0.001), but this did not reach sta-

tistical significance due to the low number of older individuals

with 5p– syndrome and the wide distribution of telomere

lengths [95% confidence interval (CI): –0.15 to –0.03 vs. –0.09

to –0.05]. However, when compared to telomere lengths from

individuals with autosomal dominant DC due to a TERC gene

Fig. 2 Fluorescent in situ hybridization (FISH) of metaphase chromosomes 
from individuals with 5p– syndrome and their family members. Representative 
FISH analysis of lymphocyte metaphase from a normal control (A, B), an 
individual with 5p– syndrome and a TERT deletion (C, D), a parent with 
balanced translocation (E, F), and an individual with 5p– syndrome having 
an interstitial deletion but two copies of TERT (G, H) are shown. The TERT, 
5p15.2 and 5q31 markers were labeled by red, green and pink, respectively. 
Two copies of 5p (A, B), 5q (A) and the TERT gene (B) are found in the normal 
individual. Metaphase chromosomes from the individual with 5p– syndrome 
and with a terminal deletion include one copy of 5p and one copy of TERT 
(C, D). A parent of an individual with 5p syndrome shows a balanced 
translocation of 5p, with one of the 5p and 5q not on the same chromosome 
(E); two copies of TERT are present (F). Representative example of an individual 
with an interstitial deletion with only one copy of 5p but two copies of the 
TERT is shown in (G, H).
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deletion, whose telomere lengths are far below the 5th percen-

tile (see Fig. 3A,B), telomere lengths in blood cells from individ-

uals with 5p– syndrome and a TERT gene deletion were only

marginally shorter than normal controls (see Fig. 3A,B). We have

also quantitatively estimated the differences in the rate of

telomere shortening. It was found that telomere lengths were

shortened by 1.1 relative fluorescence units (RFU) in the first

generation of individuals with 5p– syndrome compared to

normal controls (P = 0.0147). In contrast, in the autosomal

dominant DC patients with a TERC gene deletion telomere

lengths were on average 5.6 RFU lower than in individuals with

5p– syndrome (P < 0.0001).

Normal peripheral blood cell counts but a decreased 
number of circulating hematopoietic progenitor cells 
in individuals with 5p– syndrome

The majority of individuals with DC develop signs of bone

marrow failure (Marrone et al., 2005; Mason et al., 2005), which

is thought to be due to a deficiency of telomerase in hemat-

opoietic stem cells and their immediate progeny. We therefore

wanted to know whether a TERT gene deletion in individuals

with 5p– syndrome was associated with impaired hematopoiesis.

Bone marrow biopsy was deemed inappropriate on ethical

grounds, so we used peripheral blood as a surrogate to evaluate

the effect of the TERT gene deletion on hematopoiesis (see

Fig. 4). With the exception of four individuals who had slightly

decreased hemoglobin levels (11–13 g dL–1 respectively), peripheral

blood values were normal for hemoglobin (13.07 ± 1.28 g dL–1),

white blood cell counts (8.33 ± 2.7 × 103 per µL), platelet count

(277.44 ± 72.82 × 103 per µL), mean corpuscle volume (87.23

± 5.05 fl), and polymorphonuclear cells count (4.07 ± 1.59 ×
103 per µL).

As an additional parameter we also analyzed the number of

circulating hematopoietic progenitor cells in this study, using a

clonogenic progenitor assay. Surprisingly, the number of colon-

ies formed in individuals with 5p– syndrome was significantly

less than in unaffected family members (Fig. 5A; median 21.5

vs. 56.5; P = 0.0012). Among the three colony types identified,

burst-forming units–erythroid (BFU-E) and colony forming units–

granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-GEMM)

showed a significant decrease in individuals with 5p– syndrome

(Fig. 5B; P = 0.001 and 0.033, respectively), whereas the reduction

in colony-forming unit–granulocyte, macrophage (CFU-GM)

Fig. 3 Telomere lengths in individuals with 5p– syndrome and normal study 
controls. (A) Telomere length of peripheral blood mononuclear (PBMN) cells 
from individuals with 5p– syndrome (�, n = 44), family members (×, n = 69), 
and dyskeratosis congenita patients carrying a TERC-3′ deletion (�, n = 9) 
were measured by flow cytometry fluorescence in situ hybridization (FISH). 
The lines represent the 90th, 75th, 50th, 25th, 10th and 5th percentile of 
the telomere length in healthy controls (n = 105). The three 5p– individuals 
with two copies of TERT are labeled (�). Telomere length was expressed as 
the mean fluorescence of PBMN relative to a tetraploid cell line. (B) Telomere 
length in peripheral blood cells from individuals with 5p– syndrome and family 
members (parents and siblings) determined by in-gel hybridization. The first 
number indicates the family number; the second number indicates the family 
relation to the proband. Individuals with 5p– syndrome are shown in bold 
and were assigned. .1, .2 represents the mother; .3 the father; and .4 the 
sibling within one family. The age of each individual is shown. Lanes 16 and 
17 show the telomere length of a DC patient with a TERC gene deletion, 
and one of his unaffected family members without the deletion. Note the 
very short telomeres in the DC patient with a TERC deletion (Lane 16) as 
compared to the telomere lengths seen in 5p– individuals.

Fig. 4 Blood values from individuals with 5p– syndrome. Blood values 
obtained from 40 individuals with 5p– syndrome are shown. Each box plot 
represents the minimum, the 25% percentile, the median, the 75% percentile 
and the maximum of blood values. Median values are indicated. WBC, white 
blood cell counts; Hgb, hemoglobin; PMN, polymorphonuclear cells; PLT, 
platelets; MCV, mean corpuscular volume of red cells. Boxes with broken line 
represent normal range.
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did not reach statistical significance when compared to family

members (P = 0.06). The size of the colonies formed by pro-

genitors from individuals with 5p– syndrome were similar to

those formed by normal controls as demonstrated by a propor-

tional decrease of cell numbers harvested from the respective

culture plates (Fig. 4C; P = 0.004). There was no significant cor-

relation between telomere length and the number of circulating

progenitor cells (r = 0.306, P = 0.094).

Discussion

There is an ongoing debate about the extent to which TERT and

TERC are limiting for telomere length (Liu et al., 2000; Chiang

et al., 2004; Hao et al., 2005a). Here we investigated the effect

of a TERT gene deletion on telomere lengths in individuals

with 5p– syndrome. Our studies showed that telomere lengths

in individuals with 5p– syndrome, who are haploinsufficient for

the TERT gene, are only slightly shorter than telomere lengths

in normal controls, who have two copies of TERT. Shorter telo-

meres were previously demonstrated by Zhang and colleagues

in eight individuals with 5p– syndrome compared to eight

normal controls, with the conclusion that significant telomere

shortening was evident in 5p– and might contribute to the 5p–

phenotype (2003). However, the study did not take into account

the wide distribution of telomere lengths in the normal popu-

lation and lacks sufficient numbers of normal controls and 5p–

individuals to evaluate the extent of telomere shortening in

these individuals. In our study, telomere lengths of 44 individ-

uals with 5p– syndrome were compared with a much larger

group of control individuals (n = 105). Both populations showed

a wide distribution of telomere lengths, which were largely over-

lapping. These results, in contrast to the previous study, put the

telomere shortening observed in individuals with 5p– into pro-

portion, indicating that telomere shortening in individuals with

5p– syndrome, although significant, is minimal and that the

majority of telomere lengths of individuals with 5p– syndrome

still fall within the distribution of normal telomere lengths (5th–

95th percentile, see Fig. 3A). Comparing telomere lengths of

individuals with 5p– syndrome to the telomere lengths in

individuals with autosomal dominant DC due to a TERC gene

deletion, we find that individuals with 5p– have much longer

telomeres than individuals with autosomal dominant DC and a

TERC gene deletion, both by flow cytometry FISH and by South-

ern blotting (see Fig. 3A,B).

The most likely explanation for these findings is that in indi-

viduals with 5p– syndrome, haploinsufficiency for TERT almost

always occurs de novo (Mainardi et al., 2006) and, as demon-

strated here, within one generation this does not lead to the

excessively short telomeres seen in individuals with autosomal

dominant DC due to an inherited TERC gene deletion. These

findings strongly support the hypothesis of anticipation and

underline the importance of anticipation in the pathogenesis of

disease in patients with autosomal dominant DC.

Anticipation due to the inheritance of increasingly shorter telo-

meres is a unique characteristic of autosomal dominant DC.

It explains the increasing severity and younger age of onset of

the disease in later generations in patients with autosomal dom-

inant DC (Vulliamy et al., 2001, 2004; Mason, 2003; Armanios

et al., 2005; Goldman et al., 2005). The cumulative effect of

telomere shortening over several generations also explains why

even a minimal impairment of telomerase activity will eventually

lead to telomeres sufficiently short to cause disease.

An alternative explanation of our finding could be that hap-

loinsufficiency for TERC has a different effect on telomere length

from haploinsufficiency for TERT. In mice, TERT and Terc RNA

deficiency showed a very similar rate of telomere shortening

and an almost identical phenotype after several generations

of inbreeding (Blasco et al., 1997; Liu et al., 2000). However,

Fig. 5 Circulating progenitor cells in individuals with 5p– syndrome and study controls. Each box plot represents the minimum, the 25% percentile, the median, 
the 75% percentile and the maximum. Median values are indicated. (A) The number of colony forming units (CFU) formed from peripheral blood was less in 
5p– individuals compared to family members (n = 17, P = 0.0012). (B) Among the three types of colonies identified: burst forming unit-erythroid (BFU-E), colony 
forming unit–granulocyte, macrophage (CFU-GM), and CFU–granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-GMMM), a significant decrease in 5p– 
individuals was found in BFU-Es (P = 0.001) and CFU-GEMMs (P = 0.033). (C) Total number of cells in cell culture is significantly decreased in 5p– individuals 
compared to family members (P = 0.004).
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telomere dynamics differ in mouse and humans. In contrast to

humans, mice Terc RNA or Tert haploinsufficiency is not asso-

ciated with the development of a disease phenotype (Blasco

et al., 1997; Liu et al., 2000; Chiang et al., 2004; Hathcock et al.,
2005), whereas in humans homozygosity or compound heter-

ozygosity for telomerase null mutations have never been described

and are most likely not compatible with life. We can not exclude

that TERC and TERT haploinsufficiency might have a different

effect on telomere lengths in humans. Samples from patients

with autosomal dominant DC due to a TERT gene mutation

were not available to us; but the fact that autosomal dominant

DC occurs in families with inherited TERC or TERT gene muta-

tions strongly supports our hypothesis that in the majority of

humans neither haploinsufficiency for TERT nor for TERC leads

to excessively short telomeres or autosomal dominant DC dis-

ease in the first generation.

We expected that telomere shortening due to TERT haplo-

insufficiency would be most significant during embryonic devel-

opment, but we were surprised to find that telomere lengths in

children with 5p– syndrome below the age of 5 years were not

significantly different to normal controls (see Fig. 3), but telo-

mere loss appeared to be accelerated thereafter. This raises

the interesting question of when in human life telomerase hap-

loinsufficiency affects telomere length the most. Interestingly,

individuals with autosomal dominant DC due to TERC gene

deletions have very short telomeres already at a very young age

(see Fig. 3A). We hypothesize that there is a lower limit of

telomere length for a functional blood cell and that lower limit

is reached in autosomal dominant DC patients with disease

(Goldman et al., 2005). Blood progenitor cells with shorter

telomeres stop dividing or die leading to the bone marrow failure

in individuals with autosomal dominant DC.

Interestingly, some individuals with 5p– showed ridged fin-

gernails and early graying of their hair, a clinical manifestation

associated with premature aging. Similarly, individuals with

5p– syndrome had low numbers of circulating peripheral blood

progenitor cells compared to normal controls, which is suggestive

for bone marrow failure. However, fingernail changes were also

found in one of the three individuals with 5p– syndrome having

two copies of the TERT gene, and equally low numbers of

circulating blood progenitor cells were present in all three 5p–

individuals with two copies of TERT. Early graying of hair was

not seen in individuals with 5p– syndrome and with two copies

of TERT, but all three were below the age of 10. Although we

cannot formally exclude that some of these features are caused

by short telomeres in the specific tissue, the fact that some of

these features were found also in individuals with 5p– but two

copies of TERT suggests that the observed changes of the nails,

early hair graying, and the decreased number of circulating

hematopoietic progenitor cells are due to haploinsufficiency of

one or more of the other genes involved in the large chromo-

somal deletion. Similarly, although none of the affected genes

other than TERT is involved in telomere maintenance, we cannot

exclude that their haploinsufficiency directly or indirectly influ-

ences telomere length.

In summary, our data demonstrate accelerated telomere

shortening in individuals with 5p– syndrome. The residual telo-

mere length, rather than reduced telomerase activity, has been

implicated to be responsible for the phenotype in telomerase

deficient mice (Hao et al., 2005b). Short telomeres have also been

implicated in the pathology of patients with DC. Our analysis

demonstrates that within one generation, telomeres do not

become sufficiently short to cause disease or contribute to the

5p– phenotype. However, whether TERT haploinsuffciency con-

tributes to the 5p– phenotype outside of its role on telomeres

remains to be determined (Blackburn, 2005).

Experimental procedures

Human subjects

The study group comprised 52 individuals with 5p– syndrome

from 51 families: 37 individuals (36 families) were enrolled

during the annual meeting of the 5p– Society held in St. Louis,

MO, USA, in July 2005, and 15 individuals (15 families) were

enrolled during the annual meeting held in Santa Clara, CA,

USA, in 2006. Seventy-nine family members (parents and siblings)

were included as ‘intrastudy controls’. All individuals with 5p–

syndrome had been previously diagnosed by cytogenetic ana-

lysis in clinically approved laboratories. The diagnosis of 5p–

syndrome was confirmed by review of medical records. In selected

cases the diagnosis was additionally confirmed by FISH using

the commercially available LSI D5S23, D5S721/5q31 LSI EGR1

probe (Vysis XY, Downers Grove, IL, USA; see also below). After

informed consent was obtained, individuals were examined

with a particular emphasis on the presence of classical features

associated with DC (abnormal skin pigmentation, dystrophic

fingernails, leukoplakia and early graying of the hair), and blood

was drawn from a peripheral vein. Forty-five blood samples

were collected from the participants with 5p– syndrome and

79 from the study controls. Blood samples were analyzed within

36 h. Approval for the study was obtained by the Washington

University School of Medicine Institutional Review Board.

Q-PCR for detection of a TERT gene deletion

Genomic DNA was extracted from peripheral blood leukocytes

with the DNA blood mini kit (Qiagen, Valencia, CA, USA). Aliquots

of 20 ng DNA were assayed with a SYBR Green core reagent kit

(Applied Biosystems, Foster City, CA, USA). The primer sequences

for the TERT gene were: F: 5’-ACGAGCACCGTCTGATTAGG-3’;

R: 5’-GGGTTCTTCCAAACTTGCTG-3’. β-globin gene served as

the reference gene in the determination of the copy number

of TERT (Cawthon, 2002). All PCRs were performed on the Prism

7000 Sequence Detection System (Applied Biosystems) follow-

ing the instructions of the manufacturer. Serial dilutions (5–

80 ng) of reference DNA (a pool of DNA samples) were used

to plot the standard curve for the TERT gene and reference gene

β-G. The 2–∆∆C
T method was adopted to analyze the data (Livak

& Schmittgen, 2001). Individual copy number of TERT was
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expressed as the ratio of TERT/β-G of each sample relative

to the average ratio of individuals with 5p– syndrome.

Telomere length measurement by flow cytometric FISH

Telomere length of peripheral blood mononuclear (PBMN) cells

isolated by Ficoll–Hypaque gradient centrifugation was measured

as previously described (Goldman et al., 2005) using fluorescin

(FITC)-conjugated (C3TA2)3 peptide nucleic acid (PNA, Applied

Biosystems) probe with a flow cytometer (Beckman Coulter,

Fullerton, CA, USA). Relative telomere length was determined

by comparing isolated PBMC with a control cell line (GM03671C;

Coriell Institute of Medical Research, Camden, NJ, USA), a tetra-

ploid cell line, which served as an internal control and was

assigned a telomere length of 100%. Telomere lengths of 105

healthy individuals (ranging from 3 to 94 years old) were used

to determine the distribution of age-dependent telomere length.

Terminal restriction fragment length analysis by 
in-gel hybridization

The average telomere restriction fragment length of genomic

DNA was determined as previously described (Goldman et al.,
2005). Briefly, 3 µg of genomic DNA digested with restriction

enzymes RsaI and Hinf I (Invitrogen, Carlsbad, CA, USA) were

electrophoresed on a 0.5%/0.6 × TBE agarose gel along with

Lambda HindIII marker. After gel drying, denaturing and neu-

tralization, gels were hybridized to a γ32P-end-labeled telomeric

probe. The average telomere restriction fragment length was

determined using the Imagequant™ software.

FISH analyses

The diagnosis of 5p– syndrome and the deletion of the TERT
gene were confirmed by FISH analysis of metaphase chromo-

somes prepared from fresh PBMC or Epstein-Barr virus-

transformed B lymphocytes as previously described with minor

modifications (Goldman et al., 2005). Metaphase spreads were

subjected to the hybridization procedure using a Biotin-labeled

TERT probe synthesized from a previously isolated and entirely

sequenced BAC spanning the whole TERT locus (Leem et al.,
2002), by a nick translation kit (Vysis). The slides were then incu-

bated with avidin-Texas red (Vector laboratories, Burlingame,

CA, USA) followed by antiavidin antibody (Vector laboratories)

to amplify the signal. After double staining with a commercially

available LSI D5S23, D5S721/5q31 LSI EGR1 probe (Vysis), the

metaphase spreads were counterstained with 4′,6-diamidino-

2-phenylindole (DAPI) and visualized under a fluorescence

microscope (Nikon, Melville, NY, USA).

Measurement of telomerase activity in CD3/CD28-
stimulated peripheral blood T cells

PBMN cells (106) were mixed with 25 µL Dynabeads CD3/

CD28 T cell expander (Invitrogen) and further stimulated

with 50 U mL–1 rIL-2 (Pharmingen, Franklin Lakes, NJ, USA). The

stimulated cells were removed from the beads using a

magnet (Invitrogen) and stored at –80 °C until use. Protein was

extracted from stimulated cells by CHAPS XL lysis buffer (Chemi-

con, Temecula, CA, USA) and quantified using the RC DC Pro-

tein assay kit (Bio-Rad, Hercules, CA, USA). Telomerase activity

was measured by a Q-PCR based telomeric repeat amplification

protocol (TRAP) assay (Kim & Wu, 1997; Uehara, 2006) with

minor modifications. Thermal cycling reactions were per-

formed with the Prism 7000 Sequence Detection System

(Applied Biosystems).

TERT mRNA levels in CD3/CD28-stimulated T cells from 
peripheral blood

RNA was extracted from CD3/CD28-stimulated T cells by the

RNeasy mini kit (Qiagen). cDNA was synthesized from 2 µg RNA

using Superscript III RT (Invitrogen). cDNA samples were sub-

jected to Q-PCR using a SYBR Green core reagent kit (Applied

Biosystems) along with the primers: TERT-F: 5’-GCCGATTGT-

GAACATGGAC; TERT-R: GCTGAACAGTGCCTTCACC. In par-

allel, each sample was run with primers: G3PDH-F: 5’-GAAGGT-

GAAGGTCGGAGTC; G3PDH-R; 5’-GAAGATGGTGATGGGATTTC

as internal control. The amount of TERT mRNA was quantified

by the 2–∆∆C
T method as described above.

Progenitor assay

PBMN cells (2 × 105) were plated in duplicates in 1 mL methyl-

cellulose medium (MethoCult GF H4434, Stem Cells Techno-

logies, Tukwila, WA, USA) and incubated at 37 °C. Colonies

were scored and counted after 10 days of culture. The cells were

subsequently collected and counted using a Coulter counter

(Beckman Coulter).

Statistical analysis

All analyses were performed using the SAS computer software

(version 9.1, SAS Institute, Cary, NC, USA). Generalized linear

model (SAS GLM procedure) was used to assess whether

TERT deletion was a significant predictor of telomere length,

adjusted for the effects of age, gender and race. The telomere

lengths among groups (subjects with 5p– syndrome, un-

affected family controls and DC patients carrying one copy

deletion of TERC ) were compared by using Duncan’s and Tukey’s

tests. Furthermore, nonindependence of family members was

adjusted by using the robust covariance matrix estimator,

which asymptotically yielded the same parameter estimates,

but the standard errors and associated test were corrected

for the dependence. The method assumed same degree of

dependency among all members of each family. The Kruskal–

Wallis nonparametric test followed by Dunnett C test was used

for the comparison of CFU between 5p– individuals and family

controls. In this report, P < 0.05 was considered statistically

significant.
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