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Abstract

Background: Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are
profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf
morphology—vasculature and blade—provides different insights into leaf patterning.
Results: Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across
the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the
vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The
ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species
and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients
reveals close associations between traits and insights into the relationship between vasculature and blade patterning.
Conclusions: Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both
similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node
position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data
types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among
Passiflora species.
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Background

The leaves of Passiflora species are remarkably diverse [1–3]. The
underlying source of such diversity is ultimately speculative, but
diversifying selective pressure from egg-laying Heliconius butter-
flies that use leaf shape as a visual cue has been proposed [4–6].
The leaves not only vary between species, but between succes-
sive nodes of a single vine, sometimes dramatically, reflecting

both the heteroblastic development of the shoot apical meris-
tem fromwhich they are derived and the ontogeny of individual
leaves as they allometrically expand [7–10]. Previousmorphome-
tric work using the multiscale Minkowski fractal dimension fo-
cused on vein patterning and the contour of the blade to predic-
tively identify Passiflora species. Of the 10 species analyzed, some
possessed similar leaf morphologies that could be correctly
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classified using only a small number of leaves per species as a
training set [11].

To some degree, the patterning of the vein and blade follow
each other, but to what degree they vary independently, or one is
the consequence of the other, remains to be determined [12–15].
At a morphometric level, vascular patterning and the contour of
the blade are studied separately, as one is a topology and the
other a contour. Vasculature and blade can be separated and
then analyzed with the same method, and was done using a
Fractal-based approach in Passiflora previously [11].

Alternatively, traditional morphometric approaches can be
applied to vascular patterning and the outline of the blade
[16]. Procrustes-adjusted landmarks are coordinate points that
correspond between all measured samples, ideally through ho-
mology [17]. Homologous landmarks are ideally suited for mea-
suring vein thickness, vascular branch points, and the relative
positioning and depth of sinuses and lobes if these features can
be found in every sample, as in many palmately lobed species,
such as Cucurbita, Acer, and Vitis [10, 18–25].

The landmark concept can be applied to contours as well,
placing numerous points along a curve and subsequently using
a Procrustes superimposition to create a near-continuous anal-
ysis of outlines [26]. The pseudo-landmark approach to quanti-
fying contours has been used extensively to study leaf outlines,
especially in species like Antirrhinum and Arabidopsis, where ho-
mologous points are lacking [27–29]. Another approach, Elliptical
Fourier Descriptors (EFDs), treats an outline as a wave connect-
ing back onto itself and subsequently performs a Fourier trans-
form, decomposing the shape into a harmonic series [30–33].
EFDs have been applied to species from both Solanum and Vi-
tis [23, 34–38] as well as the study of leaf asymmetry [25, 39, 40],
leveraging the ability to separate symmetric from asymmetric
sources of variance.

Comparing landmark- and contour-based methods not only
provides an integrated perspective on leaf morphology, but can
also potentially reveal the extent that patterning of the vascu-
lature and blade are correlated in a quantitative fashion. Under-
standing the complementary features different morphometric
methods detect is relevant to a wide variety of fields that use
different approaches to extract information content from leaf
shapes, including paleobiology and paleoclimate studies [41],
ecology [42], evolution [10, 24, 27, 34, 43], genetics [21, 23, 29, 35,
36, 38], developmental biology [10, 18, 20, 24, 25, 34, 36, 39, 40],
and plasticity [19, 20, 24, 37]. Heliconius butterflies, too, can even
distinguish the shapes of leaves from different Passiflora species,
presumably using a learning method yet to be determined [6].

Here, wemeasure landmarks of the vasculature, sinuses, and
lobes and EFDs of the blade for >3300 leaves from 40 Passiflora
species sampled from successive nodes across vines. Linear dis-
criminant analyses (LDAs) are used to determine the capacity
of landmarks, EFDs, or both datasets to predict species identity
versus node position in the vine. A correlational analysis of land-
mark and EFD data determines which specific features of leaves
change together versus vary independently from each other. Our
data reveals the constraints between vascular and blade pattern-
ing underlying natural variation in leaf morphology among Pas-
siflora species and provides a critical comparison of complemen-
tary morphometric approaches used on the same leaves.

Data description

The purpose of this manuscript is to compare and contrast
landmark and EFD methods in the genetic and developmental

Figure 1. Landmarks and harmonic contributions to shape. A) The 15 landmarks
used for analysis. Left to right, landmark placement when the distal and proxi-

mal veins l) pinnately emerge from themidvein, m) both originate from the peti-
olar junction, or r) the proximal vein branches from the distal. B) Harmonic con-
tributions to shape resulting from EFD analysis. The harmonic rank is arranged
horizontally and the amplification factor (which multiplies the harmonic con-

tributions to shape by the indicated amount) vertically. Note: for convenience to
the reader, these panels are recapitulated in the companion manuscript [52].

analysis of leaf shape among Passiflora species across the se-
quential nodes of their vines. The dataset released with this
manuscript [44] consists of 555 scans, as well as isolated bi-
nary outlines of individual leaves, from 40 different species of
Passiflora in which the order of leaves arising from the vine
is recorded, starting with “1” for the youngest leaf scanned
from the growing tip of each vine. We importantly note: the
numbering of nodes in the raw scans described above, start-
ing at the tip of the shoot, is opposite from the number-
ing of nodes presented in the manuscript, in which number-
ing (starting with “1”) begins with the oldest leaf at the base
of the shoot. The reason for this opposite numbering in the
manuscript is that by beginning the counting of nodes with “1”
at the shoot base the numbering aligns with the heteroblastic
series (which begins with the first emerged leaf at the shoot
base). More than 3300 leaves are represented in this dataset.
The number of vines sampled per a species and the num-
ber of nodes sampled for each vine are indicated in the raw
data provided with this manuscript [45] and are visually de-
picted as well (Fig. S1). Both landmark data, measuring the
vasculature, lobes, and sinuses, and EFD data, which quantify
the leaf outline, can be derived from the provided datasets.
EFDs (under PassifloraLeaves/Paper1/Figure1/0.passiflora nef.
txt) and landmarks (under PassifloraLeaves/Paper1/Figure2/
0.procrustes landmarks.txt) are provided with code in a GitHub
repository [45]. It is hoped that the release of this data will assist
others in developing novel morphometric approaches to better
understand the genetic, developmental, and environmental ba-
sis of leaf shape.
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Figure 2. The shapes of Passiflora leaves measured using landmarks. For the 40 species analyzed in this study, both a representative leaf and landmark data are shown.

For the landmark data, the mean leaf for the species in shown in black, whereas all data for the species is depicted in semi-transparent blue.

Analyses
Vascular landmarks and EFDs of the blade

For the >3300 leaves measured across the leaf series for 40 dif-
ferent Passiflora species, a comparison of homologous landmarks
and EFDs wasmade (see Fig. S1 and raw data [45] for the replica-
tion associated with each species and the number of nodes for
each vine). These twomethods globally capture complementary
aspects of leaf shape, sensitive to vascular patterning and the
shape of the blade, respectively.

Fifteen landmarks were measured for each leaf (Fig. 1A). For
the proximal veins (near the leaf base) landmarks on each side
of the junction of the proximal vein with the petiolar junction
(where themajor veinsmeet) were placed (landmarks 1–2 and 5–
6), capturing the width of the proximal veins. Landmarks placed
at the tip of the proximal vein (landmarks 7 and 15) capture the
length and angle of the proximal lobe. On the distal vein (nearer
the leaf tip), landmarks were placed only on the distal side of
the junction with the midvein (landmarks 3 and 4) as the other
side of the base of the distal vein variably intersects themidvein,
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petiolar junction, and proximal vein (see three examples in Fig.
1A, left to right). The landmarks at the tip of the distal veins
(landmarks 13 and 9) measure the length and angle of the distal
lobe. Additionally, landmarks describe the placement of the leaf
tip (landmark 11), distal sinuses (landmarks 10 and 12), and the
proximal sinuses (8 and 14).

To determine the extent that landmarks capture qualita-
tive variation in leaf shape among Passiflora species, represen-
tative leaves were compared to averaged Procrustes-adjusted
landmark values (Fig. 2). The landmark analysis captures fea-
tures such as the relative lengths and angular placement of the
proximal and distal veins as well as the depth of the sinuses.
Visualizing superimposed landmarks for all leaves measured in
addition to the averaged landmark values demonstrates sub-
stantial sources of shape variance in some species, especially
due to changes in leaf shape across the leaf series, which usu-
ally relate to the depth of the sinuses or the number of lobes.

Although landmarks accurately depict information related to
vascular patterning and the relative placement of the lobes and
sinuses of the blade, they fail to capture more subtle shape vari-
ation related to the curvature of the lamina. EFDs result from a
harmonic decomposition of a shape outline. The harmonic con-
tributions to leaf shape can be visualized (Fig. 1B), which in Pas-
siflora correspond to features reflecting the leaf tip, distal lobes,
and proximal lobes (the “trifoliate” features, especially in the
lower harmonic ranks) or more local features (the “serrations”
represented in the higher harmonic ranks) (Fig. 1B). The aver-
aged outlines of leaves capture the curves and lobing of leaves
from each species (Fig. 3). Species that display leaves with vari-
able numbers of lobes (such as Passiflora caerulea, P. cincinnata, or
P. suberosa) have average leaf outlines reflecting this source of
shape variance.

The morphospace reflects species and heteroblastic
differences in leaf shape

To analyze major sources of shape variance in Procrustes-
adjusted landmark values and the harmonic series from the EFD
analysis, a Principal Component Analysis (PCA) was performed
to reduce the dimensionality of each dataset. Onto the result-
ing morphospaces were projected species identity and the node
position in the leaf series (“heteroblasty”). Node position is re-
ferred to as heteroblasty as a shorthand indicating that number-
ing of nodes begins at the shoot base, with “1” indicating the first
emerged leaf at the shoot base. This numbering scheme more
closely aligns with the heteroblastic series of leaves compared
to the reverse numbering that begins at the growing shoot tip
and is more sensitive to the allometric changes in rapidly ex-
panding leaves.

Eigenleaves (theoretical leaf shapes representing the eigen-
vectors from a PCA) from each PCA reveal the shape features
contributing to shape variance along each principal component
(PC). The first four landmark PCs (Fig. 4A) explain 83.2% of shape
variance for the landmark dataset. PC1 reflects shape variance
related to long, lance-like leaves versus wider leaves with short
midveins and long, extended distal lobes. Both PC2 and PC3 ex-
plain shape variance related to leaves with pronounced distal
lobes versus rounder (PC2) or more deltoid (PC3) leaves with
less lobing. PC4 also explains shape variance related to lobing. A
comparison of the landmark eigenleaves (Fig. 4A) with the EFD
eigenleaves (Fig. 4B) shows that the shape variance explained by
each respective PC is strikingly similar, especially with respect
to lobing and the length-to-width ratio of leaves. This demon-
strates a qualitative correspondence between the orthogonal

Figure 3. The shapes of Passiflora leaves measured using EFDs.Mean leaves cal-
culated for each of 40 species analyzed in this study from the harmonic series

resulting from an EFD analysis of the leaf contours. A-G) Classes of species are
indicated by their respective panels. Species classes were determined by neigh-
boring position in the PCA morphospace, described in Figs. 4 and 5. Color in-
dicates class: class A, teal; class B, orange; class C, lavender; class D, magenta;

class E, green; class F, yellow; class G, brown.



Morphometric analysis of Passiflora leaves 5

Figure 4. PCs and eigenleaves. A) PCs representing shape variance in landmark data. Eigenleaf representations (theoretical leaf shapes representing the eigenvectors

from a PCA) at ±1.5 SD are shown for the first four PCs. Percent variance explained by each PC indicated. B) PCs representing shape variance in EFD data. Eigenleaf
representations at ±1 SD are shown for the first four PCs. Percent variance explained by each PC indicated.

axes of each dataset, including their directionality, which will
be subsequently explored in further detail.

Projecting species identity and heteroblastic node onto the
landmark and EFDmorphospaces reveals that eachmethod sep-
arates the shape variance attributable to these variables, but in
different ways (Fig. 5). Because visualizing 40 distinct species is a
challenge, species were assigned to seven different classes (con-
sistently colored throughout the manuscript) based on a) occu-
pying similar spaces within morphospace and b) qualitative dif-
ferences in leaf shape (Fig. 5A). Species classes showpronounced
separation from each other by PC1 and PC2 in both the land-
mark (Fig. 5B) and EFD (Fig. 5C) morphospaces. Less separation
is observed by species class for PC3 and PC4.When heteroblastic
node is projected onto themorphospaces, there is a trend for the
leaves originating from high heteroblastic nodes (young leaves
towards the growing tip) to occupy the lower PC2 values within
each species class. This is especially true for the landmark mor-
phospace (Fig. 5B). There is also a trend for leaves originating
from high heteroblastic nodes to have low PC3 values, regard-
less of species class. Both low PC2 and PC3 values correspond
to more pronounced distal lobing (Fig. 4), a shape feature com-
monly found in young leaves near the growing tip of the plant,
compared to older leaves near the base of the vine that tend
to have less lobing. That shape variance attributable to species
class and heteroblastic node traverse themorphospace in differ-
ent ways suggests to some extent the shape variance for each of
these factors is separable, as is discussed in the next section.

Discriminating species versus node identity

That species class and node identity traverse the morphospace
differently (Fig. 5A and B) is consistent with previous work
demonstrating that shape features can be used to discriminate
species independently from node position in grapevine [10, 24].
An LDA is used here to determine the extent these two variables
can be predicted independently of the other in Passiflora using
landmark data, EFDs, and both landmark and EFDs together.
We stress that the LDA approach taken in this work is funda-
mentally different frommodeling species, node, and interaction

effects using linear modeling. Such an approach (which we un-
dertook but the data is not shown here, because it is outside the
scope of this manuscript) reveals that for each morphometric
trait considered independently, the species and interaction ef-
fects are the strongest and the node effect is weak. Rather, an
LDA allows explicit questions to be asked regarding all the mea-
sured traits together. Can all the traits be used together to dis-
criminate species regardless of node?Using all traits can node be
distinguished separately from species? Such a framework is con-
sistent with developmental genetic theory that differences in
leaf shape between species versus more conserved heteroblas-
tic changes in leaf shape within individual plants are regulated
by distinct genetic pathways [16] that lead to separable morpho-
logical effects within single leaves (so-called “cryptotypes” [46]).
We also note that the LDAs performed use the “leave one out”
approach of cross-validation, in which a separate LDA for each
leaf, minus the leaf in question, is used to predict the identity of
that leaf. Such an approach is designed to compensate for dif-
ferences in species replication and nodes sampled per a vine in
our dataset (see raw data [45] and Fig. S1).

An LDA is first performed on species identity, regardless of
node position. The resulting discriminants are then used to pre-
dict the identity of the species. Regardless ofwhether landmarks
(Fig. 6A), EFDs (Fig. 6C), or both landmarks and EFDs are used
(Fig. 6E), a high proportion of leaves can be correctly reassigned
to the correct species.When there is confusion between species,
it tends to be within the same species class. This result demon-
strates that regardless of the position of a leaf within the het-
eroblastic series, its species identity can be predicted. For most
species classes (all except C and D), the maximum correct pre-
diction is most often achieved with both landmark and EFD data
together compared to each data type alone (Table 1). For species
classes C and D, however, landmark data alone tend to outper-
form EFD and both data types together. This indicates that for
some species, especially those that are highly lobed as in species
classes C and D, landmark data are a better indicator of species
identity (perhaps because it is more explicitly related to lobing).

Conversely, heteroblastic node position can be predicted in-
dependently of species identity, but to a much lesser degree and
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Figure 5. Morphospace by species and heteroblastic node. A) Key, showing species classes and averaged leaf contours for each species. Color indicates class, which
is used in other panels. B) PCA of landmark data. Graphs for PC2 vs. PC1 and PC4 vs. PC3 are colored by species class and by heteroblastic node. Percent variance
explained by each PC indicated. C) PCA of EFD data. Graphs for PC2 vs. PC1 and PC4 vs. PC3 are colored by species class and by heteroblastic node. Percent variance
explained by each PC indicated. Heteroblastic node position is numbered “1” starting from the shoot base. Class color scheme: class A, teal; class B, orange; class C,

lavender; class D, magenta; class E, green; class F, yellow; class G, brown. Heteroblastic node color scheme: shoot base, black; middle shoot, blue; shoot tip, yellow.
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Figure 6. LDA. LDA using A and B) landmark data, C and D) EFD data, and E and F) both datasets. For each set of LDAs, analysis was performed to discriminate species
(ignoring heteroblastic node information) or to discriminate heteroblastic node (ignoring species information). Subsequent prediction of species or heteroblastic node
identity is then visualized using confusion matrices, where actual identity is oriented vertically, predicted identity horizontally, and the proportion assigned indicated
as fill. Species LDAs are broken up by species class. For heteroblastic node LDAs, Spearman’s rho and associated P values calculated from correlating actual and

predicted node identities are provided. Predictions carried out using LDA use the “leave one out” approach cross-validation approach. Heteroblastic node position is
numbered “1” starting from the shoot base. Color scheme: low assigned proportion, white; high assigned proportion, black.
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Table 1. Predictive power of different morphometric methods to dis-
criminate Passiflora species

Species Class Landmark EFD Both Max

P. coriacea A 83.2% 81.7% 88.1% Both
P. misera A 77.0% 71.6% 76.9% Landmark
P. biflora B 84.1% 75.4% 92.1% Both
P. capsularis B 77.2% 72.0% 77.3% Both
P. micropetala B 69.1% 81.8% 92.4% Both
P. organensis B 89.4% 70.7% 96.6% Both
P. pohlii B 54.5% 77.8% 77.8% EFD
P. rubra B 60.3% 59.7% 71.6 % Both
P. tricuspis B 49.0% 67.8% 69.2% Both
P. caerulea C 0.0 15.1% 9.4% EFD
P. cincinnata C 71.4% 59.3% 59.3% Landmark
P. edmundoi C 72.8% 78.8% 83.8% Both
P. gibertii C 84.0% 72.2% 81.9% Landmark
P. hatschbachii C 72.0% 65.4% 67.9% Landmark
P. kermesina C 71.0% 43.6% 70.9% Landmark
P. mollissima C 53.6% 35.5% 67.7% Both
P. setacea C 81.9% 64.4% 77.8% Landmark
P. suberosa C 52.3% 63.4% 66.9% Both
P. tenuifila C 68.8% 65.1% 79.4% Both
P. amethystina D 69.2% 53.8% 66.7% Landmark
P. foetida D 88.6% 71.2% 90.1% Both
P. gracilis D 67.6% 88.9% 86.1% EFD
P. morifolia D 92.6% 77.8% 81.5% Landmark
P. actinia E 81.1% 44.1% 86.0% Both
P. miersii E 59.4% 77.5% 79.8% Both
P. sidifolia E 68.1% 69.7% 77.1% Both
P. triloba E 34.1% 70.3% 59.5% EFD
P. alata F 58.5% 73.3% 80.0% Both
P. edulis F 72.7% 15.9% 75.0% Both
P. ligularis F 84.0% 62.9% 85.7% Both
P. nitida F 60.0% 27.5% 67.5% Both
P. racemosa F 40.6% 60.6% 55.1% EFD
P. villosa F 82.8% 59.6% 84.2% Both
P. coccinea G 46.2% 51.1% 56.5% Both
P. cristalina G 75.0% 65.4% 79.8% Both
P. galbana G 17.4% 65.1% 33.9% EFD
P. malacophylla G 70.1% 67.4% 83.7% Both
P. maliformis G 36.0% 36.0% 60.0% Both
P. miniata G 71.0% 22.0% 72.5% Both
P. mucronata G 88.6% 41.4% 90.8% Both

For each species its class and percent correct prediction using the indicatedmor-
phometric features (landmarks, EFDs, or both) with linear discriminants is pro-
vided. “Max” indicates the set ofmorphometric features providing themaximum

discrimination of species identity.

not equally across the leaf series. The leaves occupying lower
node positions (older leaves at the base of the vine) tend to be
successfully predicted at a higher rate than the younger leaves of
the tip, regardless of whether landmarks (Fig. 6B), EFDs (Fig. 6D),
or both landmarks and EFDS are used (Fig. 6F). EFDs, however,
overall under-perform landmarks or landmarks and EFDs used
together (Table 2). This indicates that landmarks are a superior
discriminant of node position compared to EFDs. Previous work
in grapevine indicates that vein thickness is altered by shoot po-
sition [10, 24]. That landmarks measure vein thickness, but not
EFDs, may explain the differing abilities of these two shape fea-
tures to correctly discriminate leaves by heteroblastic node posi-
tion. That the juvenile leaves at the lower heteroblastic node po-
sitions are correctly predicted at higher rates suggests that these
leaves are more similar across species (or correspondingly, that

Table 2. Predictive power of different morphometric methods to dis-
criminate heteroblastic node

Heteroblasty Landmark EFD Both Max

1 49.1% 33.2% 47.9% Landmark
2 22.9% 19.5% 27.0% Both
3 12.3% 16.7% 15.3% EFD
4 13.3% 8.2% 12.7% Landmark
5 6.2% 12.2% 9.0% EFD
6 7.0% 9.0% 9.9% Both
7 15.9% 10.2% 10.7% Landmark
8 5.9% 13.6% 14.2% Both
9 10.9% 7.8% 12.0% Both
10 12.8% 11.1% 11.6% Landmark

For each heteroblastic node its percent correct prediction using the indicated
morphometric features (landmarks, EFDs, or both) with linear discriminants is
provided. “Max” indicates the set of morphometric features providing the max-

imum discrimination of heteroblastic node identity.

leaves at high heteroblastic node positions are more divergent
between species).

Correlational matrix between landmarks and EFDs

Until now, landmarks and EFDs have either been considered
separately or in conjunction together but not compared against
each other. The landmarks used in this study tend to represent
vascular features of the leaf, the lobes, and the sinuses. The EFDs
represent the blade and the continuous contour and curves of
lamina. Further, landmark data are represented as (x, y) coordi-
nates, whereas EFD data are a Fourier-based harmonic series. A
correlational matrix is used to find strong associations between
the components of each dataset and to interpret the features
each dataset uniquely quantifies against the other.

The input for the correlation matrix, using Spearman’s rho,
is each of the 15 x and y coordinates of the landmark dataset
and each of the 4 harmonic coefficients (A, B, C, D) of the first 20
harmonic ranks from the EFD data, correlated across the >3300
leaves for all species and heteroblastic node positions used in
this study. This correlationmatrix was used as a distancematrix
to hierarchically cluster these traits and the rho and P values
subsequently visualized (Fig. 7).

A large set of uncorrelated traits, consisting of the B and C
harmonic coefficients and the x11 landmark, end up clustered
together (Fig. 7). The B and C harmonic coefficients represent
asymmetric sources of shape variance [31], and the x11 land-
mark represents the left-right variance of the leaf tip (Fig. 1A),
which will mostly be affected by leaf asymmetry. That these
shape features are weakly correlated with each other and other
traits only implies that they are regulated by an unaccounted
source of variance for this particular analysis. In the future, a
more in-depth analysis will likely reveal phyllotaxy as modulat-
ing leaf asymmetry [39, 40], specifically alternating asymmetry
at consecutive nodes, as recently shown in other vines, such as
ivy and grapevine [25].

The remaining landmarks and the A and D coefficients of
the harmonic series (representing symmetrical shape variation)
show various correlational associations with each other (Figs. 7
and 8). Harmonic contributions to leaf shape (Fig. 1B) are more
abstract and difficult to interpret than the contributions of land-
marks to leaf shape, as the landmarks represent homologous
points found in every leaf (Fig. 1A). Strong correlations between
harmonic coefficients with landmarks can help interpret the
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Figure 7. Correlational matrix of landmark and EFD traits. Spearman’s correlationmatrix for morphometric features analyzed in this study. Upper half indicates –log10
P value and lower half Spearman’s rho between indicated traits. Morphometric traits, both landmark and the harmonic series, are indicated along the sides, arranged
using hierarchical clustering, the topology of which is depicted as a dendrogram. Key groupings of landmarks indicating correlational associations with each other or

EFD harmonics are indicated. Spearman’s rho: low values, green; middle values, white; high values, magenta. −log10 P values: low values, purple; high values, yellow;
P < 0.05, no color.

context of the harmonic coefficient to leaf shape.Most harmonic
coefficients cluster exclusively together except for landmarks y9
and y13, which represent the proximal-distal displacement of
the distal lobes along the leaf length (Fig. 8). This suggests that
large amounts of the shape variance associatedwith the contour
of the blade are influenced by the relative placement of the dis-
tal lobes along the leaf length. The remaining harmonic coeffi-
cients that cluster outside most other coefficients also associate
with features of the distal part of the leaf. A1, A3, D2, and D6
associate with the x and y coordinates of the distal sinus (x10,
x12, y10, and y12), and D1 and D3 associate with the left-right

displacement of the distal lobe (x9 and x13) and the vertical dis-
placement of the leaf tip (y11) (Fig. 8). Although difficult to inter-
pret, the correlations of harmonic coefficients suggest that the
overall leaf contour is influenced by the placement of the distal
lobe and sinus.

The remaining correlations between landmarks reveal in-
teresting constraints governing the shape of Passiflora leaves
(Fig. 8). As mentioned previously, the left-right displacement of
the distal lobes (x9 and x13) strongly correlates with the verti-
cal proximal-distal displacement of the leaf tip (y11). The x and
y coordinates of the distal lobes (landmarks 10 and 12) are the
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Figure 8. Correlational relationships between vascular landmarks and leaf contours. Correlational relationships between x and y components of landmarks and EFD
harmonics are indicated by dendrogram (left) and landmarks qualitatively on a representation of a leaf (right). x and y landmark components are independently
depicted by arrows and colored as indicated to show major correlational sources of shape variance within Passiflora leaves.

only features for which the x and y displacement are correlated,
suggesting that the distal sinus varies in a diagonal direction.
The proximal sinus and lobe (landmarks 7, 8, 14, and 15) and the
landmarks at the base of the veins of the petiolar junction (land-
marks 1, 2, 3, 4, 5, and 6) form additional groups of associated
landmarks, although interestingly the x and y displacement of
each of these two groups is distinct in each case (Fig. 8).

Discussion

Leaf morphology refers to the totality of leaf architecture, at the
cellular, tissue, and organ levels, and distinct attributes of the
leaf, both the vasculature and lamina. The topology of the vas-
culature and contour of the leaf blade are distinct geometric
phenomena that require different morphometric approaches to
quantify. Landmarks and EFDs are ideal methods to analyze the
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distinct features of leaves contributing to their shape (Fig. 1), but
rarely are theymeasured and compared on the same leaves. Our
analysis of disparate leaf shapes among Passiflora species with
landmarks (Fig. 2) and EFDs (Fig. 3) reveals that both methods
capture similar orthogonal axes of shape variation (Fig. 4) and
separate both species and heteroblastic node identity, but in dis-
tinct ways (Fig. 5). Landmarks are superior to EFDs in predicting
node position compared to species identity, most likely because
they describe vascular patterning, which is relatively sensitive to
heteroblasty compared to species differences in leaf shape (Fig.
6; Tables 1 and 2). Although most elements of the EFD harmonic
series cluster together in a pairwise correlational analysis,
a few are closely associated with landmarks (Fig. 7). Landmarks
exhibit a correlational structure revealing developmental con-
straints in how leaves vary across Passiflora species and the het-
eroblastic series (Fig. 8). Together, our data quantify the relation-
ship between blade and vasculature, revealing that one does not
drive the patterning of the other, and although each distinctly
varies, many shape features of the leaf change in concert across
evolution and development.

Methods
Plant materials and growth conditions

Passiflora germplasm was kindly provided by R Silva (Viveiros
Flora Brasil, Araguari, MG, Brazil), Dr. FG Faleiro (EMBRAPA Cer-
rados, Planaltina, DF, Brazil), Prof. MM Souza (Universidade Es-
tadual de Santa Cruz - UESC, Ilhéus, BA, Brazil), M Peixoto (Mogi
das Cruzes, SP, Brazil), Prof. ML Silva (Universidade do Estado de
Mato Grosso, Tangará da Serra, MT, Brazil), and Prof. CH Bruck-
ner (Universidade Federal de Viçosa, Viçosa, MG, Brazil).

The plants were germinated from seed and planted between
late October 2015 and early March 2016, in Viçosa, at the Fed-
eral University of Viçosa,MG, Brazil. The populationswere raised
and maintained under polycarbonate-covered greenhouse con-
ditions, equipped with automatic environmental control using
exhaust fans and evaporative cooling panels (with expanded
clay wettable pads). Seeds for each Passiflora species were sown
in 128-cell propagation plastic trays (GPlan Comércio de Produ-
tos Agrı́cola s EIRELI – ME, São Paulo, SP, Brazil) filled with horti-
cultural organic Tropstrato HT Hortaliças substrate (Vida Verde
Indústria e Comércio de Insumos Orgânicos Ltda, Mogi Mirim,
SP, Brazil). After germination (30–40 days), plantlets were indi-
vidually transplanted to 5-L-capacity plastic pots (EME-A-EME
Ind. Com. Ltda., Petrópolis, RJ, Brazil) filled with horticultural
substrate. Each pot received 5 g of Osmocote Plus NPK 15-09-
12 3-4 month controlled release fertilizer (Scotts, USA). Plants
were irrigated on a daily basis with tap water, and no phytosan-
itary control was applied. The germination and growth rates of
plants varied widely. The number of replicates for each species
and the number of nodes per vine are indicated in the raw data
[45] and depicted visually (Fig. S1).

For scanning, a multifunction printer (Canon PIXMA MX340
Wireless Office All-in-One Printer, model 4204B019, USA) was
used. A 20-cm metallic ruler was positioned at the bottom of
each scanned sheet as a size marker. Leaves were carefully de-
tached, from the base to the tip of the shoot, and affixed to an
A4 paper sheet, adaxial face down, using 12-mm double-sided
tape (Scotch Model 9400, 3M do Brasil, SP, Brazil). The num-
bers written near each leaf indicate position in the shoot, in
a tip-to-base direction, starting with the youngest leaf at the
tip of the shoot. It should be noted that the numbering in the
scans is opposite from the numbering used in the analysis and

figures for this manuscript, in which leaves are numbered with
“1” starting at the shoot base. This numbering system more
closely aligns with the heteroblastic series than the reverse
numbering scheme originally used in the scans.

Morphometric and statistical analyses

All morphometric data and code used for statistical analysis are
available on GitHub [45]. All original data is available at GigaDB
[44].

Landmarks, as described in the text, were placed on leaves
in ImageJ [47]. Procrustes superimposition was performed using
the shapes package [48] in R [49]with the procGPA function using
reflect = TRUE. Resulting Procrustes-adjusted coordinates and
PC scores were written out for subsequent analyses and eigen-
leaf representations visualized using the shapepca function.

To isolate outlines for EFD analysis, the “Make Binary” func-
tion in ImageJ [47] was found to be sufficient to segment leaves.
The wand tool was used to select individual binary leaf out-
lines, which were pasted into a new canvas, which was subse-
quently saved as an individual image, which was named by vine
and node position from which the leaf was derived. The binary
images were batch converted into RGB .bmp files and read into
SHAPE, which was used to perform chain-code analysis [31, 32].
The resulting chain-code .chc filewas then used to calculate nor-
malized EFDs. The resulting normalized EFD .nef file was then
read into Momocs (version 0.2-6) [33] in R. The harmonic con-
tributions to shape were visualized using the hcontrib function.
Averaged leaf outlines were calculated using the meanShapes
function and PCA performed using the pca function and eigen-
leaves visualized using the PC.contrib function.

Unless otherwise noted, all visualization was performed us-
ing ggplot2 in R [50]. LDA was performed using the lda function
and subsequent prediction of species identity or heteroblastic
node position performed using the predict function with MASS
[51].When LDAswere used for prediction, the parameter CVwas
set to “TRUE”, for the “leave one out” cross-validation approach,
to help make analyses more robust to differences in replication
and node numbers between species and vines. Hierarchical clus-
tering was performed using the hclust function.

Availability and requirements

Project name: PassifloraLeaves
Project home page: https://github.com/DanChitwood/Passiflora

>Leaves
Operating system(s): Platform independent
Programming language: R
Other requirements: Not applicable
License: MIT license
Any restriction to use by non-academics: none

Availability of supporting data and materials

The data sets supporting the results of this article are available
in the GigaDB repository [44].

Additional file

Supplementary data are available at GIGSCI online.

Additional file 1: Fig. S1 Species replication andnumber of nodes
sampled. A) Dotplot showing the number of vines sampled for
each species. B) Boxplot showing the number of nodes sampled

https://github.com/DanChitwood/PassifloraLeaves
https://github.com/DanChitwood/PassifloraLeaves
https://academic.oup.com/gigascience
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for vines from each species. The largest red line is the median
nodes sampled (14 nodes), the medium sized redlines the 25th

and 75th quantiles (12 and 16 nodes, respectively), and the thin
red lines the minimum and maximum (7 and 28 nodes, respec-
tively). (JPG 4308 kb)
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