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Description of two novel Corynebacterium species
isolated from human nasal passages and skin
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Abstract

Strains of two novel Corynebacterium species were cultured from samples of human nostrils and
skin collected in the United States and Botswana. These strains demonstrated growth on Columbia
Colistin-Nalidixic Acid agar with 5% sheep blood and in liquid media (brain heart infusion and tryptic
soy broth) supplemented with Tween 80, a source of the fatty acid oleic acid. Cells were Gram-
positive, non-spore-forming, non-motile bacilli that showed catalase but not oxidase activity. Major
fatty acids in both of these species were 18:1 w9c (oleic acid), 16:0 (palmitic acid), and 18:0 (stearic
acid). Analysis of the 16S ribosomal RNA gene sequences identified these strains as belonging to the
genus Corynebacterium (family Corynebacteriaceae). Whole-genome sequencing revealed that these
strains formed distinct branches on a phylogenomic tree, with C. tuberculostearicum being the
closest relative but with average nucleotide identities of < 95% relative to all previously described
species. These results indicate that these strains represent novel species of Corynebacterium, for
which we propose the names Corynebacterium hallux sp. nov., with the type strain CTNIH22T (=ATCC
TSD-435"=DSM 117774"), and Corynebacterium nasorum sp. nov., with the type strain KPL3804"
(=ATCC TSD-439'=DSM 117767"). We also describe the characteristics of two strains isolated from

human nasal passages that are members of the recently named species Corynebacterium yonathiae.

Introduction

The genus Corynebacterium belongs to the family Corynebacteriaceae and includes more than 150
validly published species. Most Corynebacterium species are only rarely associated with disease
among humans and animals. Common pathogenic members include C. diphtheriae, the causative
agent of the human disease diphtheria, and C. pseudotuberculosis and C. ulcerans, which are

frequent causes of zoonotic infections. Historically, species of the genus Corynebacterium have been
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differentiated based on their host, ecological niche, biochemical characteristics, spectrometric
analyses [e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF MS)], or sequencing of specific genetic loci [1-3]. With regard to the latter, phylogenies based
only on the 16S ribosomal RNA (rRNA) gene often have poor support within this genus, with
improved results for phylogenies based on full or partial rpoB gene sequences [4]. Multi-locus
sequence typing of housekeeping genes is frequently used to characterize common pathogens such
as C. diphtheriae [5-8]. As a result of decreasing sequencing costs and improved tools for genomic
analysis, whole-genome sequencing is increasingly being performed for taxonomic classification of

Corynebacterium strains.

C. tuberculostearicum is a lipid-requiring species that is a common inhabitant of human skin. This
species was first described in 1984 when Brown and colleagues identified 16 strains that had
biochemical properties that distinguished them from previously described members of the
Corynebacterium genus [9]. They called this novel species C. tuberculostearicum because strains
were noted to contain tuberculostearic acid on fatty acid profiling [9]. In 2004, Feurer and colleagues
emended the description of C. tuberculostearicum and formally proposed it as a new species [10]. In
the present study, we identified several Corynebacterium strains from human nasal and skin samples
that are most closely related to C. tuberculostearicum, but that represent distinct species based on
their biological properties, chemical structures, and genomic sequences. We propose classification
of these strains into novel species Corynebacterium hallux sp. nov. (“hallux” referring to the
innermost toe) and C. nasorum sp. nov. (“nasorum” referring to “of noses”) to reflect the ecological
niches from which these strains were isolated. Finally, we provide a detailed characterization of two
additional strains isolated from human nasal passages that are members of the recently described

species C. yonathiae [11].

Isolation and Ecology
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102

103  The new Corynebacterium strains described in this study are as follows by species: C. hallux sp. nov.
104  (CTNIH22"=ATCC TSD-435"=DSM 117774"), C. nasorum sp. nov. (KPL3804"=ATCC TSD-439'=DSM
105 1177677, MSK185), and C. yonathiae (KPL2619, MSK136). C. hallux sp. nov. strain CTNIH22" was
106 isolated from the toe web of a healthy adult volunteer in 2019. This sample was collected using an
107 ESwab (Copan, Murrieta, CA), placed in liquid Amies transport medium, and grown on brain heart
108  infusion (BHI) agar with 10% Tween 80 at 35°C under aerobic conditions [12]. The KPL strains of C.
109 nasorum and C. yonathiae were isolated from nasal samples collected from a child and an adult
110 participating in scientific outreach events in Massachusetts in 2017 and 2018, respectively [13].
111  These samples were inoculated onto plates containing either BBL Columbia Colistin-Nalidixic Acid
112  (CNA) agar with 5% sheep blood or BHI agar with 1% Tween 80 and 25 ug/mL fosfomycin. Cultures
113 were incubated aerobically for 48 hours at 37°C in either atmospheric conditions or 5% carbon

114  dioxide (COy). For suspected Corynebacterium, Sanger sequencing was performed on a colony-

115 polymerase chain reaction (PCR) amplicon of the V1-V3 region of the 16S rRNA gene (primers 27F
116 and 519R). The MSK strains of C. nasorum and C. yonathiae were isolated from nasopharyngeal

117 samples collected from infants enrolled in a prospective cohort study that was conducted in

118 Gaborone, Botswana between February 2016 and January 2021 [14]. These samples were inoculated
119 onto plates containing Columbia CNA agar with 5% sheep blood, BHI agar supplemented with 50
120 pg/mL fosfomycin, and BHI agar with 1% Tween 80 and 50 pg/mL fosfomycin, and incubated

121 aerobically at 37°C in a 5% CO,-enriched environment for 48 hours. Preliminary identification of
122 suspected Corynebacterium was performed using MALDI-TOF MS or Sanger sequencing on a colony-
123 PCR amplicon of the V1-V3 region of the 16S rRNA gene (primers 27F and 534R). The type strains of
124 C. accolens (ATCC 49725") [15], C. macginleyi (ATCC 51787") [16], and C. tuberculostearicum (ATCC
125 35692") [10] were obtained from the American Type Culture Collection (Manassas, Virginia).

126

127 Genome Features
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128

129 Draft genomes of C. hallux sp. nov. CTNIH22" and C. nasorum sp. nov. KPL3804" were generated
130  through assembly of Illumina sequencing reads, as described previously [12, 17]. Based on four
131  strain genomes, C. hallux sp. nov. has an average G+C content of 58.5 mol% and an estimated

132 average genome length of 2.49 Mb, with between 2,293 and 2,427 coding sequences. Based on 13
133 strain genomes, C. nasorum sp. nov. has an average G+C content of 58.5 mol% and an estimated
134  average genome length of 2.46 Mb, with between 2,303 and 2,451 coding sequences (Table S1).

135

136 16S rRNA Gene Phylogeny

137

138 PCR amplification of the V1-V9 regions of the 16S rRNA gene of C. hallux sp. nov. CTNIH22" and C.
139  nasorum sp. nov. KPL3804" was conducted by ACGT, Inc. (Wheeling, IL) and Azenta Life Sciences

140  (South Plainfield, NJ), respectively. Enzymatic cleanup of the PCR products was performed before
141 bidirectional, dye-terminator sequencing on a 3730xI DNA Analyzer (Applied Biosystems, Waltham,
142 MA). For both strains, the corresponding portions of the genome assembly-extracted 16S rRNA gene
143 sequence were determined to be 100% identical to the near-complete gene sequence obtained from
144 PCR amplification and Sanger sequencing. Thus, the full-length genome assembly-extracted 16S

145 rRNA gene sequences were used for subsequent phylogenetic analyses (Figures 1 and S1A).

146

147 We note that we initially assigned strains of C. hallux sp. nov. to the species C. tuberculostearicum
148 based on their 16S rRNA gene sequences, and denoted these as ribotype B strains based on

149  differences with the 16S rRNA gene sequences of other known C. tuberculostearicum strains [12].
150 We subsequently used the Type (Strain) Genome Server to determine that genome-sequenced

151 strains of C. hallux sp. nov. were most closely related to C. tuberculostearicum, although with

152  average nucleotide identity calculations based on the BLAST+ algorithm (ANIb) values of <95% in
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153 comparisons to C. tuberculostearicum reference genomes [18]. Similarly, we used the Genome

154  Taxonomy Database Toolkit (GTDB-Tk) to determine that C. nasorum sp. nov. was closely related to
155 C. tuberculostearicum [19]. Also, because the 16S rRNA gene sequences of C. tuberculostearicum
156  strain ATCC 35692" and the proposed C. nasorum sp. nov. strains are 99.9% identical, it is highly
157 probable that C. nasorum sp. nov. sequences were misassigned to C. tuberculostearicum in past 16S
158  rRNA gene-based microbiome studies.

159

160 A 16S rRNA gene maximum-likelihood phylogeny was constructed using the following species: 1) all
161 of the validly named hits with > 95.7% identity to the 16S rRNA gene of C. hallux sp. nov. CTNIH22"
162  and/or C. nasorum sp. nov. KPL3804" using the 16S-based ID service on EZBioCloud [20]; 2)

163 additional species that were closely related based on genomes in GTDB-Tk; and 3) Mycobacterium
164 tuberculosis™ as an outgroup (Figure 1). In addition, a larger unrooted 16S rRNA gene phylogeny was
165  constructed to set the two proposed novel species in a broader context within the genus

166  Corynebacterium (Figure S1A). The 16S rRNA gene-based phylogenies had a large number of poorly
167 supported branches based on ultrafast bootstrap values (Figures 1 and S1A) [21]. This was expected
168  given that the inadequacy of using the 16S rRNA gene alone for constructing reliable phylogenies
169 within the genus Corynebacterium is well described [4]. Among Corynebacterium species, the rpoB
170 gene has more polymorphisms [4], and a phylogeny based on the rpoB gene (Figure S1B) had a

171 branching pattern with higher support than the 16S rRNA gene-based phylogeny (Figure S1A).

172

173 Average Nucleotide Identity

174
175 ANIb calculations performed using the Python package pyani v0.2.9 [22, 23] indicated that the
176  genome sequences for the new strains and genomes described in this study were < 95% identical to

177  the type strain of C. tuberculostearicum, and to other closely related species (Figure 2) [10, 11]. In


https://doi.org/10.1101/2024.11.21.624533
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.21.624533; this version posted November 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

178  general, an ANIb threshold of 95-96% accurately represents the boundary between prokaryotic

179 species [24]. Strains of the proposed C. nasorum sp. nov. had ANIb values above 95% in comparisons
180  to the genome currently called ‘Corynebacterium kefirresidentii’ (Figure 2, purple box) [25].

181 However, we were unable to find a type strain bearing this name listed in the publicly available

182 catalogs of major strain repositories. In metagenomic analyses, Kalan and colleagues demonstrate
183  genomic material mapping to the genome called ‘C. kefirresidentii’ is found on human skin but has
184 higher prevalence and relative abundance in human nasal samples [26]. Based on these findings, and
185 the isolation of a number of nasal strains with ANIb values of >95% to this genome by our

186 laboratories, we agree with the assertion by Kalan and colleagues that the human nasal passages are
187 one of the primary habitats of this species. To reflect this, we propose the species name

188 Corynebacterium nasorum sp. nov.. We further propose that strains and genomes previously

189  classified as ‘C. kefirresidentii’ belong to this proposed novel species (Table S2).

190

191  Phylogenomic Analysis

192

193 A maximum-likelihood phylogenomic tree including all of the genome-sequenced strains from Figure
194 1 with Mycobacterium tuberculosis as an outgroup (Figure 3) and a phylogenomic tree including the
195 68 Corynebacterium species from Figure S1A (Figure S1C) each showed that both C. hallux sp. nov.
196 and C. nasorum sp. nov. belong to a larger clade that includes C. tuberculostearicum and the recently
197 named species C. curieae, C. marquesiae, and C. yonathiae [10, 11]. Kalan and colleagues refer to
198  this monophyletic clade as the “C. tuberculostearicum species complex,” and it is most closely

199 related to the clade containing C. accolens and C. macginleyi (Figures 3 and S1C) [26]. Of note, the
200  genomes currently labeled in GTDB-Tk [19] as “C. aurimucosum_E” are misassigned at the species
201 level based on the phylogenomic analyses shown here and those performed by Kalan and colleagues

202 [26], since C. aurimucosum_E 620_CAUR [27] clusters far from the genome for the type strain C.
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203 aurimucosum DSM 44827 (Figures 3 and S1C). Based on an ANIb threshold of 95%, genomes labeled
204  in GTDB-Tk as “C. aurimucosum_E” assign to the recently named species C. marquesiae (Figures 2
205 and S2A) [11].

206

207  Together, ANIb calculations and the phylogenomic trees confirm that the strains labeled C. hallux sp.
208 nov. and C. nasorum sp. nov. represent novel species belonging to the genus Corynebacterium.

209

210 Comparative Genomic Analysis

211

212  The metabolic capabilities of more divergent Corynebacterium species sharing the common habitat
213  of the human nasal passages are highly conserved [28]. Although members of the C.

214  tuberculostearicum species complex are known to inhabit different human body site habitats

215 including skin [12], the nasal passages [26], and the female urinary tract [11], we hypothesized that
216  these would exhibit conserved metabolic capabilities based on their close phylogenetic relationship
217  to each other (Figures 3, S1C, and S2A). Indeed, metabolic estimation on genomes of these species
218 using the anvi-run-kegg-kofams and the anvi-estimate-metabolism programs of anvi’o v8 [29, 30],
219 which rely on Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic annotations [31],

220  revealed largely shared metabolic capabilities with some strain-level variation within specific species
221  (Figure 4, Table S3; see https://klemonlab.github.io/NovCor_Manuscript/Methods_Anvio.html for
222 detailed methods). This analysis estimated these 30 strain genomes covering six species (Figures 2
223 and S2) all shared 48 stepwise complete KEGG modules, with most strains also sharing an additional
224  six complete KEGG modules (Table 1). These included many modules for amino acid biosynthesis,
225  which is typical of Corynebacterium species. We estimated that all 30 strain genomes also encode a
226  complete tricarboxylic acid cycle, consistent with their preference for aerobic growth, along with a

227 number of other modules involved in central carbohydrate metabolism (Table 1).
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228

229 Phenotypic and Chemotaxonomic Characterisation

230

231 Growth of strains included in this study was first determined on the following solid media: tryptic
232 soy agar (TSA) with 5% sheep blood (Remel, Lenexa, KS), BHI agar (Becton Dickinson, Franklin Lakes,
233 NJ), and BHI with 1% Tween 80 (MilliporeSigma, Burlington, MA). Isolates were suspended in sterile
234 phosphate buffered saline (Genesee Scientific, El Cajon, CA) to an ODggo of 0.10-0.15 and plated in a
235 guadrant pattern using a sterile 10-pl loop. Growth was judged by two authors (EBP, MSK) based on
236  the size and density of colonies on these plates. Given that all strains grew well on BHI with 1%

237  Tween 80 plates, growth on this medium was further evaluated for up to 14 days at various

238 temperature (4°C, 20°C, 30°C, 37°C, 42°C, 50°C) and atmospheric (aerobic/5% CO,, microaerophilic,
239  anaerobic) conditions. Microaerophilic and anaerobic conditions were generated using the

240  AnaeroPack system with MicroAero and Anaerobic gas generators (Thermo Fisher Scientific,

241 Waltham, MA). Growth of all strains was observed at temperatures between 30°C and 42°C, with C.
242  accolens ATCC 497257, C. tuberculostearicum ATCC 356927, C. hallux sp. nov. CTNIH22T, and strains
243 of C. yonathiae additionally demonstrating growth at 20°C (Table 2). Growth was also observed for
244  all strains in microaerophilic conditions, with C. accolens ATCC 49725, C. macginleyi ATCC 517877,
245 and strains of C. nasorum sp. nov. and C. yonathiae additionally demonstrating weak growth in

246  anaerobic conditions (Table 2).

247

248  C. hallux sp. nov. CTNIH22T typically grew as creamy, white colonies measuring 3-5 mm in diameter
249  on BHI with 1% Tween 80 agar; growth was weaker on TSA with 5% sheep blood or on BHI agar

250  without Tween 80, with colonies measuring 1-2 mm in diameter that were non-hemolytic on blood-
251 containing agar. C. nasorum sp. nov. strains grew optimally on BHI with 1% Tween 80 agar, yielding

252 large white colonies 5-10 mm in diameter. Colonies of C. nasorum sp. nov. were non-hemolytic on
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253  TSA with 5% sheep blood agar. C. yonathiae strains appeared as raised, creamy colonies between 5-
254 10 mm in diameter when grown on BHI with 1% Tween 80 agar. Colonies on TSA with 5% sheep

255 blood were flat, translucent, non-hemolytic, and approximately 2-3 mm in diameter.

256

257 Growth in liquid media was assessed using BHI broth, BHI broth with 0.2% Tween 80, tryptic soy
258 broth (TSB), and TSB with 0.2% Tween 80. For these assays, culture tubes were inoculated with

259 bacterial cells washed twice with phosphate buffered saline to remove traces of Tween 80 retained
260  from the solid media, then resuspended to an ODggo of 0.10-0.15. All cultures reached an ODeggp at or
261 above 2.0 at 48 hours after inoculation into BHI broth with 0.2% Tween 80. Therefore, this liquid
262 medium was used for subsequent assays testing for growth at varying pH and (2.0, 4.0, 6.0, 7.0, 8.0,
263 10.0, 12.0) and salinity (0%, 3%, 5%, 7%, 10%, 14%, 20%). Liquid culture tubes were incubated

264  aerobically at 37°C with shaking at 200 rpm for 72 hours or until the cultures exceeded an ODgqo Of
265 2.0. The pH range for growth of most strains was 7-8, with optimal growth observed at pH 8 (Table
266 2). Growth of all strains was observed at salinity at or below 10%, with C. accolens ATCC 49725" and
267 C. hallux sp. nov. CTNIH22" demonstrating growth at salinity up to 14% (Table 2). All strains also
268 demonstrated growth in TSB with 0.2% Tween 80. No growth was observed in BHI or TSB broth in
269  the absence of Tween 80.

270

271 Gram stains were performed using fresh cultures grown on BHI with 1% Tween 80 agar and using a
272  commercial kit (Hardy Diagnostics, Santa Maria, CA). Cells of C. hallux sp. nov. CTNIH and strains of
273 C. nasorum sp. nov. and C. yonathiae were Gram-positive, non-spore-forming irregular rods or

274  coccoid. For visualization by scanning electron microscopy, cells were fixed with a solution

275  containing 2% glutaraldehyde and 4% formaldehyde prior to transfer to the Duke University Shared
276 Materials Instrumentation Facility. In scanning electron microscopy images, C. hallux sp. nov. cells
277 Figure 5A) appeared as pleomorphic rods to coccoid, with most cells being 0.6-2.0 um long and 0.4-

278 0.6 um wide. C. nasorum sp. nov. cells (Figure 5B) similarly appeared as heterogenous rods to
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279 coccoid, with most cells measuring between 0.6-2.2 um long and 0.4-0.6 um wide. C. yonathiae cells
280 (Figure 5C) were coccoid to elongated rods measuring up to 5 um in length and 0.4-0.6 um wide.
281

282 Enzymatic (including catalase) and fermentation activities were tested using API CORYNE strips

283 (bioMérieux, Marcy-I'Etoile, France) according to the manufacturer’s instructions. Oxidase testing
284  was performed using OxiStrips (Hardy Diagnostics, Santa Maria, CA) according to the package insert.
285 Motility was assessed by stabbing culture tubes containing BHI with 1% Tween 80 and 0.5% agar
286 with a fresh culture of each Corynebacterium strain; Pseudomonas aeruginosa, Escherichia coli, and
287  Staphylococcus aureus were used as comparators for this assay. All strains were catalase-positive,
288 oxidase-negative, and non-motile (Table 3). On biochemical testing, positive reactions for alkaline
289 phosphatase were observed for C. macginleyi ATCC 517877, C. hallux sp. nov. CTNIH22T, and strains
290  of C. nasorum sp. nov. and C. yonathiae (Table 3). C. hallux sp. nov. CTNIH22" and strains of C.

291  yonathiae sp. nov. had a positive reaction for pyrrolidonyl arylamidase, while this activity was

292  variable for strains of C. nasorum sp. nov. Nitrate reduction was observed for C. accolens ATCC

293 49725 and C. macginleyi ATCC 517877, while strains of C. nasorum sp. nov. had a weakly positive
294  reaction for pyrazinamidase. Fermentation of D-glucose and D-ribose was noted for strains C.

295  accolens ATCC 49725" and C. macginleyi ATCC 517877, while C. macginleyi ATCC 517877 additionally
296  fermented D-mannitol and D-saccharose (Table 3). No carbohydrate fermentation was noted for C.
297  hallux sp. nov. CTNIH22T or strains of C. nasorum sp. nov. or C. yonathiae.

298

299 For fatty acid analysis, cells of all strains were harvested from the same culture conditions during the
300 late log phase (at 37 °Cin a 5% CO2-enriched environment for 2 days on TSA with 5% sheep blood
301  agar). Fatty acids were extracted from cells using the standard midi protocol (Sherlock Microbial
302 Identification System, v6.0B), analysed with a gas chromatograph (6890 Series GC System, Hewlett
303 Packard), and identified using the TSBA6 database of the Microbial Identification System [32]. The

304  cellular fatty acid profiles of all strains included saturated, unsaturated, and branched-chain fatty
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305 acids (Table 4). The major fatty acids identified in C. tuberculostearicum ATCC 356927, C. accolens
306 ATCC 497257, C. hallux sp. nov. CTNIH22T, and strains of C. nasorum sp. nov. and C. yonathiae were
307 18:1 w9c (oleic acid), 16:0 (palmitic acid), and 18:0 (stearic acid). C. hallux sp. nov. CTNIH22" had a
308  higher amount of 18:1 w9c (oleic acid) than other strains tested, and this fatty acid was absent from
309  the composition of C. macginleyi ATCC 51787". Several fatty acids were uniquely present in lesser
310 amounts in C. hallux sp. nov. CTNIH22" (e.g., 12:0, 15:1 w8c, 20:1 w9c).

311

312 Description of Corynebacterium hallux sp. nov.

313

314 Corynebacterium hallux sp. nov. (hal’lux. N.L. neut. n. hallux referring to the innermost toe, the skin
315  site representing the source of this isolate).

316

317  Cells of C. hallux sp. nov. CTNIH22" are Gram-positive, catalase-positive, oxidase-negative, non-

318 spore-forming, non-motile bacilli (0.6-2.0 um long and 0.4-0.6 um wide). Optimal growth on solid
319 medium was observed on BHI with 1% Tween 80 agar with aerobic incubation at 37 °Cin a 5% CO,-
320 enriched environment. Colonies on this medium were creamy white and measure approximately 3-5
321 mm in diameter; growth is weaker on TSA with 5% sheep blood agar, with non-hemolytic colonies
322 measuring 1-2 mm in diameter. In liquid culture, C. hallux sp. nov. CTNIH22" requires the addition of
323 0.2% Tween 80 for growth in BHI or TSB and tolerates salinity up to 14%. However, it has more

324  stringent requirements for pH, with growth only observed at pH between 7.0 and 8.0. On

325 biochemical testing, a positive reaction is observed for alkaline phosphatase with a weakly positive
326  reaction for pyrrolidonyl arylamidase. No carbohydrate fermentation is noted in testing performed
327 using API CORYNE strips. The major fatty acids identified are oleic (C18:1 w9c; 32.5%), palmitic

328 (C16:0; mean of 26.9%), and stearic (C18:0; 12.9%) acids. The genome size and DNA G+C content of

329  the type strain are 2.53 Mb and 58.4 mol%, respectively.
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330

331  The type strain, CTNIH22T (=ATCC TSD-435'=DSM 117774T), was isolated from the toe web of a
332 healthy adult. The partial 16S rRNA gene sequence of strain CTNIH22T is available in GenBank

333 (accession number: PQ252679). The GenBank accession number for the genomic sequence of this
334 strain is GCF_032821755.1.

335

336 Description of Corynebacterium nasorum sp. nov.

337

338  Corynebacterium nasorum sp. nov. (nas’or.um L. gen. adj. nasorum referring to “of noses”, the

339  human body site that is the source of the isolates).

340

341  Cells are Gram-positive, catalase-positive, oxidase-negative, non-spore-forming, non-motile bacilli
342 (0.6-2.2 um long and 0.4-0.6 um wide). Optimal growth on solid medium is observed on BHI with 1%
343  Tween 80 agar with aerobic incubation at 37 °C in a 5% CO,-enriched environment. Colonies on this
344 medium are creamy white and measure 5-10 mm in diameter; growth is weaker on TSA with 5%
345 sheep blood agar with non-hemolytic colonies. Optimal growth of C. nasorum sp. nov. in liquid

346 medium is observed in BHI broth with 0.2% Tween 80; growth is also observed in TSB with 0.2%
347  Tween 80. Growth of strains of C. nasorum sp. nov. occurs at pH between 6.0 and 8.0 and at salinity
348 up to 10%. On biochemical testing, a positive reaction is observed for alkaline phosphatase, with a
349  weakly positive reaction for pyrazinamidase and variable pyrrolidonyl arylamidase activity. No

350 carbohydrate fermentation is noted in testing performed using APl CORYNE strips. The major fatty
351 acids are palmitic (C16:0; mean of 35.0%), oleic (C18:1 w9c; mean of 19.5%), and stearic (C18:0;
352 mean of 13.9%) acids. The genome size and DNA G+C content of the type strain are 2.46 Mb and
353 58.5 mol%, respectively.

354
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355  The type strain, KPL3804" (=ATCC TSD-439'=DSM 117767"), was isolated from a swab of the nostrils
356 of a healthy adult aged between 31 and 60 years in Massachusetts, USA. The partial 16S rRNA gene
357 sequence of strain KPL3804" is available in GenBank (accession number: PQ149068). The GenBank
358  accession numbers for the genomic sequences of the C. nasorum sp. nov. strains described in this
359  study are GCF_037908315.1 (KPL3804") and GCF_030229765.1 (MSK185).

360

361 Description of strains of the recently described species C. yonathiae

362

363 Cells are Gram-positive, catalase-positive, oxidase-negative, non-spore-forming, non-motile bacilli
364 (up to 5 umin length and 0.4-0.6 um wide). Optimal growth on solid medium is observed on BHI
365  with 1% Tween 80 agar with incubation aerobically at 37 °C in a 5% CO,-enriched environment.
366 Colonies on this medium are raised, creamy colonies between 5-10 mm in diameter; growth is
367  weaker on TSA with 5% sheep blood agar, with non-hemolytic colonies measuring 2-3 mm in

368 diameter. In liquid culture, strains require the addition of 0.2% Tween 80 for growth in BHI or TSB
369 and tolerate salinity up to 10% and pH between 7.0 and 8.0. On biochemical testing, positive

370 reactions are observed for alkaline phosphatase and pyrrolidonyl arylamidase. No carbohydrate
371  fermentation is noted in testing performed using API CORYNE strips. The major fatty acids are
372 palmitic (C16:0; mean of 37.6%), oleic (C18:1 w9c; mean of 21.1%), and stearic (C18:0; mean of
373 14.5%) acids. The genome sizes of C. yonathiae strains MSK136 and KPL2619 are 2.47 Mb and 2.35

374 Mb, with DNA G+C content of 58.5 and 58.6 mol%, respectively.
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ABBREVIATIONS

ANIb, average nucleotide identity based on BLAST+

ATCC, American Type Culture Collection

BHI, brain heart infusion

CO,, carbon dioxide

CNA, Colistin-Nalidixic Acid

FAME, fatty acid methyl ester

GTDB-Tk, Genome Taxonomy Database Toolkit

KEGG, Kyoto Encyclopedia of Genes and Genomes

MALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

ODeoo, optimal density at a wavelength of 600 nanometers

PCR, polymerase chain reaction

rpm, revolutions per minute

rRNA, ribosomal RNA

TSA, tryptic soy agar

TSB, tryptic soy broth
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Tables and Figures

Table 1. Estimated stepwise complete KEGG modules shared by at least 26 of the 30

Corynebacterium strain genomes belonging to species closely related to C. tuberculostearicum,

including C. nasorum sp. nov. and C. hallux sp. nov. (# represents number of genomes)

Module
D Module Name Module Subcategory #
MO00015 | Proline biosynthesis, glutamate => proline Arginine and proline metabolism 30
MO00844 | Arginine biosynthesis, ornithine => arginine Arginine and proline metabolism 30
MO00970 | Proline degradation, proline => glutamate Arginine and proline metabolism 30
Shikimat thway, phosph I te +
M00022 IKIMARE pAtiivay p osfp OeENoipyruvate Aromatic amino acid metabolism 30
erythrose-4P => chorismite
Valine/isoleucine biosynthesis, pyruvate =>valine / | Branched-chain amino acid
M00019 ) . . 30
2-oxobutanoate => isoleucine metabolism
M00432 Leu.cine biosynthesis, 2-oxoisovalerate => 2- Branchele—chain amino acid 30
oxoisocaproate metabolism
- - - e - - -
MO00570 Isoleucine blosynt.he5|s, t.hreonlne 2 Branchet.:i chain amino acid 30
oxobutanoate => isoleucine metabolism
— - - - - - —
M00017 Methlon.lne‘blosynthe5|s, aspartate => homoserine Cystelne.and methionine 30
=> methionine metabolism
Cysteine and methionine
MO00021 | Cysteine biosynthesis, serine => cysteine Y . 30
metabolism
Histidine degradation, histidine => N- Lo .
M00045 . Histidine metabolism 30
formiminoglutamate => glutamate
Th ine bi thesis, tate =>h i
M00018 reonlne. losynthesis, aspartate omoserine Serine and threonine metabolism 30
=>threonine
MO00621 | Glycine cleavage system Serine and threonine metabolism 30
MO00793 | dTDP-L-rhamnose biosynthesis Polyketide sugar unit biosynthesis 30
C5 isoprenoid biosynthesis, non-mevalonate . . .
M00096 P 4 Terpenoid backbone biosynthesis 30
pathway
MO00364 | C10-C20 isoprenoid biosynthesis, bacteria Terpenoid backbone biosynthesis 30
MO00365 | C10-C20 isoprenoid biosynthesis, archaea Terpenoid backbone biosynthesis 30
Glycolysis (Embden-Meyerhof pathway), glucose .
M00001 ->ypyr\L/Jvat(e : P V)8 Central carbohydrate metabolism 30
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Glycolysis, core module involving three-carbon .

M00002 YEOl 8 Central carbohydrate metabolism 30
compounds

MO00003 | Gluconeogenesis, oxaloacetate => fructose-6P Central carbohydrate metabolism 30
Pent hosphat th Pent hosphat

M00004 entose phosphate pathway (Pentose phosphate Central carbohydrate metabolism 30
cycle)

MO0O0005 | PRPP biosynthesis, ribose 5P => PRPP Central carbohydrate metabolism 30
Pentose phosphate pathway, oxidative phase, .

MO00006 P p. : : : Central carbohydrate metabolism 30
glucose 6P => ribulose 5P
Pentose phosphate pathway, non-oxidative phase, .

M00007 phosp . P Y P Central carbohydrate metabolism 30
fructose 6P => ribose 5P

MO0O0009 | Citrate cycle (TCA cycle, Krebs cycle) Central carbohydrate metabolism 30
Citrate cycle, first carbon oxidation, oxaloacetate .

MO00010 Central carbohydrate metabolism 30
=> 2-oxoglutarate
Citrate cycle, second carbon oxidation, 2- .

M00011 : Central carbohydrate metabolism 30
oxoglutarate => oxaloacetate
Nucleotide sugar biosynthesis, glucose => UDP- .

MO00549 & Y & Other carbohydrate metabolism 30
glucose
Nucleotide sugar biosynthesis, galactose => UDP-

MO00554 & Y & Other carbohydrate metabolism 30
galactose
Galactose degradation, Leloir pathway, galactose .

M00632 8 ! I pathway, & Other carbohydrate metabolism 30
=> alpha-D-glucose-1P
UDP-N-acetyl-D-gl ine bi thesis,

MO00909 acetyl-mgilicosamine biosynthesis Other carbohydrate metabolism 30
prokaryotes, glucose => UDP-GIcNAc

MO00151 | Cytochrome bcl complex respiratory unit ATP synthesis 30

MO00155 | Cytochrome c oxidase, prokaryotes ATP synthesis 30

MO00157 | F-type ATPase, prokaryotes and chloroplasts ATP synthesis 30

MO0579 Phosphate acetyltransferase-acetate kinase Carbon fixation 30
pathway, acetyl-CoA => acetate

MO00086 | beta-Oxidation, acyl-CoA synthesis Fatty acid metabolism 30

M00120 | Coenzyme A biosynthesis, pantothenate => CoA Cofactor and vitamin metabolism 30
H bi thesis, plants and bacteria, glutamat L .

M00121 €mMe blosynthesis, plants and bacteria, glutamate Cofactor and vitamin metabolism 30
=>heme
Riboflavin bi thesis, plants and bacteria, GTP => o .

MO00125 ,I ° a\{ln losynthesis, plants and bacteria Cofactor and vitamin metabolism 30
riboflavin/FMN/FAD

MO00126 | Tetrahydrofolate biosynthesis, GTP => THF Cofactor and vitamin metabolism 30
Lipoic acid biosynthesis, plants and bacteria, . . .

M00881 . . Cofactor and vitamin metabolism 30
octanoyl-ACP => dihydrolipoyl-E2/H
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MO00899 | Thiamine salvage pathway, HMP/HET => TMP Cofactor and vitamin metabolism 30
Pyridoxal-P bi thesis, R5P + gl Idehyde-3P

MO00916 yn oxa' |osyn. ests glyceraidenyae Cofactor and vitamin metabolism 30
+ glutamine => pyridoxal-P
H bi thesis, bacteria, glut [-tRNA => o .

MO00926 eme blosyn . es1s, bacteria, glutamy Cofactor and vitamin metabolism 30
coproporphyrin lll => heme

- - - n e

M00048 De novo purine biosynthesis, PRPP + glutamine purine metabolism 30
IMP
Adenine rib leotide bi thesis, IMP =>

MO00049 AD?X']I'T?” onucieotiae biosynthesis Purine metabolism 30

MO00050 Guanine ribonucleotide biosynthesis, IMP => purine metabolism 30

GDP,GTP

MO0053 Deoxyribonucleotide biosynthesis, purine metabolism 30
ADP/GDP/CDP/UDP => dATP/dGTP/dCTP/dUTP

Pyrimidine deoxyribonucleotide biosynthesis, UDP

M00938 Pyrimidine metabolism 30
=>dTTP
- - - .
M00023 Tryptophan biosynthesis, chorismate Aromatic amino acid metabolism 29
tryptophan
MO00020 | Serine biosynthesis, glycerate-3P => serine Serine and threonine metabolism 29
M00140 | Cl-unit interconversion, prokaryotes Cofactor and vitamin metabolism 29
MO00307 | Pyruvate oxidation, pyruvate => acetyl-CoA Central carbohydrate metabolism 28
MO00028 | Ornithine biosynthesis, glutamate => ornithine Arginine and proline metabolism 26
Lysine biosynthesis, succinyl-DAP pathway, . .
M00016 ¥ Y 4 P Y Lysine metabolism 26

aspartate => lysine

553
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557
558

Table 2. Microbiological, biochemical, and genomic characteristics of Corynebacterium strains

Strains: 1, C. hallux sp. nov. CTNIH22T; 2, C. nasorum sp. nov. KPL3804T; 3, C. nasorum sp. nov. MSK185; 4, C. yonathiae MSK136; 5, C. yonathiae KPL2619; 6,
C. tuberculostearicum ATCC 35692T; 7, C. accolens ATCC 49725"; 8, C. macginleyi ATCC 51787". Data were generated in this study for all strains. +, positive;
w, weakly positive; -, negative; +/-, variable. BHI, brain-heart infusion; SBA, tryptic soy agar with 5% sheep blood; TSB, tryptic soy broth. Results in

parentheses indicate optimal values.

2,3

4,5

Microbiological

Growth on solid media

SBA

BHI

BHI with 1% Tween 80

(+)

Growth in liquid media

BHI

BHI with 0.2% Tween 80

(+)

TSB

TSB with 0.2% Tween 80

+

Temperature (°C) for growth 20, (30), 37,42 (w) 30, (37), 42 20, (30), 37,42 (w) | 20(w), 30, (37), 42 (w) | 20, 30 (w), 37,42 30, (37), 42 (w)
Atmospheric conditions for growth
Aerobic (+) (+) (+) (+) (+) +
Microaerophilic + + + + + (+)
Anaerobic - w w - w w
pH for growth 7-8(7-8) 6-8(7-8) 6-8(7-8) 6-8(7-8) 7-8(7-8) 7-8(8)
Salinity for growth <14% <10% <10% <10% <14% <10%
Biochemical
Nitrate reduction - - - - + +
Pyrazinamidase - w - - - -
Pyrrolidonyl arylamidase w +/- - - -
Alkaline phosphatase + + - - +

B-Glucuronidase

B-Galactosidase
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o-Glucosidase

N-Acetyl-B-glucosaminidase

Esculin hydrolysis

Gelatin hydrolysis

Urea hydrolysis

Catalase

Oxidase

Motility

arbohydrate fermentation

D-glucose

D-ribose

D-xylose

D-mannitol

D-maltose

D-lactose

D-saccharose (sucrose)

Glycogen

enomic

GenBank accession number(s)

GCF_032821755.1

GCF_037908315.1,
GCF_030229765.1

GCF_037908465.1,
GCF_022288805.2

GCF_016728365.1

GCF_023520795.1

GCF_003688935.1

Genome length (Mbp)

2.53

2.45,2.43

2.47,2.35

2.45

2.47

2.43

GC content (mol%)

58.5

58.5, 58.7

58.5, 58.6

59.7

59.7

57.1
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560 Table 3. Cellular fatty acid composition of Corynebacterium spp. strains by fatty acid methyl esters (FAME) analysis

561 Strains: 1, C. hallux sp. nov. CTNIH22T; 2, C. nasorum sp. nov. KPL3804T; 3, C. nasorum sp. nov. MSK185; 4, C. yonathiae MSK136; 5, C. yonathiae KPL2619; 6,
562 C. tuberculostearicum ATCC 35692T; 7, C. accolens ATCC 49725T; 8, C. macginleyi ATCC 51787". Data were generated in this study for all strains. —, not
563 detected. Percentages may not sum to 100% due to rounding.

Fatty Acid 1 2 3 4 5 6 7 8
Saturated
9:0 - - - - - 2.6 - -
12:0 0.3 - - - - - - -
14:0 2.2 1.0 3.4 2.4 5.2 3.0 5.4 3.5
16:0 26.9 34.5 35.4 325 42.6 35.1 33.9 33.7
17:0 1.4 1.8 1.3 1.5 4.9 1.9 1.4 1.5
18:0 12.9 15.6 12.1 15.8 13.2 13.1 15.7 18.4
10Me-18:0 1.1 - - - - - - -
19:0 0.1 - - - - - - -
20:0 0.1 1.0 0.7 1.0 1.9 - 1.6
Unsaturated
13:1 wic 0.6 - - - - 2.2 - 18.0
14:1 w5c¢c 0.1 - - - - - -
15:1 w5c¢c - - 0.6 - - - - -
15:1 w8c 0.2 - - - - -
17:1 w8c 3.0 - 0.9 0.9 - - - -
18:1 w9c 325 21.4 17.5 22.8 19.3 20.3 16.6 -
20:1 w9c 0.3 - - - - - - -
20:4 w6,9,12,15c 1.7 3.3 3.4 2.8 - 2.6 3.7 1.9
Branched-chain
15:0 iso 0.3 - - - - - - -
15:0 anteiso 04 - 0.6 - - - - -
16:0iso 0.3 - - - - - - -
17:0iso 0.5 - 0.6 - - - - -
17:0 anteiso 0.8 0.9 0.9 0.9 - - - 0.9
18:0iso 0.3 - - - - - - -
19:0iso 04 - - - - - - -
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564

20:0 iso - - 0.4 - - - -
Summed features*

16:1 w6c or 16:1 w7c 1.4 2.1 2.2 1.8 - 1.8 2.6 1.7

18:1 w6c or18:1 w7c 6.1 8.5 9.0 8.0 6.1 7.5 9.5 9.2

18:2 w6,9c or 18:0 anteiso 5.9 10.1 11.1 9.5 8.7 8.0 11.2 9.9

19:1 w9cor19:1 wlic 0.3 - - - - - - -

*groups of more than one fatty acid that could not be separated by gas chromatography
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Figure 1. Maximum-likelihood 16S rRNA gene phylogeny of new isolates and type strains of
Corynebacterium species. A maximum likelihood phylogeny based on nearly full-length 16S rRNA
genes of Corynebacterium species with ultrafast bootstrap values below 95 at many nodes.

Mycobacterium tuberculosis H37RV' is the designated outgroup.

o Myocobacterium H37Rv" (GCF_000195855.2)
Corynebacterium pseudopelargi 812CH (GCF_003814005.1)
00983555 100 Corynebacterium pelargi 136/3 (GCF_004114895.1)

Corynebacterium poilutisoli VDS11 (GCF_900177745.1)
Corynebacterium humireducens DSM 45392" (GCF_000819445.1)
Corynebacterium nasicanis CCUG 51943 (GCF_042658165.1)
Cory ium appendicis DSM 445317 (GCF_900156665.1)

Cory ium pilosum NCTC11862" (GCF_900447205.1)
Corynebacterium casei LMG S 19264 (GCF_000550785.1)
Corynebacterium ammoniagenes MGYG HGUT 01533 (GCF_902381765.1)
Corynebacterium stationis DSM 203027 (GCF_001941345.1)
Corynebacterium lizhenjunii ZJ 599 (GCF_011038655.2)
Corynebacterium endometrii LMM 1653 (GCF_004795735.1)
Corynebacieri 0J8 (GCF_001941465.1)

Corynebacterium phocae M408 (GCF_001941565.1)
Corynebacterium striatum FDAARGOS 1115 (GCF_016728105.1)
Corynebacterium simulans Wattiau (GCF_001586235.1)
Corynebacterium singulare 1BS B52218 (GCF_000833575.1)
Corynebacterium minutissimum NCTC10288 (GCF_900478045.1)
Corynebacterium aurimucosum ATCC 700975" (GCF_000022905.1)
99| Corynebacterium hesseae c¢19Ua 1097 (GCF_027570215.1)

Corny im camporealensis DSM 44610 (GCF_000980815.1)
Corynebactenium confusum DSM 443847 (GCF_030408715.1)
Cor bacterium ili DSM 454357 (GCF_000420605.1)
| Gorynebacterium propinquum FDAARGOS 1112 (GCF_016728665.1)
L cor bacterium dodiphtheritic DSM 442877 (GCF_000688415.1)
Cory im incognita Q3630 (GCF_014217255.1)
Corynebacterium accolens DSM 442787 (GCF_023520795.1)
Coryr n yi CCUG 323617 (GCF_003688935.1)

Corynebacterium marquesiae c19Ua 1217 (GCF_027570155.1)
sCtn’ynebacteru.tml marquesiae MSK144 (GCF_030228985.1)
Corynebacterium marquesiae 620 CAUR (GCF_001057615.1)
Corynebacterium curieae c8Ua 1817 (GCF_027570035.1)
rCorynebacterium yonathiae MSK136 (GCF_022288805.2)
Corynebacterium yonathiae ¢21Ua 68" (GCF_027570195.1)
Corynebacterium yonathiae KPL2619 (GCF_037908465.1)
Corynebacterium marquesiae KPL4083 (GCF_037908305.1)
Corynebacterium curieae CTNIH19 (GCF_032821675.1)
Corynebacterium hallux CTNIH22™ (GCF_032821755.1)
Corynebacterium hallux CTNIH23 (GCF_030450155.1)
Corynebacterium hallux CTNIH20 (GCF_030503735.1)
Corynebacterium hallux CTNIH21 (GCF_032821695.1)
82 | Cor bacterium tub lostearit SK141 (GCF_000175635.1)

89

1| Corynebacterium tubercult icum DSM 449227 (GCF_013408445.1)
Cor bacterium tub lostearit MSK207 (GCF_030229345.1)
Corynebacterium tuberculostearicum KPL3807 (GCF_030176495.1)
Tree scale: 0.1 | | 57| Coryr ium nasorum CTNIH24 (GCF_022347295.1)
Branch Length: —#/~ 6] Corynebacterium nasorum KPL3804" (GCF_037908315.1)

sa| Corynebacterium nasorum MSK185 (GCF_030229765.1)
Corynebacterium nasorum LK1134 (GCF_025151445.1)
Corynebacterium nasorum FDAARGOS 1055 (GCF_016599755.1)

Ultrafrast bootstrap: #

Type Strain: strain name™
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571  Figure 2. Average nucleotide identity (ANI) among species closely related to C. tuberculostearicum
572 revealed two novel species. We used pyani v0.2.9 with ANIb BLAST+ to construct a whole-genome
573 identity ANI heat matrix (see Supplemental Methods) [22, 23]. Boxes highlight species boundaries
574  defined by an ANI threshold of 95% with purple for C. nasorum sp. nov. (Cna), pink for C. curieae
575  (Ccu), light green for C. hallux sp. nov. (Cha), dark green for C. yonathiae (Cyo), turquoise for C.

576  marquesiae (Cmq), and blue for C. tuberculostearicum (Ctu). For C. tuberculostearicum, all strains
577  reached a 95% ANI threshold compared to the type strain in at least one direction. The ANIb

578 comparisons indicate that the genome named C. aurimucosum_620_CAUR should be assigned to C.

579 marquesiae.

953 953 955 100.0] CtuMSK207

949 949 100.0/955| Ctu KPL38D7
96.1 100.0/ 948 953 CtuSK141
100.0 861 850 954| CtuDSM 448227
96.1 86.7 96.8 100.0) Cmq MSK144
862 861 1000 868 Cmqel9Ua 1217
§5.9 1000 96,1 96.6 ©mq KPL4083
100.0 95.9 963 96.1 Cau 620 CAUR
99.0 100.0 100.0| Cyo MSK136

99.1 100.0 99.9 Cyo c21Ua 687

100.0 99.2 99.1 Cyo KPL2619
973 981 985 1000 Cha CTNIH23
97.5 97.9 100.0 9B.5 Cha CTNIH21
976 1000 979 981 Cha CTNIH20

Cha CTNIH22T

100.0 97.5 97.5 97.3

Ceu CTNIH19

99.9 100.0}
100.0 99.9

978 0977 975 978 983 981 G78 09709 0976 878 1000 983 982 Cna CTNIH27

Ceu cBUa 1817
978 976 974 97.8 98.2 982 977 97.9 983 984 098.2 100.0 100.0f Cna MSKO071
977 978 974 978 98.2 982 977 97.9 982 984 08.2 100.0 999 Cna KPL3649
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97.9 97.7 974 98.1 100.0 985 981 98.4 980 981 98.1 982 982 Cke FDAARGOS 1055
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98.0 98.2 100.0 97.2 97.4 97.3 O74 97.3 0973 97.5 074 974 974 Cna KPL4035
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< a <
FEFE LTI I P LI LFELEET L FET PSP SS
3 (& G S
&G E g P E & & 7P & S TS S @5’ T P
0‘@ 00@ @ oc@ & d\w d_e s 0‘\@ cF@ 0‘\‘0 0‘@ & 0(? @ 0‘@ (}@ C‘F’b O*c \\on U‘D ! (ﬁ\& 0‘-'\ d\\o 0% < 0@ & % identity
\_@J
580 N @ 9 100


https://doi.org/10.1101/2024.11.21.624533
http://creativecommons.org/licenses/by-nc-nd/4.0/

582

583

584

585

586

587

588

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.21.624533; this version posted November 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 3. Maximum-likelihood phylogenomic tree of new isolates and type strains of
Corynebacterium species. A maximum likelihood phylogenomic tree was constructed using 305
shared conservative core gene clusters and Mycobacterium tuberculosis H37Rv' as the designated
outgroup. This monophyletic tree shows robust separation of Corynebacterium species based on

ultrafast bootstrap values.

862—— Mycobacterium tuberculosis H37Rv" (GCF_000195955.2)
— Corynebacterium pseudopelargi 812CH (GCF_003814005.1)

-/0.862H100 100 L Corynebacterium pelargi 136/3 (GCF_004114895.1)
Corynebacterium humireducens DSM 45392" (GCF_000819445.1)
85200 ﬁowﬂebacterium pollutisoli VDS11 (GCF_900177745.1)
100 Corynebacterium nasicanis CCUG 51943 (GCF_042658165.1)

Corynebacterium pilosum NCTC11862T (GCF_900447205.1)
Corynebacterium appendicis DSM 445317 (GCF_900156665.1)
— Corynebacterium pseudodiphtheriticum DSM 442877 (GCF_000688415.1)
[ Corynebacterium propinquum FDAARGOS 1112 (GCF_016728665.1)
Corynebacterium incognita Marseille Q3630 (GCF_014217255.1)
Corynebacterium massiliense DSM 45435™ (GCF_000420605.1)
Corynebacterium confusum DSM 443847 (GCF_030408715.1)
Corynebacterium endometrii LMM 1653 (GCF_004795735.1)
Corynebacterium casei LMG S 19264 (GCF_000550785.1)
Corynebacterium stationis DSM 20302" (GCF_001941345.1)
Corynebacterium ammoniagenes MGYG HGUT 01533 (GCF_902381765.1)
Corynebacterium phocae M408 (GCF_001941565.1)
Corynebacterium lizhenjunii ZJ 599 (GCF_011038655.2)
Corynebacterium camporealensis DSM 446107 (GCF_000980815.1)
Corynebacterium flavescens 0J8 (GCF_001941465.1)
Corynebacterium striatum FDAARGOS 1115 (GCF_016728105.1)
Corynebacterium simulans Wattiau (GCF_001586235.1)
Corynebacterium singulare 1BS B52218 (GCF_000833575.1)
Corynebacterium minutissimum NCTC10288 (GCF_900478045.1)
Corynebacterium hesseae c19Ua 109" (GCF_027570215.1)
Corynebacterium aurimucosum ATCC 7009757 (GCF_000022905.1)
100 Corynebacterium macginleyi CCUG 32361" (GCF_003688935.1)
100 Corynebacterium accolens DSM 44278T (GCF_023520795.1)
100| Corynebacterium curieae c8Ua 1817 (GCF_027570035.1)
Corynebacterium curieae CTNIH19 (GCF_032821675.1)
Corynebacterium hallux CTNIH22 (GCF_032821755.1)
100]r Corynebacterium hallux CTNIH20 (GCF_030503735.1)
100f- Corynebacterium hallux CTNIH23 (GCF_030450155.1)
9L Corynebacterium hallux CTNIH21 (GCF_032821695.1)
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589  Figure 4. Species closely related to C. tuberculostearicum are estimated to largely share a common
590 set of metabolic capabilities. The heatmap represents average estimated module stepwise

591  completion scores by KEGG subcategories for each of the 30 genomes from Figure 2 covering six
592  species that clade closely with C. tuberculostearicum (Figures 3 and S2A). Average stepwise

593  completion scores were calculated including only modules detected in at least one of the analyzed
594  genomes. (P) represents pathway modules; (S) represents signature modules. Cna, C. nasorum sp.
595 nov.; Ccu, C. curieae; Cha, C. hallux sp. nov.; Cyo, C. yonathiae; Cmq, C. marquesiae; Ctu, C.

596 tuberculostearicum.
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Figure 5. Scanning electron microscopy images (12,000x) of strains C. hallux sp. nov. CTNIH22T (A), C. nasorum sp. nov. KPL3804" (B), and C. yonathiae
KPL2619 (C).
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60s Supplementary Figures

606

607  Figure S1. A phylogenomic tree of 68 members of the Corynebacterium genus illustrates the

608  distinct species closely related to Corynebacterium tuberculostearicum. In contrast, phylogenetic
609 trees of the same 68 Corynebacterium species based on either the (B) 16S rRNA gene or (C) rpoB
610 gene showed the limitations of single-gene phylogenies for this genus. (A) A maximum-likelihood
611 phylogenetic tree of 68 Corynebacterium species based on 16S rRNA gene sequences from 72

612  Corynebacterium strain genomes (Table S1) representing species across the breadth of the

613 phylogeny of this genus has a number of poorly supported branches. (B) Although better than the
614  full-length 16S rRNA gene phylogeny, a maximum-likelihood phylogeny based on full-length rpoB
615  gene sequences of the same 72 strains also illustrates the limitation of single-gene phylogenies for
616 resolving closely related Corynebacterium species. For example, the strains C. yonathiae KPL2619
617  (Cyo_KPL2619) and C. marquesiae c19Ua_121 have an average nucleotide identity based on BLAST+
618  (ANIb) below 95% (Figure 2), indicating they are distinct species, yet these incorrectly clade together
619 here. Similarly, several strains assigned to the proposed species C. nasorum sp. nov. based on ANIb
620  values are incorrectly in clades of other closely related species. (C) A maximume-likelihood

621 phylogenomic tree of the same 68 Corynebacterium species was constructed using 193

622  concatenated and aligned shared single-copy core gene clusters from 72 Corynebacterium strain
623  genomes (Table S1). The majority of branches in this phylogeny exhibit strong support with ultrafast
624 bootstrap values of 95 or higher. See Supplemental Methods for description of the construction of

625  these phylogenies.
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627 Figure S2. A phylogenomic tree provided superior resolution among the species most closely

628 related to Corynebacterium tuberculostearicum compared to single-gene phylogenies. (A) The
629  maximum likelihood phylogenomic tree constructed based on 1447 conservative core gene clusters
630  provided higher resolution of the distinct clades within the Corynebacterium tuberculostearicum
631 species complex. The use of a large pool of single copy gene clusters shared across 30

632 Corynebacterium genomes within the C. tuberculostearicum species complex enhanced species

633 delineation, with robust ultrafast bootstrap values supporting the distinct clades. Ccu (pink

634  branches) is C. curieae; Cha (light green branches) is C. hallux sp. nov.; Ctu (blue branches) is C.

635 tuberculostearicum; Cmq (turquoise branches) is C. marquesiae; Cyo (dark green branches) is C.
636  yonathiae; and Cna (purple branches) is C. nasorum sp. nov. (B) In contrast, a full-length 16S rRNA
637  gene maximum likelihood phylogeny had strains of different species sometimes intermingled in a
638 single clade and was poorly supported based on ultrafast bootstrap values. This is consistent with
639  the known limitations of using 16S rRNA gene phylogenies within this genus and highlights the

640 limitations of using the 16S rRNA gene for resolving evolutionary relationships within the C.

641 tuberculostearicum species complex. (C) The full-length rpoB gene maximum likelihood phylogeny
642  had better support than the 16S rRNA gene for the species within the C. tuberculostearicum species
643 complex. However, it still had two clades with intermingled species and was inferior to the

644 phylogenomic tree using conservative core gene clusters shown in S2A.
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646 Supplementary Methods

647

648 Construction of phylogenic trees. To generate the maximum likelihood 16S rRNA gene phylogenies
649 shown in Figures 1, S1A, and S2B, we performed the following steps. First, to identify the 16S rRNA
650  genes present in each genome, we ran barrnap v0.9 (https://github.com/tseemann/barrnap) with
651 default parameters on the fasta files containing the genome assemblies for each phylogeny. We
652  then used segkit (v2.6.0) grep -r -n -p '16S_rRNA’ to select the 16S rRNA gene sequences from each
653  genome’s total rRNA sequences [33]. For genomes that had multiple copies of the 16S rRNA gene,
654  we manually inspected the sequences and removed copies that were less than 50% of the expected
655 16S rRNA gene sequence length using AliView v1.28 [34], aligned the remaining copies using

656 MUSCLE v3.8.1551 with default parameters, and generated a consensus 16S rRNA gene sequence
657 using the EMBOSS cons command [35, 36]. We concatenated and aligned the single and consensus
658 16S sequences with the linux ‘cat’ command and MUSCLE. The resulting 16S rRNA gene alignment

659  was used as input for IQ-TREE2 v2.1.3 [37] and we set the parameters -alrt to 1000 and -B to 1000.
660

661  To generate the maximume-likelihood rpoB phylogenies shown in Figures S1B and S2C, we identified
662 the single copy rpoB gene cluster from the conservative core determined with GET_HOMOLOGUES
663 [38] (see below) and then aligned and concatenated the rpoB gene from all the genomes with

664  GET_PHYLOMARKERS [39]. Then we used IQ-TREE2 with the same parameters as the 16S rRNA tree

665 [37].
666

667  To generate the maximum likelihood phylogenomic trees in Figures 3, S1C and S2A, we used Prokka
668  v1.14.6 [40] with default settings to annotate each bacterial genome, based on the prediction of

669  coding sequences with Prodigal [41]. For detailed methods on the annotation of genomic assemblies
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670 , please see https://klemonlab.github.io/NovCor_Manuscript/Methods_Prokka_Annotations.html.
671  We then used GET_HOMOLOGUES (version 13062023) [38] to separately identify the core gene

672  clusters (GCs) shared by the set of strains used for each individual tree. The consensus of the single
673  copy core GCs from three clustering algorithms; bidirectional best-hits, cluster of orthologs triangles
674 (COGS) v2.1 [42], and Markov Cluster Algorithm OrthoMCL (OMCL) v2.4 [43], defined the

675 conservative shared core genome for each group using ./get_homologues.pl. Subsequently, we

676 employed GET_PHYLOMARKERS v2.2.9.1 [39] to align and concatenate the shared single copy core
677  gene clusters. These were then analyzed using IQ-TREE2 v2.1.3 [37] with the following parameters: -
678  p (edge-linked partition model and ModelFinder functions) [44, 45], -alrt 1000 (replicate SH-like

679  approximate likelihood ratio test) [46], and -B 1000 (number of ultrafast bootstrap replicates) [21].

680

681 To visualize, scale, edit, annotate names, and root trees at the midpoint for each phylogeny, we used
682 the phylogenetic tool iTOL version 6 [47]. For detailed methods on the construction of all
683 phylogenetic trees, please see

684  https://klemonlab.github.io/NovCor_Manuscript/Methods_Phylogenies.html.

685

686  Average Nucleotide Identity. We used pyani (version 0.2.9) [22] with ANIb BLAST+ [23, 48] to
687  construct a WGS identity ANI heat matrix. We used the data in the pyani output file

688  ANIlb_percentage_identity.tab to create Figure 2 in R, with genome order based on the

689  corresponding .svg file. For detailed methods, see

690  https://klemonlab.github.io/NovCor_Manuscript/Methods_ANIs.html.
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