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Abstract

Diagnosis of Parkinson’ disease (PD) carries a high misdiagnosis rate due to failure to recognize atypical parkinsonian
disorders (APD). Usually by the time of diagnosis greater than 60% of the neurons in the substantia nigra are dead.
Therefore, early detection would be beneficial so that therapeutic intervention may be initiated early in the disease process.
We used splice variant-specific microarrays to identify mRNAs whose expression is altered in peripheral blood of early-stage
PD patients compared to healthy and neurodegenerative disease controls. Quantitative polymerase chain reaction assays
were used to validate splice variant transcripts in independent sample sets. Here we report a PD signature used to classify
blinded samples with 90% sensitivity and 94% specificity and an APD signature that resulted in a diagnosis with 95%
sensitivity and 94% specificity. This study provides the first discriminant functions with coherent diagnostic signatures for
PD and APD. Analysis of the PD biomarkers identified a regulatory network with nodes centered on the transcription factors
HNF4A and TNF, which have been implicated in insulin regulation.
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Introduction

Parkinson’s disease (PD) is the second most common neurode-

generative disease. Approximately 95% of cases of PD are idiopathic

most likely caused by environmental factors and genetic suscepti-

bility. Unfortunately by the time of diagnosis most of the

dopaminergic neurons in the substantia nigra are dead. Diagnosis

of PD is based on classical motor symptoms including resting tremor,

rigidity, bradykinesia and postural instability. Despite clinical

criteria for PD there remains a high rate of misdiagnosis with

atypical parkinsonian disorders (APD), such as progressive supra-

nuclear palsy (PSP) and multiple system atrophy (MSA) [1]. APD

accounts for 10–20% of individuals with parkinsonism [2]. MSA is a

sporadic neurodegenerative disease characterized by parkinsonian

symptoms, cerebellar ataxia and autonomic dysfunction. Like PD,

MSA is an alpha-synucleinopathy in which glial cytoplasmic

inclusions most likely play a role in the pathogenesis of the disease.

PSP is characterized by supranuclear palsy, postural instability,

ophthalmoplegia and mild dementia. Accumulation of neurofibril-

lary tangles composed of tau protein is a common pathological

feature of PSP. Despite the distinct pathological features there is

phenotypic overlap between these disorders. Since early diagnosis is

difficult, minimally invasive biomarkers capable of distinguishing

PD from APD would facilitate clinical care and clinical research.

Messenger RNA (mRNA) transcripts are excellent candidates for

diagnostic biomarkers since very small quantities may be amplified

and quantified by quantitative polymerase chain reaction (qPCR).

Numerous studies have examined changes in global gene expression

in postmortem brains of PD patients and these have been analyzed in

a meta-genome-wide expression study (GWES) [3]. In these studies

PD patients exhibited changes in expression of genes related to

dopaminergic neurotransmission, synaptic function, electron trans-
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port, ubiquitin-proteasomal system, cytoskeletal maintenance, cell

cycle and adhesion. Standard microarrays were used in these studies

and, therefore, changes in transcription and RNA stability were

assessed. In addition to these mechanisms of regulation of gene

expression, alternative splicing responds rapidly to environmental

factors to produce several mRNAs from a single pre-mRNA. It has

been estimated that 92–94% of human pre-mRNAs are alterna-

tively spliced [4]. Many neurological diseases are associated with

abnormalities in the regulation of splicing including autosomal

recessive juvenile parkinsonism (AR-JP) [5] and frontotemporal

dementia and Parkinsonism linked to chromosome 17 (FTDP-17)

[6,7]. In addition, DJ-1, which plays a role in the development of

some forms of familial PD, has been implicated in tyrosine

hydroxylase splicing by inhibiting the sumoylation of the splicing

factor PTB [8]. The deregulation of synphilin-1 splicing also occurs

in the brains of PD patients [9]. Mitochondrial damage, which plays

a role in PD, disrupts splicing regulation in neurons [10]. A few

studies also examined changes in splicing in animal models of PD. In

an MPTP mouse model, overexpression of one splice variant, ache-

r, in the brain was protective, whereas overexpression of another

variant, ache-s, enhanced the development of Parkinsonism [11]. In

another study, the expression of splice variants of fosB and rgs9 was

disrupted in the striatum and/or substantia nigra pars compacta of

MPTP-treated Parkinsonian mice compared to controls [12].

It is clear from the above studies that the loss of nigrostriatal

dopamine neurons in PD correlates with changes in splicing within

the brain. Brain tissue, however, is not a useful source for PD

biomarkers and RNA is often degraded in post-mortem tissue. In

contrast, blood biomarkers are useful because they are non-

invasive. In this regard, it is clear that the immune system responds

to changes in dopamine [13]. This is not unexpected since

catecholamines are synthesized from tyrosine in lymphocytes and

macrophages [14]. Dopamine receptors are expressed in T

lymphocytes, monocytes, neutrophils, eosinophils, B cells and

natural killer cells [15]. Dopamine affects the activity of regulatory

T cells [16]. A ‘‘brain-to-T cell’’ pathway has been proposed to

explain how peripheral T lymphocytes might respond to

dopamine in the brain based on the fact that T lymphoblasts

can cross the blood-brain barrier [17]. Dopamine transporters are

also expressed in lymphocytes [18]. Dopamine biosynthesis and

signaling is disrupted in the blood of PD patients [19,20,21,22]. In

addition, PD patients have altered mitochondrial function in the

blood similar to that seen in the brain [23,24,25].

In an earlier study, total mRNA abundance in whole blood was

assayed using standard microarrays in order to identify transcripts

associated with risk of PD [26]. In later studies, the expression of

several additional genes was shown to be dysregulated in blood

cells of patients compared to controls [27,28]. In these studies,

splice variant-specific biomarkers may have been missed since total

mRNA was measured. Since environmental factors play an

important role in idiopathic PD, it is highly likely that splice

variants in blood may provide a rich source of biomarkers

potentially more sensitive than gene expression profiling. In this

regard, splice variants of parkin and other transcripts were found

to be dysregulated in leukocytes of PD patients compared to

healthy controls (HC) [29,30]. In addition, the splicing factor

SRRM2 is dysregulated in whole blood of PD patients [31].

Here, we identify and validate biosignatures for PD and APD

composed of splice variant biomarkers in blood whose expression

is altered in patients compared to controls. Network analysis of the

PD biomarkers reveals a network centered on the transcription

factors HNF4A and TNF, which have been implicated in insulin

regulation.

Results

Biomarker Discovery and Validation
Samples used in this study came from early stage PD patients

(Hoehn & Yahr scale stage 1 and 2) and age-matched healthy HC,

MSA and PSP controls who were enrolled in the Prognostic

Biomarker Study (#NCT00653783) [32]. Information about the

study participants is provided in Table 1 and inclusion/exclusion

criteria used for participants of the study and the diagnosis of PD,

MSA and PSA are provided in Table S1. Clinical diagnosis of PD

was based on the United Kingdom Parkinson’s Disease Society

Brain Bank criteria [33]. A diagnosis of probable MSA was based

on Consensus Criteria [34] and probable PSP based on NINDS-

PSP Criteria [35].

In order to identify a splice variant-specific profile associated

with PD we probed cDNA prepared from RNA extracted from

whole blood of participants with 257,319 probes on microarrays

designed to monitor splicing events (Fig. 1A, training set 1).

Transcripts (10,563) that were differentially expressed between any

two groups at least 2-fold were analyzed further as putative

biomarkers. The data from the microarrays was analyzed to

identify disease markers with good predictive accuracy. Splice

variants expressed in PD patients were compared to each control

group individually to identify 61 putative markers and compared

to a pool containing all of the control groups to identify 12

additional candidates (Fig. 2A). In a third analysis, leave-one-out-

cross-validation (LOOCV) was used to optimize the accuracy of

prognostic prediction of the splice variants, which produced 11

additional candidates. Candidate risk markers were prioritized for

validation based on the role they may play in PD etiology or

progression. Some candidates were eliminated due to technical

difficulty in the design of splice variant-specific primers or their

abundance was determined to be insufficient to be reliably

detected by qPCR. Thirteen splice variants met these criteria and

were validated in qPCR assays (training sets 1 and 2, Figs. 1A, 1B,

3 and S2A). The final PD classifier included c5orf4, wls, macf1,

prg3, eftud2, pkm2, slc14a1-s, slc14a1-l, mpp1, copz1, znf160,

map4k1 and znf134.

Principal components analysis (PCA) on the microarray data

and cluster analysis of the PCR data showed that PD patients can

be separated from controls using the 13 biomarkers (Fig. 2B and

2C). In order to identify splice events whose abundance correlates

with the binary diagnostic categories (PD vs. controls), we

calculated the Pearson correlation coefficients (r). The frequency

distribution of 257,319 r values (representing splice events) was

plotted on a histogram to identify candidate risk markers (Fig. S3).

Twelve of the markers have r values above the 95th percentile or

below the 10th percentile indicating a non-random association.

Samples from HC were compared to those from PD, MSA and

PSP patients. The results showed that macf1, mpp1, pkm2, and

slc14a1-l are expressed differentially in healthy individuals

compared to diseased participants (Fig. S4). In order to determine

whether expression of any of the risk factors correlated with

dopamine therapy, Pearson correlation coefficients were deter-

mined. The expression of none of the markers correlated with

dopamine therapy except slc14a1-s (r = 0.66, p = 0.003).

Testing the Prediction Accuracy of the PD Biomarkers
To assess the prediction accuracy of the PD markers in the

classification of the training set, we carried out a LOOCV

(Fig. 1C). The prediction accuracy was 88%, with 87% sensitivity

(17 out of 20) and 90% specificity (17 out of 19). Experimental

results from the test set indicated that PD patients were identified

with 90% sensitivity (p = 0.0001) and 94% specificity (p = 0.00001)
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in accordance with the clinical diagnosis (Fig. 1B). These results

indicate that with the 13 markers, individuals could be identified as

PD or non-PD.

In order to build a prediction model with the highest possible

accuracy, we performed a linear discriminant analysis to

determine which of the biomarkers best discriminate between

PD and controls using the expression values for each biomarker.

Discriminant analysis on the training and test sets showed that the

set of 13 markers resulted in an overall sensitivity of 94% and a

specificity of 96%. (Figs. 1C and 4A). We calculated the

discriminant function coefficients for each marker (Table S3).

The discriminant function revealed a significant association

between groups and all predictors, accounting for 85% of between

group variability (Table S4). The four most significant predictors

were c5orf4 (0.69), mpp1 (0.50), macf1 (0.42), and copz1 (0.40)

(standardized coefficients). Based on this analysis, the canonical

PD discriminant equation is

DPD~{139 �Xc5orf4z2 �Xmpp1{14 �Xmacf1{44 �Xcopz1

{6686773 �Xznf160{9 �Xpkm2z92 �Xznf134

z17443 �Xslc14a1{sz8 �Xwls{65,212 �Xprg3

{1 �Xmap4k1{23521 �Xeftud2z17443 �Xslc14a1{l,

where DPD is the discriminant score value (raw canonical

coefficients, Table S3) and Xi is the mRNA expression level of

each biomarker. We classified cases that give a DPD value below

the cutting point (D#20.4) as PD and those above as non-PD

(Fig. 4A).

Linear discriminant analysis was also used to determine the

predictive accuracy of the biosignature to discriminate between

PD and APD patients and HC for all 124 participants. Based on

this analysis, PD patients were identified with 94% sensitivity and

96% specificity, APD patients with 91% sensitivity and 97%

specificity and HC controls with 69% sensitivity and 87%

specificity (Table S5).

Identifying and Testing the Prediction Accuracy of APD
Biomarkers

Principle components analysis and heat map analysis shows that

samples from PD patients cluster separately from APD patients

using the 13 markers (Fig. S5). To identify the markers with the

highest possible prediction accuracy for distinguishing PD from

APD, we implemented a forward stepwise linear discriminant

analysis (LDA) to build a prediction model. LDA was initially

performed with samples from 31 PD and 20 APD patients

(training set) using 13 PD biomarkers. The Wilk’s lambda criterion

was used to determine if a biomarker became part of the final

prediction model. Implementation of the LDA on the training set

revealed that the 8 markers (copz1, c5orf4, mpp1, macf1, wls,

slc14a1-l, znf134 and map4k1) accurately distinguish PD from

APD with 96% sensitivity and 95% specificity (Figure 4B).

Relative mRNA expression for the biomarkers shows that

c5orf4, copz1, macf1, and wls are up-regulated in PD whereas

mpp1 is down-regulated (Fig. S2B). The strongest predictors were

c5orf4 (0.99), macf1 (0.78), mpp1 (0.57) and copz1 (0.54),

according to the standardized coefficients for the canonical

variables (Table S6). Based on this analysis, the resulting APD

discriminant equation is

DAPD~{169:118 �Xc5orf4{22 �Xmacf1z3:089 �Xmpp1

{51:76 �Xcopz1z11:40 �Xslc14a1{lz14:85 �Xwls

z72:16 �Xznf134{5:50 �Xmap4k1z0:132,

where DAPD is the discriminating value (raw canonical coefficients,

Table S6) and Xi is the mRNA expression level of each biomarker.

We classified cases that give a DAPD value above the cutting point

(D$0.7) as APD and those below as PD (Fig. 4B).

To determine whether the molecular signature of 8 risk markers

could accurately discriminate PD from APD, we applied the

discriminant function to a test set consisting of 20 PD and 14 APD

patients. Mahalanobis distance between each case and the

centroid of the group was evaluated and no significant deviation

was observed. Multicollinearity is not a problem in the final

prediction model since the tolerance values for all predictors is

higher than 0.10 (Table S7). To assess the robustness of our

prediction model, the canonical correlation was evaluated. The

eigenvalue is 1.99 and the canonical correlation accounts for 82%

of the variance. The Wilk’s lambda value was statistically

significant (0.33, P,10204, Table S8). Using the discriminant

analysis consisting of 8 APD markers, 19 samples out of 20 were

classified as PD whereas the remaining 14 were classified as APD

with 95% sensitivity and 94% specificity in accordance with the

clinical diagnosis (Figure 4B).

To determine the predictive accuracy of the APD biosignature

to discriminate PD from APD we implemented a linear

Table 1. Information about study participants.

PD HC MSA PSP

Patient cohort T1 T2 Test T1 T2 Test T1 T2 Test T1 T2 Test Total

Number 19 12 20 11 10 18 4 6 7 5 5 7 124

Median age 61 60 58 65 55 57 64 63 63 74 77 67 NA

Average age 63 64 61 65 56 61 65 62 64 72 72 68 NA

% Female 37 8 10 55 40 77 50 63 37 60 20 43 NA

% Male 63 92 90 45 60 33 50 67 63 40 80 57 NA

L-dopa 19 12 19 0 0 0 4 6 7 3 5 6 81

Diabetes 0 0 0 2 0 2 0 1 1 0 1 0 7

Hoehn & Yahr stage 2 2 2 NA NA NA NA NA NA NA NA NA NA

HC is healthy control, PD is Parkinson’s disease, MSA is multiple system atrophy, PSP is progressive supranuclear palsy patients, T1 is training set 1, T2 is training set 2
and NA is not applicable.
doi:10.1371/journal.pone.0043595.t001
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Figure 1. Design of workflow used to identify splice variant-specific risk markers of PD. The numbers inside the boxes correspond to the
number (N) of samples. Samples from PD patients were randomly chosen to be part of the training or test sets of samples. (A) Identifying the PD risk
markers using a training set. In order to identify putative biomarkers, the training set (training set 1) was used in the microarray screen. The data from
the microarray analysis was analyzed by three methods in order to identify markers with good specificity, sensitivity and predictive accuracy. PD
patients were compared to each control group separately, compared to pooled controls as a single group and using LOOCV. Splice variants that were
up- or down-regulated by 2-fold (P,0.05) in PD patients were considered candidate risk markers. The candidate risk markers were manually curated
to include those that may play a role in PD based on pathway and disease analysis (Ingenuity Systems software) and to exclude those for which
primers could not be designed or could not be detected by qPCR. Thirteen of the risk markers were replicated by qPCR (Training set 1). (B)
Experimentally testing the PD risk markers with training and test sets. The 13 risk markers were validated in two independent test sets (training set 2
and test set) using qPCR. Clinical diagnosis of the participants was based on neurological exam. (C) Statistical analysis. LOOCV KNN was used to
determine the predictive accuracy of the samples from the training set (training set 1). In addition, linear discriminant analysis was used to test the
predictive accuracy on the training and test sets. PD is Parkinson’s disease patients represented in green, HC is healthy controls represented in red,

Parkinsonian Disorders Biomarkers
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MSA is multiple system atrophy controls represented in blue, PSP is progressive supranuclear palsy controls represented in purple and Control is
HC+MSA+PSP controls represented in yellow. TP = true positive; TN = true negative; FP = false positive; FN = false negative; PPV = positive predictive
value; NPV = negative predictive value.
doi:10.1371/journal.pone.0043595.g001

Figure 2. Heat map and PCA plot of the PD risk markers. (A) Venn diagram of splice events that were differentially expressed in PD patients
compared to controls. PD patients were compared to each control group (HC, MSA or PSP) individually or a pooled control group that included HC,
MSA and PSP participants. (B) PCA analysis of the data from the microarrays of the risk markers. HC is healthy control represented in red, PD is
Parkinson’s disease patient represented in green, MSA is multiple system atrophy control represented in blue and PSP is progressive supranuclear
palsy control represented in purple. (C) Heat map of the data from the qPCR assay of the risk markers analyzed using the DDCt method. Each column
in the heat map corresponds to a PD patient or a control. Each row represents the relative level of abundance of a single splice variant. Each splice
variant is denoted by the name of the mRNA. Color scales representing splice variant expression with red representing high abundance relative to the
mean abundance; blue representing low abundance relative to the mean abundance; and gray representing no significant change in abundance
level between the sample and control. Gene expression microarray data has been deposited at Gene Expression Omnibus under accession number
GSE34287.
doi:10.1371/journal.pone.0043595.g002
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Figure 3. Relative mRNA quantification graphs of the risk markers comparing PD patients with each control group. A one-way
ANOVA and tukey-kramer post-hoc analysis was used to compare PD patients with HC, MSA and PSP controls separately. Fold change values relative
to a calibrator are displayed with error bars indicating SEM. Gapdh mRNA was used as a reference gene and HC as a calibrator. PD is Parkinson’s

Parkinsonian Disorders Biomarkers
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discriminant analysis using the gene expression data from all 85

patients. Based on this analysis, PD patients can be distinguished

from all controls with 96% sensitivity and 90% specificity and

from APD patients with 94% sensitivity and 96% specificity (Table

S9).

Assessing the Biological Relevance of the Biomarkers
Gene pathway analysis indicated that the PD biomarkers are

associated with Wnt signaling, muscle inactivity response, pyruvate

biosynthesis and vesicle transport (g:Profiler [36] and Ingenuity

Systems). In order to understand the potential biological relevance

disease, HC is healthy control, MSA is multiple system atrophy control and PSP is progressive supranuclear palsy control. *p,0.01, **p,0.005,
***p,0.001 and ****p,0.0001.
doi:10.1371/journal.pone.0043595.g003

Figure 4. Linear discriminant analysis of the biomarkers. (A) Discriminant scores of PD samples (green) are compared to controls (HC, PSP and
MSA, yellow) using the 13 PD biomarkers. (B) Discriminant scores of PD samples (green) are compared to APD (PSP and MSA, yellow) using the 8 APD
biomarkers.
doi:10.1371/journal.pone.0043595.g004
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of the biomarkers for PD we used a prediction tool that identified a

regulatory network connecting 12 of the 13 markers (Fig. 5A). The

network centered on HNF4A and TNF. Both of these transcrip-

tion factors have been implicated as playing a role in insulin

regulation [37,38]. The APD regulatory network connected 5

markers to the TNF and PTEN signaling pathways, which are

involved in neurodegeneration (Figure 5B) [39].

Discussion

In this study we show that early stage PD is associated with

significant gene expression changes in blood that allowed the

identification of a biosignature composed of 13 biomarkers that

distinguish PD patients from HC and disease controls. We also

identify an APD biosignature of 8 biomarkers that distinguish PD

from APD patients. To our knowledge these are the first

discriminant functions with coherent diagnostic signatures that

assign a weight to each of the markers independently for their

ability to distinguish PD patients from HC and APD patients.

Gene ontology analysis of the markers identified muscle

inactivity, pyruvate biosynthesis and vesicle transport and

processing, which have previously been identified as playing a

role in PD [40,41]. This is interesting since oxidative stress and

mitochondrial dysfunction play a role in the etiology and/or

development of PD and pyruvate protects mitochondria from

oxidative stress [41]. In addition, alpha-synuclein, which plays a

role in vesicle trafficking, is present in Lewy bodies in neurons of

PD patients and is mutated in some hereditary forms of the disease

(reviewed in [42]). PD is also characterized by cell death in the

substantia nigra. Several of the biomarkers have been implicated

as playing a role in cell death including map4k1 [43], pkm2

[44,45] and prg3 [46]. Further studies are needed to determine if

these genes play a role in cell death in PD.

The PD markers validated in this study are different from those

identified in earlier studies [26,27,28,29,31]. These results reflect

the diverse nature of the methods used to identify changes in gene

expression in blood, including genome-wide microarray screening

(A-AFFY-33 and Human genome SpliceArrayTM v1.0) and PCR

analysis of select transcripts. A thorough search of the Parkinson’s

Disease Database (ParkDB) has revealed that the expression of

slc14a1 and mpp1 was identified in an earlier study as

dysregulated in the blood of PD patients [47]. In the earlier study

they were not identified as biomarkers because of the different

criteria used for selection [26]. Interestingly, eleven of the PD

markers identified in our study were also found to be dysregulated

in the brain of PD patients or in models of PD (Table 2). Only wls

and znf134 were not previously identified. Together, these results

suggest that although PD is thought of as a disease of the central

nervous system it may be accompanied by systemic changes.

Several of the PD biomarkers are also dysregulated in

Alzheimer’s disease including c5orf4, slc14a1, macf1, znf160 and

mpp1 [48,49]. Macf1 is highly expressed in neuronal tissues where

it is a positive regulator of Wnt signaling, which is important for

axon guidance and synapse formation [50]. In addition, wls

regulates the secretion of Wnt proteins, which play important roles

in neuronal development [51] and synaptic remodeling [52]. Prg3

is highly expressed in the brain where it promotes neurite growth

[53]. Copz1 and map4k1 are also dysregulated in amyotrophic

lateral sclerosis patients [54,55].

Network analysis revealed a regulatory network connecting all

of the biomarkers whose functions are known to the transcription

factors HNF4A and TNF, which are involved in insulin regulation

[37,38]. In addition, mpp1 and pkm2 are associated with type 1

and 2 diabetes, respectively [56,57]. This is interesting in light of

the fact that patients with diabetes mellitus may have an increased

risk of developing PD [58] and more than 60% of the PD patients

have impaired insulin signaling and are glucose intolerant [59]. In

contrast, others have found an inverse relationship between PD

and diabetes preceding PD onset [60]. In addition, mitochondrial

dysfunction, endoplasmic reticulum stress, abrogation of the

ubiquitin-proteasome and autophagy-lysosome systems and in-

flammation are involved in the etiology and/or progression of

both diseases. One possible explanation for the similarities is that

alterations in metabolism in response to environmental factors

such as poor dietary practices, heavy metals and pesticides, may

lead to insulin resistance, which later develops into diabetes and/

or neurodegeneration. In this regard, glucose deprivation induces

the aggregation of a-synuclein in dopaminergic cells and leads to

cell death [59]. In addition, defects in glucose utilization and

sensing occur early in PD pathogenesis [3]. Further studies are

needed to determine if there is a correlation between insulin

resistance and PD.

The identification of PD splice variant biomarkers suggests that

the expression of some splicing regulatory factors is disrupted in

early stages of the disease. The expression of SRRM2 and several

other splicing factors were previously shown to be disrupted in

whole blood and brains of PD patients [31,61]. The biomarker

eftud2, which encodes the splicing factor U5-116 kD, may now be

added to this list. Haploinsufficiency of eftud2 causes mandibu-

lofacial dysostosis with microcephaly, a rare syndrome character-

ized by mental retardation [62]. The identification of eftud2 and

the other splice variant markers in this study provides a foundation

for future studies directed at understanding mechanistic changes in

gene expression that occur at the onset of PD. In this regard,

disruption of proteosome function and oxidative stress are

associated with PD. A recent study showed that mild proteasome

inhibition affects alternative splicing [63]. In addition, oxidative

stress disrupts the regulation of alternative splicing of CD44 and

the splicing factor transformer ß [64]. Blood expression profiling of

splice variants has identified a biosignature for Alzheimer’s disease

in which there is no overlap in the markers identified in this study

[65]. The identification of highly sensitive and splice variant-

specific expression profiles in AD, PD and APD suggests that this

approach may be useful for studying other neurodegenerative

diseases for which biomarkers are needed.

There are several limitations that should be kept in mind when

interpreting these results. Although there were 124 participants in

this study, additional patient populations need to be studied to

evaluate the generality of these findings. In addition, although

strict standards were followed in making the case diagnoses,

collecting, processing and analyzing the samples, the results may

be vulnerable to bias from unanticipated confounds or diagnostic

error. In addition, technical bias and overfitting may occur and,

therefore, the biomarkers must be further tested in a larger patient

population. In order to determine whether the biomarkers are

useful for detecting pre-symptomatic PD, samples from a

longitudinal study will need to be tested [66]. Further study of

the biomarkers identified here is expected to facilitate the early

identification and treatment of this devastating illness.

Materials and Methods

Subjects
The Institutional Review Boards of University of Rochester

School of Medicine and Rosalind Franklin University of Medicine

and Science approved the study protocol. Written informed

consent was received from all participants. 124 individuals

including 51 PD patients (Hoehn and Yahr scale 1–2) and 39
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Figure 5. Regulatory gene and protein interaction networks. (A) Network of the PD biomarkers. (B) Network of the APD biomarkers.
Computational molecular interaction network prediction based on genes and proteins significantly associated according to the Ingenuity Pathways
Knowledge Base. The markers are highlighted in grey and node properties are indicated by shapes. Interactions between the nodes are solid
(confirmed interactions) and dashed (predicted interactions).
doi:10.1371/journal.pone.0043595.g005
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healthy HC, 17 MSA and 17 PSP age-matched controls were

enrolled in the Prognostic Biomarker Study (#NCT00653783).

The parent cohort for the PD patients from the PRECEPT,

PostCEPT and LAB-PD studies has previously been described

[32]. Participant data (age, gender, PD severity score, medications

and diabetes status) is presented in Table 1. Criteria used for

inclusion/exclusion of participants and for clinical diagnosis used

by neurologist trained in movement disorders are presented in

Table S1). Clinical diagnosis of PD was based on the United

Kingdom Parkinson’s Disease Society Brain Bank criteria requir-

ing the presence of two cardinal features and at least three

supportive features [33]. The HC had no history of neurological

disease and a Mini-Mental State Examination (MMSE) test score

that was $27. A diagnosis of probable MSA was based on

Consensus Criteria [34] and probable PSP based on NINDS-PSP

Criteria [35].

RNA Extraction and Quality Control
Whole blood (20 ml) was collected in the morning between

8 am and 12 pm during the baseline visit using the PAXgene

Blood RNA system (Qiagen,Valencia,CA). The tube was inverted

8–10 times and incubated at room temperature of 24 h. The blood

samples were frozen at 220uC until processed for total RNA

isolation. Samples from PD patients were processed in parallel

with those of controls. RNA was extracted using the PAXgene

blood RNA kit according to the manufacturer’s protocol followed

by DNase I digestion. RNA quality was determined using the

RNA 6000 NanoChip kit and an Agilent 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, CA). Samples with RNA

Table 2. Convergence of PD gene expression studies.

Biomarker Microarray Tissue Controls Expression References

A-AFFY-54 Human SNpc HC up [68]

c5orf4 A-AFFY-37 Human neuroblastoma cells DJ-1 RNAi down [69]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP up This study

A-AFFY-33 Human Brain prefrontal cortex HC up [70]

macf1 A-AFFY-34 Human SNpc HC up [71]

A-AFFY-54 Human SNpc HC up [68]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP up This study

A-AFFY-33 Human Brain HC down [70]

mpp1 A-AFFY-33 Human blood HC down [26]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP down This study

A-AFFY-33 Human SNpc HC up [70]

znf160 A-AFFY-34 Human SNpc HC up [71]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP up This study

eftud2 A-AFFY-34 Human SNpc HC down [71]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP up This study

prg3 A-AFFY-33 Human Brain HC up [70]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP up This study

pkm2 A-AFFY-34 Human SNpc HC down [71]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP down This study

A-AFFY-34 Human SNpc HC down [71]

copz1 A-AFFY-37 Human neuroblastoma cells DJ-1 RNAi up [69]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP up This study

A-AFFY-33 Human blood HC down [26]

slc14a1 A-AFFY-34 Human SNpc HC up [71]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP down This study

map4k1 A-AFFY-33 Human SNpc HC up [70]

Human genome
SpliceArrayTM v1.0

Human blood HC, MSA, PSP up This study

Each marker that had at least a 1.5 fold-change in expression compared to controls (p,0.05) according to ParkDB was included in the analysis [47]. SNpc is substantia
nigra pars compacta.
doi:10.1371/journal.pone.0043595.t002
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integrity values .7.0 and absorbance 260/280 between 1.7 and

2.4 were used.

Microarray Procedures
Amplified and labeled cDNA was prepared using the NuGEN

WT-OvationTM Pico RNA Amplification System and the FL-

OvationTM cDNA Biotin Module V2 (NuGEN, CA). ExonHit

Therapeutics, Inc (Gaithersburg, MD) prepared cDNA from total

RNA and the DNA/RNA heteroduplex was amplified by SPIATM

(NuGENTM, San Carlos, CA) [67]. The RNA 6000 Nano kit was

used to evaluate the quality of the cDNA. Standard methods were

used to hybridize the samples to the Human Genome Wide

SpliceArrayTM, v1.0 (ExonHit Therapeutics, Inc) following

recommendations of the manufacturer (Affymetrix, Santa Clara,

CA). The arrays were stained and washed using the FS450-001

fluidics protocol prior to scanning with the GeneChipH Scanner

3000 7G (Affymetrix).

Microarray Data Analysis
Data analysis was performed with Partek GS 6.5 software (St.

Louis, MO). The microarray results comply with MIAME

guidelines. An analysis of variance (ANOVA) was performed to

compare each group of study participants. 10,563 probes were

identified that produced a signal above background that was at

least 2-fold changed (p-value ,0.05). The following three

analytical steps were used to identify markers that distinguish

PD from controls (Fig. 1A).

Step 1. Identification of splice variants that are differentially

expressed in PD patients compared to each control group. A Venn

diagram tool was used to identify splice events that were

differentially expressed in the PD patients compared to each

control group (PD vs HC, PD vs MSA and PD vs PSP). The union

of the splice events identified by this comparison included 61 splice

variants (Fig. 2A).

Step 2. Identification of splice variants that are differentially

expressed in PD patients compared to non-PD controls. Another

ANOVA was performed to compare PD to the controls, without

distinguishing between the type of control. Seventeen splice

variants were identified, of which 12 were new candidates (Fig. 2A).

Step 3. Identification of splice variants with optimized

accuracy of prediction. We applied a two-level nested LOOCV.

An ‘‘outer’’ 39-fold cross-validation was performed to estimate

prediction error of the classifier while a nested, ‘‘inner’’, 38-fold

cross-validation was performed to select the best performing

classifier. We assessed K-Nearest Neighbor classification models

with the number of neighbors 3, 5, 7 and 9 and number of

variables from 1 to 12 using an ANOVA. The best performing

classification model contained 12 splice events (Fig. 2A).

Real-Time PCR
Candidate risk markers were prioritized based on the role they

may play in PD etiology or progression based on information from

pathway and disease analysis using Ingenuity (Ingenuity Systems,

Inc. Redwood City, CA) software. The sequence of the splice

variants was retrieved from the UCSC genome browser (http://

genome.ucsc.edu/). Splice variant-specific primers were designed

using Primer Express software (Applied Biosystems,Foster Ci-

ty,CA) such that one of the primers spanned the splice junction.

The High Capacity RNA transcription kit (Applied Biosystems,

Foster City,CA) was used to reverse transcribe 1mg of total RNA

according to the manufacturer’s protocol. The sequence of the

primers and the number of cycles used to amplify the products is

presented in Table S2. The region of the transcript amplified for

each risk marker is shown in Figure S1. The DNA engine Opticon

2 Analyzer (Bio-Rad Life Sciences, Hercules, CA) was used for the

qPCR reactions. Each 25 ml reaction contained Power SYBR and

primers at a concentration of 0.05 mM. The amplification

conditions used are as follows: denature at 95uC for 15 sec,

annealing at 56uC for 1 min, extension at 72uC for 30 sec for 40–

50 cycles of amplification and a 7 min extension at 68uC.

Following the PCR reaction a melting curve analysis was run to

confirm that a single product was amplified. PCR products were

also run on 2% agarose gels and sequenced to verify specificity.

Gapdh was used as an internal control. Samples were loaded in

triplicate. No cDNA template and PD, HC, PSP and MSA

controls were run in every experiment. Amplification efficiencies

were higher than 90% for each primer set. Expression data was

analyzed using the DDCt method.

Statistical Analysis
To assess the correlation between expression of splice variants

with binary diagnostic categories (PD vs. controls) we calculated

the Pearson correlation coefficient for all splice events represented

on the microarrays. To assess the prediction accuracy of the set of

13 risk markers we performed LOOCV analysis on the microarray

data for these splice events. A Student t test and one-way ANOVA

and tukey-kramer post-hoc analysis was used to compare groups in

the analysis of the qPCR data using GraphPad Prism (GraphPad

Software, La Jolla, CA). Discriminant analysis was performed with

Partek GS 6.5 (St. Louis, MO) and JMP 9.0 (Cary, NC) software.

Supporting Information

Figure S1 Regions of the risk markers amplified by
PCR. Boxes represent exons. Green boxes represent the variant

region of the mRNA. Forward arrows represent forward primers

and reverse arrows represent reverse primers. Broken arrows

indicate that the primer was designed to span the splice junction.

(TIF)

Figure S2 Relative mRNA quantification graphs of the
risk markers. (A) Student’s t test and tukey-kramer post hoc

analysis was used to compare PD patients with controls (HC, PSP

and MSA). Fold change values relative to a calibrator are

displayed with error bars indicating SEM. (B) Student’s t test

and tukey-kramer post-hoc analysis was used to compare PD with

APD patients. Fold change values relative to a calibrator are

displayed with error bars indicating SEM. Gapdh mRNA was

used as a control. *p,0.01, **p,0.005, ***p,0.001 and

****p,0.0001. PD is Parkinson’s disease and C is control.

(TIF)

Figure S3 Frequency distribution of the Pearson corre-
lation coefficient for binary diagnostic categories (PD vs.
controls). Locations of Pearson correlation coefficient (r) values

for PD risk markers are shown with arrowheads. These values are

either below 10% percentile (20.2111) or above 90% percentile

(0.2045).

(TIF)

Figure S4 Representative relative mRNA quantification
graphs of risk markers from a training set of samples.
Splice variants that were expressed differentially in HC compared

to disease participants. A student t test was used to compare

groups. *p,0.01, **p,0.005 and ****p,0.0001. Fold change

values relative to a calibrator are displayed with error bars

indicating SEM. Gapdh mRNA was used as a control. HC is

healthy control, PD is Parkinson’s disease, MSA is multiple system

atrophy, and PSP is progressive supranuclear palsy.

(TIF)
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Figure S5 Principle components and heat map analysis
of the APD biomarkers. (A) Heat map of the data from the

qPCR assay of the biomarkers analyzed using the DDCt method.

Each column in the heat map corresponds to a study participant.

Each row represents the relative level of abundance of a single

splice variant. Each splice variant is denoted by the name of the

mRNA. Color scales representing splice variant expression with

red representing high abundance relative to the mean abundance;

blue representing low abundance relative to the mean abundance;

and gray representing no significant change in abundance level

between the sample and control. PD patients are indicated by

green and APD patients are indicated by yellow. (B) Principle

components analysis of 52 samples (training set).

(TIF)

Table S1 Criteria used for inclusion/exclusion of study
participants and for clinical diagnosis.
(DOC)

Table S2 Biomarker information. Identifying information

for the mRNA sequences that result from an alternative splicing

event that are used to diagnose the presence of Parkinson’s disease

in a human patient and the specific forward and reverse primers

and cycle number used for amplification. 1Numbers represent

exons; . , represents between exons; , . represents skipped

exon; 2Event and identifier numbers are located at http://www.

ncbi.nlm.nih.gov/and http://genome.ucsc.edu/cgi-bin/

hgGateway.

(DOC)

Table S3 Raw and standardized canonical discriminant
function coefficients for the PD biomarkers. Discriminant

analysis was performed with Statistica 8.0 and JMP 9.0 software.

(DOC)

Table S4 Discriminant analysis results using the PD
biomarkers. Chi Square Test with successive roots removed.

Analysis was performed with Statistica 8.0 software.

(DOC)

Table S5 Linear discriminant analysis performed on
gene expression data from 124 participants. Sensitivity

and specificity values are displayed for the three classification

groups.

(DOC)

Table S6 Standardized and raw canonical coefficients
for canonical variables in the discriminant function
using the APD biomarkers.

(DOC)

Table S7 Discriminant function analysis summary for
the APD biomarkers.

(DOC)

Table S8 Summary of chi-square distribution and
canonical correlation of the APD biomarkers.

(DOC)

Table S9 Linear discriminant analysis performed on
gene expression data from 85 patients. Sensitivity and

specificity values are displayed for each classification group.

(DOC)
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