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Abstract: Individuals with different hypnotizability display different interoceptive sensitivity/
awareness (IS) and accuracy (IA), likely sustained by morphofunctional differences in interoception-
related brain regions and, thus, possibly also observable during sleep. We investigated the heartbeat-
evoked cortical potential amplitude (HEP) during sleep, its association with IS, and the role of
hypnotizability in such association. We performed a retrospective analysis of polysomnographic
recordings of 39 healthy volunteers. Participants completed the Multidimensional Assessment of
Interoceptive Awareness (MAIA), measuring IS and IA, and underwent hypnotic assessment via the
Stanford Hypnotic Susceptibility Scale, form A. The amplitude of the early and late HEP components
was computed at EEG frontal and central sites. In both regions, the early HEP component was
larger in N3 than in N2 and REM, with no difference between N2 and REM. Greater HEP amplitude
at frontal than at central sites was found for the late HEP component. HEP amplitudes were not
influenced by the autonomic state assessed by heart rate variability in the frequency and time
domains. We report for the first time a positive correlation between the central late HEP component
and MAIA dimensions, which became non-significant after removing the effects of hypnotizability.
Our findings indicate that hypnotizability sustains the correlation between IS and HEP amplitude
during sleep.

Keywords: interoceptive sensitivity; interoceptive accuracy; sleep; cortical potential; hypnotic
susceptibility

1. Introduction

Interoception represents the experience of the physiological condition of the body
and is due to the integration of visceral signals at high levels within the central nervous
system [1]—that is, in the insular, anterior cingulate, prefrontal, and somatosensory cor-
tices [2–7]. The activity of these areas has been associated with autonomic activities,
inducing changes in pupil size, as well as cardiac, respiratory, intestinal, and electrodermal
activity [8–10]. Variations in grey matter volume have been observed in patients with
altered interoception, such as those with borderline personality disorder [11], deperson-
alization [12], insomnia [13], sleep fragmentation [14], panic disorders [15], and multiple
sclerosis [16].

Interoception, however, is a multifaceted construct [1], including the ability to detect
visceral information (accuracy, IA), as well as the tendency to be aware of it and the modes
of its interpretation (IS, awareness/sensitivity). IA has been usually measured by the
heartbeat detection test [17], although recent evidence challenges the appropriateness
of this test to specifically indicate IA [18]. IS is measured by questionnaires such as the
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Multidimensional Assessment of Interoceptive Awareness (MAIA) [4,19], which shows the
same limitations characterizing every self-reported assessment [20].

The activation of brain areas preferentially responding to interoceptive signals has
been associated with the MAIA dimensions [12] representing the tendency to ignore
sensations of pain/discomfort (not distracting) and to not experience emotional distress
due to unpleasant sensations (not worrying), as well as the ability to focus attention to
body sensation (attention regulation). Altered IS has been found in patients diagnosed with
alexithymia [21], anxiety and somatic symptoms [22], epilepsy [23], anorexia nervosa [24],
and impulsivity [25].

1.1. Heartbeat-Evoked Cortical Potential

Interoceptive accuracy (IA) measured by the heartbeat detection test [17] has been
positively correlated with the cortical activity related to cardiac afferents—that is, heartbeat-
evoked potential (HEP) [26,27]—although the cardiac signal may also contain
non-interoceptive information [28]. No significant association has been found, however,
between HEP amplitudes and the sympathetic–parasympathetic state [19,26,29].

Greater HEP has been described in patients with depersonalization [12], anorexia
nervosa [24], and borderline personality disorder [30] during wakefulness, as well as in
patients with nightmares during REM sleep [31]. Greater HEP amplitudes associated
with higher IS subjectively reported through MAIA have been observed in individuals
with insomnia [29], and a positive correlation of the HEP amplitude with the not worrying
dimension of interoceptive sensitivity has been shown during wakefulness [32], whereas no
information is currently available about the relationship between IS and HEP amplitudes
during sleep.

During sleep, exteroceptive and interoceptive information are processed differentially,
as the latter seems to be less vulnerable to the disruption of sensory integration occurring
during deep and REM sleep [33,34]. The cortical correlates of exteroceptive stimuli, in fact,
are observable during REM only occasionally and when evoked by salient stimuli [35],
whereas the HEP amplitude has been found to be greater during deep sleep (N3) than
during N2, and no difference has been observed between N2 and REM [36].

1.2. Interoception and Hypnotizability

Hypnotizability—the proneness to respond to imaginative suggestions—is a psy-
chophysiological trait [37] the remains stable throughout life [36,38,39], and can be mea-
sured by a validated scale classifying highly (highs), moderately (mediums), and less
hypnotizable individuals (lows).

With respect to lows, highs display greater proneness to change their bodily state [40,41],
i.e., easily entering sleep [43? ,44] and hypnosis [40], experiencing relaxation characterized
by greater parasympathetic activity [45,46], and by reduced excitability of spinal motor
neurons [47,48] during long-lasting relaxation sessions. Highs also exhibit lower sympa-
thetic activation in the shift from sitting to standing position [49], and less reduced release
of endothelial nitric oxide during mental stress and nociceptive stimulation [50,51]. In
addition, they exhibit morphofunctional brain characteristics that are theoretically able
to influence interoception. Compared to lows, in fact, highs display reduced grey matter
volume (GMV) in the insula and in the left cerebellar lobules IV–VI, increased GMV in the
mid-temporal and mid-occipital cortices and in the superior frontal gyrus, and stronger
functional connectivity between the anterior cingulate cortex and the dorsolateral pre-
frontal cortex [52,53]. Highs exhibit lower IA measured by heartbeat detection test than
do lows [54], and greater IS measured by MAIA [55] with respect to lows and mediums,
possibly based on these morphofunctional brain differences. Thus, interoceptive processing
may differ according to hypnotizability, and such differences may also appear during sleep.
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1.3. Aim of the Study

Since highs display greater IS [55] and lower IA during wakefulness [54] with respect
to lows/mediums, the aims of the present study were to assess, for the first time, the
possible association between IS and HEP amplitude during sleep, and to investigate
whether hypnotizability is involved in their relationship. We also replicated the observation
of differences in the HEP amplitude between REM and non-REM sleep [32], and confirmed
the lack of association between HEP amplitude and heart rate/heart rate variability (HRV)
in the entire sample [12,26].

2. Methods
2.1. Subjects

The study reports a retrospective analysis of portable PSG (polysomnographic) record-
ings obtained from 39 healthy volunteers (age (mean ± SD): 23 ± 2.24 years; 26 females)
enrolled in an earlier study [56] approved by the Bioethics Committee of the University
of Pisa. Exclusion criteria were the anamnesis of medical, neurological, and psychiatric
disorders, sleep disturbance, and intake of psychoactive drugs over the previous 6 months.
For the present study, the participants received a telephone call inviting them to sign an
additional informed consent approved by the Bioethics Committee of the University of
Pisa (n. 4/2018). They completed the validated Italian version of the Multidimensional
Assessment of Interoceptive Awareness (MAIA) [19], and were submitted to hypnotic
assessment through the Italian version of the Stanford Hypnotic Susceptibility Scale, form
A [57]. Since both interoception [58] and hypnotizability [37,38] are stable in adulthood,
MAIA and hypnotizability scores could be associated with earlier acquired EEG signals.
Data were anonymized for further analysis.

2.2. Experimental Procedure
2.2.1. Signals Acquisition and Analysis

EEG and polygraphic recordings had been performed using a Micromed Morpheus
device at home for an earlier study [56]. The participants were invited to go to bed at their
usual time and sleep until waking spontaneously. Signals were acquired at a sampling rate
of 512 Hz through 20 electrodes placed in accordance with the International 10–20 System,
grounded at Pz, with Fpz as the reference electrode. In parallel, polygraphic traces were
recorded, i.e., 1 ECG (bipolar derivation placed symmetrically around the sternum between
the 3rd and 4th ribs), 2 EOG (left and right vertical), and 2 EMG derivations (electrodes
placed on the chin over the suprahyoid muscles). Polysomnographic (PSG) data were
exported in EDF+ format for further analysis. EEG and polygraphic signals were visu-
ally scored by a trained technician (MDG) according to the American Academy of Sleep
Medicine Scoring Manual Updates for 2017 (Version 2.4) [59]. Epoch-by-epoch scoring
was carried out on 30-s-long segments (Alice Sleepware software), and each epoch was
assigned to the N1, N2 N3, or REM sleep stages, or to awake states [60].

For the present study, EEG signals were first pre-processed in EEGLAB [61]. Signals
were band-pass filtered between 0.3 and 30 Hz and re-referenced to a common average
reference, and noisy channels were interpolated. Independent component analysis (ICA)
was then applied to identify and remove ICs reflecting eye movements, eye blinks, and
cardiac artifacts, according to their topographic patterns. Signals were then epoched
according to the ECG R-peak events and, after baseline correction (200 msec pre-R-peak),
the HEP was computed separately for each sleep stage using ERPLAB [62]. In accordance
with previous literature, the HEP was extracted by creating EEG epochs of 800 msec: from
−200 ms to 600 ms, relative to the R peaks [55]. Sixty-four epochs were rejected from the
analysis based on visual inspection, if the channels had a linear drift > 5 µV, or if the signal
was larger than 2 standard deviations from the mean probability distribution of all epochs
(mean rejection: N2, 21.9%; N3, 22.7%; REM, 19.4%). The number of analyzed epochs per
subject (mean ± SD) was: N2, 4018 ± 1685; N3, 3714 ± 2276; REM, 3633 ± 1676. There
were no significant differences in the number of analyzed epochs among the different
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stages (F(1,35) = 0.878, p = 0.38). The mean HEP amplitude for each electrode and sleep
stage was then calculated in two different time windows: 200–350 ms—hereby defined as
the early time interval—and 400–600 ms, defined as the late time interval. Fronto-central
regions were chosen for analysis owing to their involvement in interoception in the general
population [2–7,63], as well as in hypnotizability-related differences [52].

ECG signals were preprocessed using homemade MATLAB scripts to correct for
impulsive noise, powerline interference (50 Hz), and baseline wandering. Impulsive
noise is the sudden burst noise of short duration, caused mainly by electronic devices,
and electrosurgical noise in biomedical signals at the time of acquisition. This noise was
removed by applying a median filter (60 ms window) to each ECG channel and computing
the absolute difference between the original and the median. A threshold value was
computed based on their maximum absolute differences. The ECG signal in each interval
where the absolute difference exceeded this threshold was replaced with the average of the
signal before and after the interval. Powerline interference was removed by applying notch
filters (forward–backward, zero phase, 1 Hz bandwidth) at 50 Hz or 60 Hz and its next
three harmonics. Finally, to remove baseline wandering, for each channel we estimated a
baseline signal by applying a low-pass first-order Butterworth filter (cutoff frequency at
5 Hz) in the forward and backward directions. The detrended signal was obtained as the
difference between the original and baseline signals.

ECG signals were interpolated to 1024 kHz via Fourier transform method to obtain
a precise time location of the QRS complexes that were detected by applying a threshold
to the absolute amplitude of a filtered derivative signal [64]. The series of the distances
(msec) between consecutive R waves was calculated (tachogram) to measure the mean RR
and the heart rate variability (HRV). HRV was measured in the frequency domain through
the low-frequency (LF) and high-frequency (HF) components of the tachogram power
spectrum. HF components are related to the short-term, parasympathetic variability, while
LF components reflect the long-term, mainly—although not exclusively—sympathetic
variability of the RR interval series [65]. In addition, HRV was studied in the time domain
via the standard deviation of RR intervals (SDNN), reflecting the overall heart rate RR
variability and [66], thus, also including the variability due to the baroreflex [67] and to the
renin–angiotensin–aldosterone system [68], by the root-mean-square of successive differ-
ences in RR (RMSSD) related to parasympathetic control [69], and by the SDNN/RMSSD
ratio [70].

2.2.2. MAIA Questionnaire

The MAIA questionnaire provides a measure of both interoceptive awareness and
sensitivity [19,71,72]. It is a self-administered questionnaire consisting of 32 items, grouped
into 8 scales: noticing (awareness of body sensations), not distracting (tendency to ignore
sensations of pain/discomfort), not worrying (tendency to not experience emotional distress
due to pain or discomfort), attention regulation (ability to focus attention to body sensation),
emotional awareness (awareness of the relation between body sensations and emotional
states), self-regulation (ability to regulate psychological distress by attention to body sensa-
tions), body listening (ability to listen to the body), and trusting (comfortable experience of
one’s body).

2.2.3. Stanford Hypnotic Susceptibility Scale, form A (SHSS, A)

SHSS, A is a behavioral scale [57] consisting of 12 items related to the respondent’s
proneness to motor inhibition, dissociation, and hallucination. Each item may be passed
(score = 1) or not passed (score = 0). SHSS, A classifies highly (highs, score ≥ 8 out of 12),
moderately (mediums, score 5–7), and less hypnotizable individuals (lows, score ≤ 4). The
Italian validated version of SHSS, A was used.
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2.3. Statistical Analysis

The statistical package SPSS.20 was used for analyses. After normality assessment
(Kolmogorov–Smirnov), non-parametric analyses (Wilcoxon), or repeated-measures
ANOVAs were conducted between sleep stages on the autonomic state indices (RR, RMSSD,
SDNN, SDNN/RMSSD, LF/HF, LF, and HF absolute power) for the entire sample, with
the significance level set at p = 0.007 after Bonferroni correction. Repeated-measures
ANOVAs were applied to the HEP amplitudes according to the following experimental
design: 3 stages (N2, N3, REM) × 2 sides (left, right) × 2 areas (frontal, central). The
Greenhouse–Geisser correction for non-sphericity was used when necessary, and contrast
analyses were conducted between sleep stages. The significance level was set at p = 0.05.
Hypnotizability (highs, mediums, lows) could not be used as a grouping variable, owing
to the small number of highs and mediums enrolled in the sample.

For each sleep stage (N2, N3, REM), Spearman’s correlation coefficients between
MAIA scores and HEP amplitudes (significance level set at p = 0.006 after Bonferroni
correction), as well as between autonomic indices and HEP amplitudes, were computed
(p = 0.007 after Bonferroni correction). Partial correlations between the same variables were
also computed by removing the effects of hypnotizability, after assessing the absence of
linear correlation between MAIA and hypnotizability scores.

3. Results
3.1. Preliminary Assessment

Total sleep time (mean ± SD, min; 453.59 ± 54.63), N2 (150.21 ± 52.22, min), N3
(142.17 ± 48.48, min), and REM (90.50 ± 29.15, min) stage durations, and MAIA scores
(Table 1) were within their normal ranges [19,57,60].

Table 1. MAIA scale mean values (SD).

Scale Mean (SD) Cronbach’s α

noticing 3.05 (0.99) 0.787
not distracting 2.49 (1.19) 0.645
not worrying 2.56 (0.94) 0.814

attentional regulation 2.66 (0.85) 0.981
emotional awarenss 0.90 (0.99) 0.783

self regulation 2.15 (1.16) 0.655
body listening 2.11 (1.29) 0.825

trusting 2.95 (1.00) 0.834

The sample included 6 highs (SHSS score, 9.17 ± 0.75), 9 mediums (SHSS score,
6.11 ± 0.78), and 24 lows (SHSS score, 0.83 ± 1.13). The observed distribution of hypnotiz-
ability was not Gaussian, as most reported [73], which may be due to the small sample size
and/or to the bias introduced by having enrolled only the participants who had previously
consented to be equipped with PSG recordings [56]. MAIA and SHSS scores were not
linearly correlated with one another.

3.2. RR and HRV

RR (Figure 1a) showed a significant difference between sleep stages (χ2 = 12.44,
p = 0.002, W = 0.141) sustained by a longer duration of N2 than of REM (Z = 3.56, p = 0.0001),
and no significant differences between N2 and N3, or between N3 and REM.
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Figure 1. Autonomic states during sleep. Lines indicate significant differences between sleep stages
for RR (a), LF/HF (b), LF absolute power (c), and HF (d) absolute power (mean, SD).

SDNN exhibited a significant stage effect (F(2,31) = 7.249, p = 0.007, η2 = 0.200),
with higher values during N2 (mean ± sd (sec); 0.12 ± 0.11) than N3 (mean ± sd;
0.08 ± 0.05; F(1,31) = 5.769, p = 0.023), and during REM (mean +SD (s); 0.13 ± 0.12) than N3
(F(1,31) = 9.050, p = 0.005). No significant difference was observed between N2 and REM.

RMSSD (mean ± SD (s); N2: 0.11 ± 0.08; N3: 0.09 + 0.06; REM: 0.11 ± 0.07) did
not exhibit a significant stage effect. The SDNN/RMSSD ratio exhibited a significant
stage effect (F(2,31) = 23.61, p = 0.0001, eta2 = 0.449). Contrast analysis revealed values
significantly higher in REM (mean ± SD (s); 1.39 ± 0.32) than in N2 (mean ± SD (sec);
1.15 ± 0.29, F (1,31) = 18.91, p = 0.0001) and N3 (mean ± SD; 1.03 ± 0.17; F(1,31) = 44.03,
p = 0.0001), and higher in N2 than in N3 (F(1,31) = 5.399, p = 0.027).

LF/HF (Figure 1b) was significantly different between sleep stages (χ2 = 13.00,
p = 0.002, W = 0.221). It was higher during N2 (Z = 2.582, p = 0.010) and REM (Z = 3.366,
p = 0.001) than during N3. In more detail, LF absolute power (Figure 1c) was not signifi-
cantly different between stages, although contrast analysis revealed significantly higher
values in N2 than in N3 (F (1,31) = 4.329, p = 0.044). HF absolute power (Figure 1d) differed
between sleep stages (χ2 = 9.19, p = 0.012, W = 0.191), being higher in N2 (Z = 2.31, p = 0.012)
and in N3 (Z = 2.71, p = 0.007) than in REM.

3.3. HEP, IS, and Hypnotizability

The amplitudes of early (200–350 ms) and late (400–600 ms) HEP components at
frontal (F3, F4) and central sites (C3, C4) are shown in Figure 2.
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Figure 2. HEP amplitudes (mean, SD) during N2, N3, and REM sleep at frontal (F3, F4) and central
(C3, C4) sites. (a) Dark and light colors indicate left and right sites, respectively, in N2 (yellow), N3
(green), and REM (brown). Upper and lower panels: early and late HEP components, respectively.
(b) Average HEP signals at frontal and central sites.

Across the entire sample, the amplitudes were pre-eminently negative, but this was
due to the predominance of lows, as highs and mediums displayed pre-eminently positive
values (Figure 3).

Figure 3. HEP amplitudes (mean, SD) in highs, mediums, and lows. White columns: highs; grey
columns: mediums; black columns: lows. F: frontal sites C: central sites.

As reported in Table 2, the left hemisphere’s early HEP component tended to be
significantly smaller than that of the right hemisphere (side effect). The significant stage x
area interaction observed for the early HEP component was sustained by larger negativity
in the frontal than in the central regions, and by larger frontal negativity in N3 than in N2
and REM, with no significant difference between N2 and REM (Table 2). The late HEP
component displayed only a significant area effect, indicating larger HEP amplitudes at
frontal than at central sites (Table 2).
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Table 2. HEP amplitude; ANOVA.

Effect F df p η2

Early HEP
Stage 3.78 2,76 0.042 0.090

N2 < N3 F (1,38) = 17.61 p = 0.0001
N2 = REM
N3 = REM

Side 3.91 1,38 0.055 0.093 left < right
Area 9.99 1,38 0.0001 0.723 F > C

Stage × Area 21.96 2,38 0.0001 0.366
N2, F > C t = 8.81 p = 0.0001
N3, F > C t = 9.97 p = 0.0001

REM. F > C t = 7.43 p = 0.0001
Frontal N2 < N3 t = 5.24 p = 0.0001

N3 > REM t = 2.79 p = 0.008
N2 = REM

Central ns
Late HEP

Area 13.87 1,38 0.001 0.267 F > C

No significant correlation between HEP amplitude and autonomic indices, nor be-
tween hypnotizability and HEP amplitude, was found at any sleep stage. Partial corre-
lations removing the effects of hypnotizability did not disclose significant correlations
between HEP amplitudes and autonomic indices.

Associations were observed between HEP amplitudes and a few IS dimensions. Dur-
ing N2, in fact, we observed significant correlations between the amplitude of the later
HEP component at central sites and body listening (ρ = 0.670, p = 0.0001) and trusting
(ρ = −0.824, p = 0.0001) (Figure 4a). In N3, the amplitude of same central component
correlated significantly with self-regulation (ρ = 0.670, p = 0.0001) and trusting (ρ = −0.606,
p = 0.0001) (Figure 4b). During REM, the HEP amplitude correlated significantly with
self-regulation (ρ = 0.824, p = 0.0001) (Figure 4c) and body listening (ρ = 0.606, p = 0.0001). All
correlations between IS and HEP amplitude became non-significant after removing the
effects of hypnotizability.

Figure 4. Correlations between MAIA dimensions and the amplitude of the late HEP component at
central sites duing N2 (a), N3 (b) and REM (c).

4. Discussion

The aims of this study were to investigate the association between interoceptive
sensitivity and HEP amplitude during sleep, and to test whether hypnotizability moder-
ated this association. We also replicated the earlier observed changes in the autonomic
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state and HEP amplitude occurring during sleep, and their lack of significant associa-
tion (Sections 4.1 and 4.2). Our results provide novel information supporting the rela-
tion between HEP amplitudes, interoceptive sensitivity, and hypnotizability during sleep
(Sections 4.3 and 4.4).

4.1. Autonomic and HEP Changes across Sleep Stages

The observed RR changes, consisting of decreases in RR from N2 to REM, but not of
the expected increases from N2 to N3, may appear to be contrast with most reports [74,75].
It should be noted, in this respect, that the circadian cycle influences nocturnal heart rate,
which exhibits the lowest values in the middle part of the night; that deep sleep is more
frequent, longer, and accompanied by the lowest heart rate during the first half of the
night; and that the present study includes data from all sleep cycles [76,77]. Notably, earlier
studies on the same participants revealed longer N3 duration in mediums than in both
highs and lows [59], which may have biased the present autonomic findings.

The HRV of each sleep stage is also very variable through sleep cycles, and the
reduction of the overall RR variability is the most reliable index of the shift from light to
deep sleep [78], which is confirmed in the present study by the observed SDNN changes.

The RR changes observed across sleep stages can be accounted for by spectral compo-
nents, as LF decreased in the absence of significant increases in HF during N3. Moreover,
LF did not change during REM with respect to N2 and N3, while HF decreased in REM
with respect to both N2 and N3. In the time domain, the ratio SDNN/RMSSD is in line
with the LF/HF changes and supports the view that the sympathetic–parasympathetic
balance shifts towards a pre-eminently sympathetic control during REM [75,76].

4.2. HEP Amplitude Changes across Sleep Stages

Pre-eminently positive and negative peak-to-peak HEP amplitudes have been de-
scribed in participants with low and high interoceptive accuracy, respectively [79]. This
can account for the mostly negative components of the HEP recorded in the present study,
as most of the enrolled subjects were lows, who are characterized by a higher number
of detected heartbeats compared to highs/mediums [54]. Preliminary results obtained
in our sample have shown, in fact, positive HEP components in highs/mediums and
negative components in lows, with significant differences between merged highs and
mediums with respect to lows [80]. Since the larger the HEP amplitude, the higher in-
teroceptive accuracy [81], the present study’s qualitative observations suggest a better
cortical representation of the heartbeat in lows, which is consistent with behavioral mea-
sures of interoceptive accuracy [53]. Nevertheless, the association between HEP amplitude
and behavioral measures of interoception is moderated by demographic, situational, and
emotional variables [82], which should be considered in further research.

Findings show a greater amplitude of both early (200–350 ms) and late (400–600 ms)
HEP components at frontal than at central sites across all sleep stages, as previously
observed [2–7,35]. Larger frontal than central HEP amplitudes were also found, in fact, in
awake conditions of enhanced arousal [62], emotion [22,23,25], and mood alteration [31].

The quasi-significant lower HEP amplitude at left than right hemispheric sites may
be accounted for by the pre-eminent activity of the right insula, which is responsible for
awareness of interoceptive signals, as measured by heartbeat-counting tasks [9,83].

In line with other studies [19,25,26], no linear correlation was found between auto-
nomic variables and HEP amplitude, although the variability of autonomic-related cortical
activities may be influenced by personality traits [25] not studied in the present research,
and possibly buffering/counteracting the influence of the autonomic state.

In the comparison between sleep stages, the frontal amplitudes of the early HEP com-
ponent were larger in N3 than in N2 and REM, as earlier reported for the entire 200–600-ms
HEP interval [32]. The similar HEP amplitudes observed during REM and N2 contrast with
what occurs for the processing of exteroceptive information, which can be detected during
REM only occasionally and when evoked by salient stimulation [35] and is consistent with
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the observation of similar responses to TMS administered during wakefulness and REM
sleep [84]. A possible interpretation of this finding is that the interoceptive information is
only partially dependent on the thalamic pathway as, in parallel with thalamic pathways,
it is conveyed from the ventrolateral medulla, parabrachial nucleus, and periaqueductal
gray to the hypothalamus and amygdala, reciprocally connected to the insula, cingulate,
and frontal regions [1].

4.3. Association between IS, HEP Amplitude, and Hypnotizability

This is the first report of association between HEP amplitude during sleep and intero-
ceptive sensitivity, which had been already observed during wakefulness in resting [11] and
task conditions [27,85–87]. Their association during sleep (when attention is not focused on
heartbeats [26], and vigilance is reduced) suggests that interoceptive sensitivity co-operates
with interoceptive accuracy to the HEP amplitude. We may hypothesize that IA and IS
represent a lower and higher level of interoceptive processing, respectively, according to
the hierarchic model of interoception proposed by Critchley and Harrison [3].

The correlations we found regard the MAIA dimensions related to the attention
to/confidence in the body, and the late HEP component representing the cognitive aspect
of information processing [79]. The MAIA dimensions positively associated with the late
HEP component indicate attention to body sensation (self-regulation, attentional regulation,
body listening), which is consistent with the observation of greater HEP amplitudes in
conditions of enhanced arousal [62], emotion [22,23,25], and mood alteration [31]. A
negative correlation was found between HEP amplitudes and a comfortable experience of
the body (trusting), in line with the observation of lower HEP amplitudes in patients with
depersonalization [12].

The absence of significant linear correlations of hypnotizability with IS (MAIA scores)
was expected, as earlier studies showed higher values of multiple MAIA scales in highs
with respect to both mediums and lows [54]. Partial correlations revealed, however,
that hypnotizability is greatly involved in the relation between HEP amplitude and IS
dimensions, as removing the effects of hypnotizability abolishes those correlations.

We speculate that the highs’ greater functional equivalence between imagery and
perception [88]—also observed for interoceptive imagery [89]—would afford them an
advantage in treatments aimed at modifying the experience and the interpretation of
interoceptive signals.

4.4. Limitations and Conclusions

A limitation of the study is the small number of highs and mediums and the greater
number of women with respect to men enrolled in the sample, together with the low
effect size of a few comparisons conducted on the entire sample. This point could not be
addressed because the study was a retrospective analysis of the EEG signals recorded in
participants enrolled for an earlier study and not previously classified for hypnotizability.
Further studies should enroll samples allowing for a direct comparison between highs,
mediums, and lows by using hypnotizability as a grouping variable, rather than merely as
a moderating factor. Moreover, the relation between HEP amplitude and interoceptive ac-
curacy should be clarified. Moreover, cardiac signals are not exclusively interoceptive [28],
and the heartbeat detection test may not be the best tool with which to assess interoceptive
accuracy [18].

Despite the above limitations, however, the present study supports earlier findings
describing the changes in HEP amplitude occurring during sleep in the general popula-
tion [32] and confirms the absence of significant correlations between the sympathetic–
parasympathetic state and the amplitude of the heartbeat-evoked cortical potential [12,26,63].
Its novelty consists of the report of associations between a few dimensions of interoceptive
sensitivity—attention to the body, and confidence in it—and HEP amplitudes during sleep,
and of the relevance of hypnotizability to these associations.
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