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The shape of the radiation source of a linac has a direct impact on the delivered 
dose distributions, especially in the case of small radiation fields. Traditionally, a 
single Gaussian source model is used to describe the electron beam hitting the target, 
although different studies have shown that the shape of the electron source can be 
better described by a mixed distribution consisting of two Gaussian components. 
Therefore, this study presents the implementation of a double Gaussian source 
model into the BEAMnrc Monte Carlo code. The impact of the double Gaussian 
source model for a 6 MV beam is assessed through the comparison of different 
dosimetric parameters calculated using a single Gaussian source, previously com-
missioned, the new double Gaussian source model and measurements, performed 
with a diode detector in a water phantom. It was found that the new source can be 
easily implemented into the BEAMnrc code and that it improves the agreement 
between measurements and simulations for small radiation fields. The impact of 
the change in source shape becomes less important as the field size increases and 
for increasing distance of the collimators to the source, as expected. In particular, 
for radiation fields delivered using stereotactic collimators located at a distance of 
59 cm from the source, it was found that the effect of the double Gaussian source 
on the calculated dose distributions is negligible, even for radiation fields smaller 
than 5 mm in diameter. Accurate determination of the shape of the radiation source 
allows us to improve the Monte Carlo modeling of the linac, especially for treatment 
modalities such as IMRT, were the radiation beams used could be very narrow, 
becoming more sensitive to the shape of the source. 
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I. INTRODUCTION

Monte Carlo (MC) methods have been thoroughly used for different radiotherapy applications, 
especially for treatment planning and plan verification, proving to be one of the most accurate 
techniques to calculate dose distributions under clinical situations.(1,2) The latter is more evi-
dent when the dose has to be calculated in heterogeneous media and/or using superposition of 
small radiation fields, where other algorithms found in commercial treatment planning systems 
(TPS), such as pencil beam or collapsed cone convolution can fail to reproduce measured dose  
values.(3,4) However, the accuracy of a simulated dose distribution calculated using MC 
methods is very sensitive to the parameters that define the electron source.(5) In particular, 
the spatial distribution of the source has an important influence on the shape of the penumbra 
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and the dose distributions obtained for small radiation fields, due to source occlusion effects,  
among others.(6,7)

Nowadays, there is a large number of general-purpose MC platforms. Perhaps the most 
widely used in medical physics is EGSnrc.(3,8) An important special-purpose code built on 
the EGSnrc platform is the user code BEAMnrc.(9) This code is optimized to model the treat-
ment head of radiotherapy linear accelerators (linacs) and includes a number of geometry and 
source subroutines, together with variance reduction techniques to enhance the efficiency of 
the simulation.(10) In BEAMnrc the electron source of a linac is frequently modelled as a two-
dimensional Gaussian distribution.(11,12) The parameters for the distribution are traditionally 
determined through a commissioning process, in which a small set of measured and simulated 
distributions for several field sizes are compared iteratively until the parameters that minimize 
the difference are found.(13)

The shape of the photon source has been measured experimentally,(14,15) and its influence 
on the simulated dose distribution studied by several authors.(6,16) It has been found that the 
obtained photon dose distribution is very similar in shape to the electron source that originated 
it.(17) Additionally, it has been suggested that the shape of the electron source can be better 
described by a mixed distribution consisting of two Gaussian components rather than a single 
Gaussian model, as assumed in previous studies.(18)

This work presents the implementation of a double Gaussian source model into the BEAMnrc 
code and its influence on the simulated dose distributions delivered by a 6 MV photon beam 
of a Siemens PRIMUS linac (Siemens Healthcare, Erlagen, Germany), with a special focus 
on small radiation fields. The parameters that define the electron beam distribution are derived 
from experimental measurements of the photon source. The influence of the shape of the source 
is evaluated by comparing different calculated dosimetric parameters/profiles, using the new 
source model, with MC calculations performed with a single Gaussian distribution, previously 
commissioned for this particular accelerator,(13) and measurements.

 
II. MATERIALS AND METHODS

A.  Double Gaussian source model
A symmetrical source model consisting on the sum of two Gaussian distributions was adopted 
and implemented into the BEAMnrc system. The distribution that defines the shape of the 
normalized electron source, as function of the radial position, can then be written as,

 f(r) = a1e
–r2/2σ2

1 + a2e
–r2/2σ2

2 (1)

where a1 and a2 correspond to the weights of each Gaussian, with a1 + a2 = 1; σ1 and σ2 define 
the width of each distribution. From this distribution, the starting positions of the incident 
electrons are obtained through random sampling. However, this function is not invertible. 
One approach to obtain a random sample r* is to use a probabilistic mixture model, where f(r) 
corresponds to a mixture distribution of a collection of two Gaussian components with associ-
ated probabilities (or weights) of occurrence, Pi. A member of this collection is then selected 
according to these weights and the desired sample is finally retrieved. Therefore, r* is obtained 
by performing the following steps.
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1. First, the mixture weight of each Gaussian distribution is calculated from the area under the 
curve:

  (2)
 

Ai = aie
–r2/2 r dr = ai  i

22
i

0
∫
∞

σ σ

Therefore, the probability of occurrence Pi corresponding to each mixture component 
equals to:

  (3)
 

Pi = 
Ai

A1 + A2

2.  Then, one of the Gaussian distributions is selected using a random variable R1, uniformly 
distributed over (0,1). If R1 ≤ P1, the first Gaussian distribution is chosen, otherwise the 
second distribution is taken.

3.  As the selected Gaussian function is invertible, a random sample can be obtained using a 
“direct sampling” method.(19) A second  random variable R2, uniformly distributed over 
(0,1), is used to calculate r* directly as

  (4)
 

r* = –2 2
i
 ln(R2)σ

The final result is a random radial position r* that follows the distribution f(r) from Eq. (1).

This model was introduced in the BEAMnrc user code as a source routine using a modified 
EGSnrc platform.(20) The user must provide the ai and σi parameters for each Gaussian distribu-
tion, in cm, indicating their weights and breadths, respectively. Alternatively to σi , the user can 
input the FWHM, also in cm, corresponding to each Gaussian. If the sum of the weights does not 
equal 1, the source routine automatically normalizes the distribution to the sum of the Gaussian 
weights. Additionally, the user can introduce the aforementioned parameters independently 
for X and Y directions in order to be able to model nonrotational symmetric electron sources.

In order to check the correct implementation of the source model, transverse electron flu-
ence profiles were obtained. The profiles were generated by simulating a monoenergetic 6 MeV 
electron beam incident on a very thin air slab (0.001 cm thickness). A phase space file was 
scored just below the slab. This small slab thickness minimizes the probability of interaction 
of the incident electrons within the slab.(11) The ai and σi parameters for the double Gaussian 
model were obtained by fitting a double Gaussian distribution to an experimentally determined 
photon source for this linac,(6) taking into consideration that the shape of the photon and electron 
sources are very similar.(17)

B.  Validation of the source model
In order to investigate the dosimetrical effects of the implementation of the new source model, a 
full MC simulation of a Siemens PRIMUS clinical linear accelerator (Siemens OCS, Concord, 
CA) for a 6 MV photon beam was performed using the BEAMnrc code. The simulations were 
carried out considering a single Gaussian source and the new double Gaussian source model. 
The results were compared then with experimental measurements.
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The modeled accelerator includes the target, primary collimator, flattening filter, monitor 
chamber, collimating jaws, MLC, and, if needed, stereotactic cylindrical collimators. The 
variance reduction parameters in all the simulations were set according to Pena et al.(13) An 
incident electron beam on the target with a Gaussian energy spectrum of 6 MeV mean and a 
FWHM of 14% was chosen for both beam sources as recommended by the manufacturer. For 
the new model, the parameters defining the source shape were set as described in the Material 
and Methods section A above. For the single Gaussian beam source, a FWHM of 0.10 cm was 
chosen following an automated commissioning procedure specifically designated to ensure 
best small field reproducibility.(13) ECUT and PCUT values of 0.521 and 0.01 MeV, respec-
tively, were used for all simulations. These parameters correspond to the electron and photon 
energy cutoffs that define the values at which the code stops tracking a particle. To improve the 
 calculation efficiency, bremsstrahlung splitting with a photon split factor of 1000 was used. The 
splitting radius was defined at 100 cm of the source and its value was dependent on the field 
size. Phase space files were scored at 100 cm from the front face of the target. These phase space 
files were then applied to a homogeneous water phantom using the DOSXYZnrc user code in 
order to score output factors and dose profiles at a depth of 1.5 cm and SSD of 100 cm. For 
the BEAMnrc and DOSXYZnrc simulations 2 × 107 and 2 × 109 incident histories were used, 
respectively. The parameters used to validate our source model were the following: a) shape 
of the photon source, b) output factors, c) relative dose profiles, and d) penumbra extension.

C.  Shape of the photon source
The spatial distribution of the photon source of the linac has been experimentally determined 
using a procedure described by Caprile and Hartmann in 2009.(6) It was found that the source 
had radial symmetry. The extended source was defined as the projection of all primary photons 
and head scatter contributions into a common plane, perpendicular to the beam axis and located 
at 100 cm from the isocenter. To determine the relative intensity distribution of the extended 
source, a slit-method,(14) based on the measurement of strip integrals of the source and the use 
of a CT image reconstruction technique, together with a fitting procedure for measured col-
limator factors, was used.

The BEAMnrc user code was used to calculate the distribution of the photon source, derived 
from our double Gaussian implementation and for the single Gaussian. This was done as fol-
lows. First, a phase space file was scored at 100 cm from the target with a field size of 10 × 
10 cm2. The position and direction of each particle scored in the phase space file was used to 
project them to the source plane. Then, an energy fluence versus position plot was obtained at 
this location and compared with the experimentally reconstructed source. 

D.  Output factors
Output factors measurements were performed in a water tank (Model MP3, PTW Freiburg, 
Germany) using a diode detector (Type p, Model 6008, PTW Freiburg) with a sensitive volume 
of only 0.03 mm3. The irradiation conditions were the following: detector located at 1.5 cm 
depth, with a SSD of 100 cm, for square fields with side lengths sizes ranging from 0.5 to 10 cm. 
The output factors were also calculated, using the DOSXYZnrc user code. The absorbed dose 
was scored at the point of interest, centered with respect to the beam axis at a depth of 1.5 cm 
depth in water with a voxel size of 0.1 × 0.1 × 0.1 mm3. The absorbed dose was then corrected 
with respect to the dose scored at the monitor chamber of the PRIMUS accelerator, in order 
to take into account the collimator exchange effect in the accelerator head,(21) and normalized 
with respect to the dose obtained for the 10 × 10 cm2 reference field.
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E.  Relative dose profiles
Lateral dose profiles were measured with the diode for various square and circular fields. The 
latter were shaped by cylindrical collimators used for stereotactic radiosurgery, with aperture 
diameters ranging from 1 to 10 mm, positioned at 41 cm from the surface. The same experi-
mental conditions indicated in the Materials and Methods section D were used to determine 
these dose profiles. Off-axis profiles were calculated in a water phantom using the DOSXYZnrc 
user code with a row of voxels of 0.1 × 0.1 × 0.1mm3, centered with respect to the field axis 
and at a depth of 1.5 cm.

F.  Penumbra extension
The parameter used to quantify the steepness of the field penumbra was the distance between 
the 20% and 80% isodose lines. Calculated and measured results for the field penumbra were 
compared for a number of collimator settings for square fields, in the X and Y directions.

 
III. RESULTS 

A.  Spatial extension of the photon source
Figure 1 shows reconstructed radial distributions of the photon radiation source. The spatial 
distribution of the photon source, derived from the double Gaussian source shows a FWHM 
of 0.051 ± 0.002 cm that is in agreement with a value of 0.050 ± 0.008 cm found experimen-
tally, as expected. It is clear that the single Gaussian beam source strongly disagrees with 
the experimental results. For this last case, a FWHM of 0.100 ± 0.003 cm was obtained. The 
uncertainty associated with the MC calculations was of ± 0.5%. The agreement between the 
FWHM obtained for the photon source, derived from the double Gaussian electron source 
model and measurements is within 2%.

Fig. 1. Reconstructions of the photon radiation source from an experimental procedure (empty squares) and MC calcula-
tions, with the double (solid line) and the single (dashed line) Gaussian sources.
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B.  Output factors
Figure 2 shows a comparison between measured and calculated output factors for square fields, 
using the single and double Gaussian sources. All the curves obtained show a steep drop-off 
for fields smaller than 3 × 3 cm2. It can be seen that the results for the double Gaussian agree 
better with the measurements for the smaller fields. The uncertainty associated with the MC 
calculated output factors was of ± 0.5%.

C.  Relative dose profiles
Figures 3 and 4 show the comparison of measured and calculated lateral dose profiles for dif-
ferent square and circular fields, respectively. For square fields the dose profiles obtained with 
the double Gaussian source show a better agreement with measurements, as shown in Fig. 3.

It was found that the maximum difference between measured and MC calculated dose 
profiles is of 1.7% for the double Gaussian source, whereas for the single Gaussian source a 
maximum difference of 3.3% was obtained. The difference between measured and calculated 
dose profiles decreases as the field size increases, an effect that can be observed in Fig. 3. It can 
be noted that this difference is negligible for the double Gaussian source, as shown in Fig. 3(b) 
and Fig. 3(c), where the difference line cannot be seen.

For circular fields, it is not possible to distinguish the results obtained with the single and 
double Gaussian sources from the calculated dose profiles, even for the smallest collimator, 
as shown in Fig. 4, with the maximum difference between measured and MC calculated dose 
profiles below 3.0%. Nevertheless, MC calculated and measured dose profiles are in good 
agreement. The uncertainty associated with the MC calculations was of ± 1.0%.

Fig. 2. Comparison of measured (empty squares) and MC-calculated OFs, with the double (solid line) and the single 
(dashed line) Gaussian sources.
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Fig. 3. Measured (squares) and calculated (lines) relative dose profiles for square fields. MC calculations were carried 
out using a single Gaussian source with FWHM of 1.0 mm (dashed line) and the double Gaussian source (solid line):  
(a) 0.5 × 0.5 cm2, (b) 1 × 1 cm2, (c) 5 × 5 cm2. Bottom lines represent the difference between measurements and calcula-
tions for the single (dotted line) and double (solid line) Gaussian sources.

(a)

(b)

(c)
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D.  Penumbra extension
Results for the field penumbra are listed in Table 1. The values, obtained for both calculations 
and measurements, present a steep drop-off below the 5 × 5 cm2 field. The values obtained for the 
penumbra are lower in the X direction, where the field sides are defined by the MLC. This behavior 
is due to the fact that the MLC is further from the source plane than the collimation jaws, which 
define the field sides in the Y direction. The uncertainty associated with MC simulations was 1.0%.

 

Fig. 4. Measured (squares) and calculated (lines) relative dose profiles for circular fields. MC calculations were carried 
out using a single Gaussian source with FWHM of 1.0 mm (dashed line) and the double Gaussian source (solid line):  
(a) 1 mm, (b) 2 mm. Bottom lines represent the absolute difference between measurements and MC calculations using 
the single (dotted line) and the double (solid line) Gaussian sources.

Table 1. Comparison of measured and MC calculated field penumbras p, in X and Y directions, for different square 
fields sizes (SF). MC calculations were carried out using the single and double Gaussian sources. For each calculation, 
the percentage difference from the measured value is indicated.

 Meas.  Single Gaussian Double Gaussian
 SF  p p δmean p δmean
 (cm) Axis (mm) (mm) (%) (mm) (%)

 0.5 X 1.9 2.0 8.3 1.8 -2.4
 1.0 X 2.3 2.5 9.6 2.2 -2.5
 5.0 X 2.7 2.9 8.6 2.6 -2.3
 10.0 X 2.7 3.0 9.3 2.7 -2.1
 0.5 Y 2.5 2.8 11.9 2.5 -2.3
 1.0 Y 2.8 3.2 12.0 2.8 -2.6
 5.0 Y 3.3 3.7 11.6 3.2 -2.8
 10.0 Y 3.4 3.7 10.9 3.3 -2.2

(a)

(b)
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IV. DISCUSSION AND CONCLUSIONS

The implementation and validation of a double Gaussian source model into the BEAMnrc 
code and its influence on simulated dose distributions have been described. The selection 
of this specific source shape was based on the studies of Sterpin et al.(17) and Chen et al.,(18) 
which show that the shape of the electron source of a linac can be better described by a mixed 
distribution consisting of two Gaussian components, instead of the single Gaussian source 
model commonly used in Monte Carlo simulations. The increase in the execution time when 
the double Gaussian source model is used is negligible, being less than 0.5% of the single 
Gaussian source simulation time.

In Fig. 1, the agreement between the radial photon source distributions, derived from MC 
calculations using our double Gaussian implementation and measurements, is very good. Small 
discrepancies can be observed between the tails of the source distributions. Nevertheless the 
agreement in this region is within 3%. The two components of the source are a relatively narrow 
Gaussian (σ2 = 0.077 mm) and a second Gaussian distribution that is much wider (σ1 = 0.334 mm). 
The latter produces an electron source distribution with a higher tail region than a single Gaussian.

The maximum difference found between measured and MC calculated OFs, using our double 
Gaussian source model, was of 2.5%. For the single Gaussian source model this difference 
increases to 9% for the smallest evaluated field. These discrepancies between measured and 
MC calculated OFs are more significant in the steep drop-off zone of the curve (below the 3 × 
3 cm2 field), due to the partial occlusion of the radiation source, as shown in Fig. 2. The drop-
off is more pronounced for the single Gaussian source model, due to its wider source profile, 
compared with our double Gaussian model.

The dose profiles obtained from measurements showed a better agreement, for all field sizes, 
with the MC calculations using the double Gaussian source model, as compared with the single 
Gaussian. However, the difference between the calculated profiles decreases with increasing field 
size. This difference is more noticeable in the penumbra region of the profiles, whose shape is 
strongly dependent on the shape of the radiation source. As the photon radiation source derived 
from the single Gaussian model has a wider FWHM, the dose distributions obtained from this 
source show a wider penumbra than the dose profiles obtained from the double Gaussian source 
model. Additionally, it has been found that for the stereotactic collimators the differences in the 
dose profiles between the two MC calculations is negligible, as shown in Fig. 4. This can be 
understood if we consider that the penumbra extension depends also on the source-to-collimator 
distance (SCD), reducing the source occlusion influence as the SCD increases. Because the 
SCD for the stereotactic collimators is much greater than the SCD for the jaws and the MLC, 
the penumbra difference between the single and double Gaussian source models is reduced. It 
can be observed that the shape of the measurement is not fully reproduced by the MC model-
ing. However, this could be due to a partial volume effect of the detector.

The double Gaussian source model produces an underestimation of the penumbra value 
obtained experimentally, with mean differences of 2.3% and 2.5% in X and Y directions, 
respectively. Instead, for the single Gaussian source model an overestimation of the experi-
mental penumbra is observed, with mean differences of 8.9% and 11.6% in X and Y directions, 
respectively. Table 1 shows that the difference between the single and double Gaussian models 
is more important for the jaws, because they are closer to the radiation source, and therefore 
more influenced by its shape, than the MLC.

This study showed that an accurate determination of the electron source helps to improve 
the MC modeling of the linac. The newly implemented double Gaussian source would be help-
ful to tune the MC model of a linac more accurately when using small fields for photon beam 
simulations, which would impact the results for IMRT treatments, where the beamlets used 
could be very narrow and thus more susceptible to the source model used. Using the new source 
model, this study provides useful information for understanding the dosimetric impact of the 
shape of the radiation source and how to implement this parameter into the BEAMnrc MC code. 
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