
Data and text mining

Cytoscape.js: a graph theory library for

visualisation and analysis

Max Franz, Christian T. Lopes, Gerardo Huck, Yue Dong, Onur Sumer

and Gary D. Bader*

The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on May 29, 2015; revised on August 10, 2015; accepted on September 20, 2015

Abstract

Summary: Cytoscape.js is an open-source JavaScript-based graph library. Its most common use

case is as a visualization software component, so it can be used to render interactive graphs in a

web browser. It also can be used in a headless manner, useful for graph operations on a server,

such as Node.js.

Availability and implementation: Cytoscape.js is implemented in JavaScript. Documentation,

downloads and source code are available at http://js.cytoscape.org.

Contact: gary.bader@utoronto.ca

1 Introduction

Network information in biology continues to grow in utility in many

contexts, from analysis of cellular mechanisms to identifying disease

biomarkers. Further, the web is increasingly a platform for apps with

complex user interfaces that use standard technologies such as

HTML, CSS and JavaScript (JS). Cytoscape.js provides a JS applica-

tion programming interface (API) to enable software developers to in-

tegrate graphs into their data models and web user interfaces.

Cytoscape.js can be used in several domains, such as biological net-

works or social graphs. Cytoscape.js is the modern replacement for

the Adobe Flash-based Cytoscape Web (Lopes et al., 2010).

2 Implementation

Cytoscape.js is implemented as a standalone JS library. It has no

hard dependencies; neither browser plugins nor other libraries are

required. However, it includes hooks to several useful libraries and

environments, including CommonJS/Node.js, AMD/Require.js,

jQuery, Bower, npm, spm and Meteor. This allows Cytoscape.js to

integrate into a wide variety of JS-based software systems.

The architecture of Cytoscape.js allows it to be run headlessly

(i.e. without a graphical user interface) or as a visualisation compo-

nent (Fig. 1), using HTML5 canvas as its underlying implementa-

tion. This allows Cytoscape.js to be run on both the client side—i.e.

the browser—and the server-side, an important consideration as JS

code is increasingly being shared with the client and the server.

For increased ease of use, the library shares several concepts with

the HTMLþCSSþ JS web model. Styling in Cytoscape.js is speci-

fied using CSS-like stylesheets, sharing as much syntax as possible

with CSS. Similarly, graph elements are analogous to HTML DOM

elements—they are styled by the stylesheets and programmatically

accessible via the JS core API.

The Cytoscape.js architecture is composed of the core and the

collection. The core is a developer’s main entry point into the

library. It represents the graph and is used to run layouts, alter the

view, and perform other operations on the graph as a whole. Core

functions are available to access graph elements. Each of these func-

tions returns a collection, a set of graph elements. A collection has

its own API that can be used to filter, traverse, perform operations

on and get data about the elements in the collection. Some core func-

tions take collections as input.

3 Features

3.1 Feature set
Cytoscape.js features include, but are not limited to, the following:

Graph types: Cytoscape.js supports several types of graphs,

including traditional graphs, directed graphs, undirected graphs,

VC The Author 2015. Published by Oxford University Press. 309
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 32(2), 2016, 309–311

doi: 10.1093/bioinformatics/btv557

Advance Access Publication Date: 28 September 2015

Applications note

http://js.cytoscape.org
http://www.oxfordjournals.org/


multigraphs and hypergraphs (with compound nodes, but not yet

with hyperedges).

Mutable graphs: The graph can be manipulated by adding,

removing, or modifying the state of graph elements. This enables

apps to provide highly interactive graphs for the user.

Graph traversal: Graph traversal functions are provided, which

are useful for both user interface interactions and programmatic

graph analysis.

Graph theory algorithms: Several well-known graph theory

algorithms—such as connectivity search, shortest path, minimum

spanning tree, minimum cut, ranking and centrality measures—are

included.

Stylesheets: Stylesheets are used to specify the visual style of

elements. Selectors and classes are supported in order to map elem-

ent state to style. Similar to the Cytoscape desktop app (Shannon P.

et al., 2003), a functional mapper syntax is provided to map particu-

lar style properties based on element data—e.g. node colour mapped

from a numerical weight. Stylesheets can be replaced at runtime,

changing the overall visual style of the graph.

Built-in gesture support for mouse and touch based devices: The

default Cytoscape.js renderer supports the touch and mouse gestures

a user would expect out-of-the-box. Nodes can be dragged. The user

can manipulate the viewport with gestures like pinch-to-zoom and

drag-to-pan.

Event binding: Events can be bound in several ways. Delegation

can be used such that newly added elements trigger bound events.

Bindings can be added and removed, and the multiplicity of elem-

ents-to-triggered-events (i.e. for which elements and how many

times the handler should be triggered) can be specified when bind-

ing. Several higher-level events are provided such that the type of

user interaction is abstracted, e.g. ‘tap’ works both with computer

mice and finger presses on touch devices.

Animations: Animations can be used to increase the salience of

particular elements in the graph and to provide visual continuity to

the user when programmatic changes to the graph are made.

Compound nodes: As an addition to the traditional graph model,

compound nodes are a way for the developer to embed nodes within

another node. Compound nodes are useful for representing things

like biological complexes and their subunits.

Import & export: The graph can be exported as an image (PNG

or JPG), including at high resolution for publication. Cytoscape.js

supports importing and exporting graphs via JSON, thereby allow-

ing for full serialisation and deserialization of graph state.

Layouts: Layouts provide a mechanism for automatically pos-

itioning nodes in a graph. Alternatively, the developer may specify

pre-determined node positions. Default layouts include null, ran-

dom, preset, grid, circle, concentric, breadthfirst, dagre, cose, cola,

spread, arbor and springy.

Extensibility: Cytoscape.js provides mechanisms for the devel-

oper to extend its behaviour. For instance, user interface widgets

can be built on top of the library—several of these extensions,

including contributed layout algorithms, exist. Layouts, core and,

collection functions and renderers can be written as extensions to

add to the library without needing to modify it directly.

3.2 Performance
Cytoscape.js can comfortably render thousands of graph elements

on average hardware. Rendering performance is affected by the vis-

ual styles used, the graph size and the web browser client. Rendering

performance can be improved by using simpler styles—especially for

edges. Optional features that improve the real and user-perceived

large graph interaction performance are detailed in the online

documentation.

Cytoscape.js is frugal with respect to rendering: A new frame is

rendered only when the view needs to be updated. So, a developer

can safely use the API for analysis without worrying about overhead

caused by rendering. There is no rendering overhead when using

Cytoscape.js headlessly.

3.3 Documentation
Cytoscape.js is actively developed as an open-source project, and is

freely available at http://js.cytoscape.org. The documentation in-

cludes an in-depth description of the API, runnable code examples

and demos.

3.4 Example applications
Examples of Cytoscape.js use include the ‘Export network as a

web page’ feature of the Cytoscape desktop application,

ConsensusPathDB (Kamburov A et al., 2013), InnateDB (Breuer K

et al., 2013), BioJS library components (Corpas M, 2014), the

Saccharomyces genome database (Costanzo MC et al., 2013),

the RCyjs Bioconductor package (http://www.bioconductor.org/

packages/ release/bioc/html/RCyjs.html), the upcoming release

of GeneMANIA (Warde-Farley et al., 2010), cyNetShare (https://

idekerlab.github.io/cy-net-share/), NDEx (http://www.ndex bio.org/

), Elsevier (http://www.elsevier.com/books-and-journals/content-

innovation/cytoscape) and demos linked to on the Cytoscape.js site

(http://js.cytoscape.org/).

3.5 Future directions
We intend to add new visual styles, extensions, graph analysis APIs

and layouts, as well as improve the extension ecosystem and increase

performance. We encourage user community feedback to elicit new

library features.

Fig. 1. A GeneMANIA gene–gene interaction network automatically laid out

and visualised with Cytoscape.js, showing interaction strength (edge thick-

ness), interaction type (colour), multiple edges between nodes, protein score

(node size) defined using a stylesheet

310 M.Franz et al.

http://js.cytoscape.org
http://www.bioconductor.org/packages/
http://www.bioconductor.org/packages/
https://idekerlab.github.io/cy-net-share/
https://idekerlab.github.io/cy-net-share/
http://www.ndex
http://www.elsevier.com/books-and-journals/content-innovation/cytoscape
http://www.elsevier.com/books-and-journals/content-innovation/cytoscape
http://js.cytoscape.org/


Acknowledgements

Cytoscape.js is a part of the Cytoscape Consortium and is supported by the

National Resource for Network Biology (NRNB). Cytoscape.js borrows

many concepts from the Cytoscape desktop app, and the two projects try to

be as interoperable as possible. We thank many contributors to the code base

listed at https://github.com/cytoscape/cytoscape.js/graphs/contributors.

Funding

This work was supported by NRNB (U.S. National Institutes of Health,

National Center for Research Resources grant P41 GM103504) and by NIH

grants R01GM070743 and U41HG006623.

Conflict of Interest: none declared.

References

Breuer,K. et al. (2013) InnateDB: systems biology of innate immunity and be-

yond—recent updates and continuing curation. Nucleic Acids Res., 41,

D1228–D1233.

Corpas,M. (2014) The BioJS article collection of open source components for

biological data visualisation. F1000Res., 3, 56.

Costanzo,M.C. et al. (2014) Saccharomyces genome database provides new

regulation data. Nucleic Acids Res., 42, D717–D725.

Kamburov,A. et al. (2013) The ConsensusPathDB interaction database: 2013

update. Nucleic Acids Res., 41, D793–D800.

Lopes,C.T. et al. (2010) Cytoscape web: an interactive web-based network

browser. Bioinformatics, 26, 2347–2348.

Shannon,P. et al. (2003) Cytoscape: a software environment for integrated

models of biomolecular interaction networks. Genome Res., 13, 2498–

2504.

Warde-Farley,D. et al. (2010) The GeneMANIA prediction server: biological

network integration for gene prioritization and predicting gene function.

Nucleic Acids Res., 38, W214–W220.

Cytoscape.js 311

https://github.com/cytoscape/cytoscape.js/graphs/contributors

