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Abstract

MiRNAs play important roles in many diseases including cancers. However computational prediction of miRNA
target genes is challenging and the accuracies of existing methods remain poor. We report mirMark, a new machine
learning-based method of miRNA target prediction at the site and UTR levels. This method uses experimentally
verified miRNA targets from miRecords and mirTarBase as training sets and considers over 700 features. By combining
Correlation-based Feature Selection with a variety of statistical or machine learning methods for the site- and UTR-level
classifiers, mirMark significantly improves the overall predictive performance compared to existing publicly available
methods. MirMark is available from https://github.com/lanagarmire/MirMark.
Background
MicroRNA (miRNA or miR) is one type of non-coding
RNA (ncRNA) that regulates gene expression post-
transcriptionally [1]. In mammals, the mature form of
miRNA is about 22 nucleotide (nt) long and it forms
the miRNA-induced silencing complex (miRISC) in
combination with argonaute proteins. Using the miRNA
sequence as a guide, this miRISC binds to messenger
RNAs (mRNAs) to degrade targeted mRNAs or inhibit
translation from mRNAs to proteins [2]. There have been
over 1,000 annotated miRNAs in humans, and due to the
potential to target multiple mRNAs by each miRNA, it
is speculated that as much as 60% of mammalian genes
are affected by miRNAs [3,4]. Thus abnormal changes in
miRNA expression can cause dysregulation of important
biological pathways, and are involved in many diseases such
as cancers and cardiovascular disease [5-7]. Therefore
determination of the target mRNAs of the variety of
miRNAs will help understand the development of these
diseases.
In mammals, the binding of the miRNA to the mRNA

is not perfectly complementary and the underlying
mechanism is not fully understood [8]. This makes it a
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difficult task for computational prediction of the mRNA
targets of a particular miRNA. Due to the small number
of experimentally verified miRNA-mRNA pairs, early
miRNA target prediction methods are rule-based expert
systems, such as MiRanda [9].
Currently, a variety of tools have been proposed for

miRNA target prediction, based on different methodologies.
Among them, TargetScan is a popular method that removes
the free energy component and looks for conservation of
the 8mer and 7mer seed region (as opposed to conserved
miRs in the original version) [3]. TargetScan uses the
context scores to rank the predicted targets, based on linear
regression trained on microarray data that consider 3′
compensatory pairing (13th to 16th nt), local AU
composition, and position effects (distance to closest
end of 3′ UTR) [10]. As an improvement, the revised
context + score adds predicted seed-pairing stability
and target-site abundance [11]. On the other hand,
RNAhybrid and PITA are based on thermodynamics.
RNAhybrid computes scores based on secondary structure
[12], whereas PITA assesses the accessibility of the site
(seed match) by the difference between the minimum free
energy (MFE) of the duplex and the energy required to
unpair and open the target site [13]. Additionally, some
recent methods such as mimiRNA [14] and TarBase [15],
intend to discover miRNA and mRNA correlations by
incorporating large amounts of experimental data. As the
number of experimentally verified pairs has increased
significantly over the years, statistical or machine learning
methods that are data-driven are becoming popular in the
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area of non-coding RNA classification, including miRNA
target prediction [16,17]. An example of the data-driven
miRNA target predictor is SVMicrO [18] that combines a
larger variety of features than those of rule-based systems
with the popular Support Vector Machine (SVM) learning
algorithm [19].
A miRNA can potentially bind to multiple sites in the

targeted mRNA. Depending on the resolution, one can
perceive miRNA target prediction at two levels. At the
gene level, one can predict if a given miRNA will target
a particular mRNA. At the finer level, we can predict the
sites along the interested region of mRNA which a
miRNA will interact with. Correspondingly, miRNA target
prediction with the classification approach includes at
least two types of classifiers: a site-level classifier that
predicts the possible target sites along the mRNA,
and a gene-level classifier that predicts potential target
mRNA overall. For example, DIANA-microT [20] scores
individual target sites of a miRNA along the mRNA 3′
UTR and then computes a combined score for the
miRNA-mRNA pair overall using an artificial neural
network. The distinction between the two levels is
important, since the availability of data for training
and testing is very different: many experiments identify
miRNA-mRNA pairs, but lack results in the locations of
the target sites. As a result, the performance of classifiers
in relevance to others needs to be evaluated differently.
Most of the experimentally verified target sites remain

historically biased toward the 3′ UTRs, although there
are growing observations of target sites within coding
sequences (CDSs). Therefore in this paper, only target
sites in the 3′ UTR will be considered, due to the abundance
of training data in 3′ UTR. UTR-level classification will
be used in lieu of gene-level classification in this report.
However, the method proposed in this study is adaptable
to target site prediction within CDSs, when sufficient
amount of training data in CDS are available [21].
Despite the considerable advances in miRNA target

prediction, there is much room for improving the
predictive performance of existing methods [22]. This
study aims to improve the predictive performance for
miRNA target prediction at both the site and UTR
level by considering an extensive list of over 700 predictive
features and using the latest collection of experimentally
verified miRNA target data. Feature selection is used to
find the most relevant, yet least redundant, set of features
for site- and UTR-level prediction. Several statistical or
machine learning methods are used to integrate the
selected features and their performances are com-
pared. Finally, the resulting classifiers called mirMark
are compared to existing publically available miRNA
target prediction methods. mirMark is demonstrated
to have significantly improved predictive performance
at both the site and UTR levels.
Methods
Data
Positive data
The positive data are obtained from miRecords [23]
and miRTarBase [24]. At the site-level, only human
miRNA-mRNA pairs with validated target site information
are taken from miRecords. Since miRecords uses a mixture
of older (pre-2011) and current mature miRNA nomencla-
ture, the mature miRNA names are resolved using BLAST:
the miRNA sequences given in miRecords are compared
with the mature human miRNA sequences obtained from
mirBase (v19), the most recent version available during the
preparation of this manuscript [25]. Similarly, the target
region positions on the 3′ UTR are inferred using BLAST:
the target region sequences given in miRecords are
compared to the target 3′ UTR sequences obtained
from UCSC Genome Browser. Any site-level records with
unresolvable miRNA names or target region positions are
omitted. The resulting list of 507 miRNA-target site pairs
is used as the site-level positive set. This list is provided in
Additional file 1: Table S1.
At the UTR level, experimentally validated human

miRNA-gene pairs are combined from two sources: (1)
all human gene and miRNA pairs from miRecords; and
(2) the subset of miRNA-gene pairs that have strong
experimental evidence (that is, those that are not labelled
as weakly supported) from mirTarBase. In miRecords, again
miRNA names that cannot be resolved by comparison with
mirBase v16 (version prior to the change of nomenclature)
or v19 are omitted, due to the mixture of nomenclature
used. In miRTarBase, genes that have multiple distinct/
overlapping UTR sequence are omitted, and longest UTRs
are used to represent the genes that have some RefSeq
UTRs contained within a longer UTR of the same gene.
The resulting list of 2,937 miRNA-gene pairs are used
as the UTR-level positive set. This list is provided in
Additional file 2: Table S2.

Negative data
The negative data are generated using mock miRNAs in
a manner similar to the approaches used in [9,26]. A
mock miRNA is a random permutation of a real mature
miRNA sequence that does not have any overlap with the
seed sequences from known miRNAs. For each mature
miRNA, we use the Fisher-Yates shuffle algorithm [27]
to generate random permutations until we find a mock
miRNA such that no 7mer in the seed region of the mock
miRNA matches a 7mer of the seed region of any
real mature miRNA listed in mirBase v19.
At the site level, mock miRNAs are generated for each

real miRNA in the site-level positive dataset. For each real
miRNA-gene pair in the positive dataset, a corresponding
mock miRNA-gene pair is generated and replaces the
positive miRNA in the miRNA-gene pair. Negative target



Menor et al. Genome Biology 2014, 15:500 Page 3 of 15
http://genomebiology.com/2014/15/10/500
regions are then generated for each mock miRNA-gene
pair using MiRanda’s alignment algorithm with a minimum
alignment score of 155. Doing so allows us to find well
aligned target sites and create a balanced set of positive
and negative data.
At the UTR level, mock miRNA-gene pairs are generated

for each real miRNA-gene pair in the UTR-level positive
dataset. The mock miRNAs are generated by randomly
permutations of the corresponding real miRNA sequences,
as in the site-level negative set. Features in site-level are
computed for the UTR level as well, and summary features
on these sites are calculated for each pair, with additions of
other UTR-level specific features (see the ‘UTR-level
features’ section below).

Site-level features
One hundred and fifty-one site-level features are considered
and the full list is given in Additional file 3: Table S3. Below
are the descriptions of the site-level features by category.

Energy
The total minimum free energy (Duplex_MFE) is computed
using RNAduplex [28] on the mature miRNA and the
candidate target site (CTS). Region specific minimum
free energies are computed by using RNAduplex on
the miRNA seed (Seed_MFE) or miRNA 3′ region
(3p_MFE) on the CTS. The local minimum free energy of
the CTS (Local_target_MFE) is computed by RNAfold
[28] on the 100 nt window surrounding the CTS. The
local minimum free energy of the CTS whose bases are
constrained to be unpaired (Local_cons_target_MFE) is
also computed using RNAfold on the 100 nt window
surround the CTS. The local opening energy of the CTS
(Local_open_energy), a measure of CTS accessibility done
in software PITA [13], is computed as the difference
between Local_target_MFE and Local_cons_target_MFE.

Seed match type
Binary variables specifying the types of seed match in a
CTS are computed using MiRanda’s predicted alignment.
The types of seed match considered are as follows:

� Seed_match_8mer: p1-p8 Watson-Crick (WC)
match

� Seed_match_8merA1: p1 match/mismatch to A,
p2-p8 WC match

� Seed_mach7mer1: p1-p7 WC match
� Seed_match7mer2: p2-p8 WC match
� Seed_match7merA1: p1 match/mismatch to A,

p2-p7 WC match
� Seed_match6mer1: p1-p6 WC match
� Seed_match6mer2: p2-p7 WC match
� Seed_match6mer1GU: p1-p6 WC match allowing

only one GU wobble
� Seed_match6mer2GU: p2-p7 WC match allowing
only one GU wobble

miRNA pairing
Information of the type of target duplex pairing for the first
20 nt of the miRNA (miR_match_P01 to miR_match_P20)
is encoded as an integer-based categorical variable as
follows:

� 1: G-C match
� 2: A-U match
� 3: G-U wobble
� 4: mismatch
� 5: gap

Furthermore, the miRNA pairing information is summa-
rized over the seed region, 3′ region, and total miRNA re-
gion. This includes the number of G-C matches (Seed_GC),
A-U matches, (Seed_AU), GU wobbles (Seed_GU), mis-
matches (Seed_mismatch), bulges (Seed_bulge), and
nucleotides in bulges (Seed_bulge_nt) in the seed region
of the miRNA.

Target site accessibility
Position-wise and region accessibility values of CTSs
are computed using RNAplfold in ViennaRNA package
[28] with winsize 80, span 40, and ulength 10. The accessi-
bility of the entire seed region (Seed_acc), the 5′ half of the
seed region (Seed_5p_acc), the 3′ half of the seed region
(Seed_3p_acc), and position-wise accessibility of each seed
position of the CTS (Seed_P01_acc to Seed_P08_acc) are
considered. Furthermore, the accessibility of the regions
10 nt upstream (Up_seed_flank_acc) and 10 nt down-
stream of the seed region (Down_seed_flank_acc), as
well as their corresponding position-wise accessibilities
(Up_seed_P01_acc to Up_seedP10 and Down_seed_P01_acc
to Down_seed_P10) are considered.

Target site composition
The nucleotide and dimer composition of the CTS
(for example, Target_A_comp, Target_AU_comp), and
the flanking 70 nt regions upstream and downstream of
the CTS (for example, Up_C_comp, Down_GU_comp)
are computed using BioPerl [29]. The flanking AU score
described by Grimson et al. in [10], which is a weighted
count of AU composition flanking the seed region, is also
considered.

Target site conservation
Per base conservation scores of the human 3′ UTRs
are taken from PhastCons46way [30]. The average per
base conservation score of the CTS’ seed region
(Seed_cons_score), the entire CTS (Target_cons_score),
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and the 70 nt upstream and downstream flanks of the
CTS (Flank_cons_score) are considered.

Location of target site
The location of the CTS is considered by computing the
distance of the CTS to the closest 3′ UTR end point
(Dist_to_end). This distance is scaled by dividing by the
length of the 3′ UTR.

UTR-level features
A total of 624 UTR-level features are considered. These
features include summary statistics of site-level features,
3′UTR related information, and CTSs in 3′ UTRs. Below
are the descriptions of the UTR-level features by category.

Summary of site-level features
Total, minimum, maximum, and mean values of the 151
site-level features of the CTSs of a miRNA-gene pair are
computed. Also considered are the total, minimum,
maximum, and mean values of the posterior probability
from the random forest-based site-level classifier, MiRanda
alignment score, and CTS start and end positions.

Other UTR-level features
The length of the 3′ UTR (UTR_length) and the number
of CTSs for a miRNA-gene pair (number_sites) are
considered. The CTS density (site_density) is computed as
number_sites/UTR_length, as done in SVMicrO [18].
Finally, another measure of density is computed by counting
the maximum number of CTSs that lie within 100 nt of
each other (max_100_sites).

Feature selection
Two feature selection methods are considered: Correlation-
based Feature Selection (CFS) [31] and minimum
Redundancy Maximum Relevance (mRMR) [32]. Both
methods are based on mutual information, a non-linear
measure of correlation. Mutual information values are
normalized to be between 0 and 1 using the Linfoot’s
method [33].
Both CFS and mRMR seek to balance the relevance and

redundancy of the features. Relevance is the correlation of
a feature to the class (positive or negative miRNA target),
as measured using mutual information. For a feature to be
selected, it must be relevant to predicting miRNA targets.
On the other hand, redundancy is the correlation between
two features. Redundancy between selected features is
minimized to keep the number of selected features small.
The key difference between CFS and mRMR is that

CFS selects an approximately optimal subset of features
that balance relevance and redundancy, whereas mRMR
only provides a ranking of features and the number of
top ranking features to use is left to be determined by
other methods, such as cross-validation.
Software
RNAduplex, RNAfold, and RNAplfold [28] in Vienna
RNA package are used for energy and accessibility
computations. Nucleotide composition is computed
using BioPerl [29]. Weka 3 data mining software [34]
is used for CFS, classifier training, and evaluation.
The entropy package [35] in R is used to compute
mutual information with the recommended method of
Freedman and Diaconis [36] to discretize features of
continuous variables.

Data availability
The detailed instruction and open source code of mirMark
for miRNA target prediction are available at [37] and
[38]. Additionally, we include the site-level positive
data in Additional file 1: Tables S1 and negative data
in Additional file 4: Table S4, and the UTR-level positive
data in Additional file 2: Table S2 and negative data in
Additional file 5: Table S5.
We used the PAR-CLIP data from previous studies

[39,40] to compare the performance between mirMark
and TargetScan. We obtained one set of data from the
supplementary material of Hafler et al. [39], and the
other datasets from Kishore et al. [40], which have the
following accession IDs and samples:

GSM714642 RNA_Ago2_CLIP_completeT1_repA
GSM714643 RNA_Ago2_CLIP_completeT1_repB
GSM714644 RNA_Ago2_PAR-CLIP_completeT1_repA
GSM714645 RNA_Ago2_PAR-CLIP_completeT1_repB
GSM714646 RNA_Ago2_PAR-CLIP_mildMNase_repA
GSM714647 RNA_Ago2_PAR-CLIP_mildMNase_repB

Results
Structure of mirMark
Most of the identified locations of miRNA targets in the
miRNA target database miRecords [23] are in the 3′
UTR region of the mRNA due to historical reason.
Although there is evidence that miRNA can also target
the 5′ UTR and coding regions of the mRNA, the data are
sparse and therefore the focus of this work is on the 3′
UTR, in order to be comparable to the majority of target
prediction tools.
Figure 1A illustrates the structure of miRNA target

predictors. First, CTSs of the miRNA on the 3′ UTR of
the mRNA are identified. CTSs are found using the
alignment algorithm implemented in MiRanda [9]. The
alignment favors, but does not require, seed matches to
allow for weak seed targets such as 3′ compensatory
target sites.
Given the list of CTSs of the miRNA along with their

predicted alignments (Figure 1B), the site-level classifier
will assign a posterior probability that the given CTS is a
target site of the miRNA. This prediction is made on the
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Figure 1 Structure of mirMark and miRNA-target region duplex. (A) mirMark consists of two levels of classifiers, site-level and UTR-level,
depending on the type of prediction desired. First, candidate target sites (CTSs) of the miRNA on the 3′ UTR are found. The alignment of the
CTSs and various other features concerning accessibility, conservation, and structural information are then used by the site-level classifier to find
the strongest CTSs. On the other hand, the UTR-level classifier integrates the CTSs to determine if the gene is a target of the given miRNA.
(B) An illustration of the site-level binding between miRNA and target regions of the 3′ UTR. Information about the type of bindings that occur
in the seed region is particularly predictive.
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basis of features such as the presence of a seed match,
free energy of the duplex, and the accessibility of the
target site.
Finally, given the CTSs and their posterior probability

of being a true target as computed by the site-level
classifier, the UTR-level classifier will assign a posterior
probability that the miRNA targets the mRNA overall.
This prediction can be made on the basis of features
such as the number of CTSs, the number of CTSs of
a particular seed type, and the length of the 3′ UTR.
This step allows for the integration of the information
provided by the set of CTSs to improve prediction
accuracy (Figure 1A).

Site-level feature selection
Five hundred and seven human miRNA-site pairs are
extracted from miRecords [23] along with their experi-
mentally verified duplex structures. Random permutations
of the miRNA sequences are used to generate mock
miRNAs. To serve as a negative set, 520 mock
miRNA-site pairs corresponding to the real miRNA-site
pairs are generated using MiRanda’s predicted alignments.
The dataset is split in two with 80% for training and
cross-validation, and the rest 20% reserved as a hold-out
test set for independent evaluation.
For use in the site-level classifier (Figure 1A), a set of

151 site-level features are generated, which cover a
broad spectrum of properties including: energy, seed
match, miRNA pairing, miRNA- miRNA-site duplex
structure, target site accessibility, and conservation
(see details in Methods). Weka’s implementation of
CFS [34] is used to select a subset of features that
have high relevance to target prediction and yet low
redundancy among the other selected features. The
12 selected features with CFS on the training set are
listed in Figure 2 along with the selection criterion of
their relevance for target prediction. Such relevance is
measured by the Linfoot information measure [33] esti-
mated using the entropy package in R [35]. In addition,
the mRMR method is used to rank the features and the
ranking is provided in Additional file 3: Table S3.
The selected features (Figure 2, Table 1) highlight the

importance of the seed region in miRNA targeting, as
seven out of the twelve selected features are focused on
the seed region. The miR_match_P01, miR_match_P03,
miR_match_P04, and miR_match_P08 indicate the types



Figure 2 Selected site-level features. List of site-level features selected by correlation-based feature selection and sorted by their relevance
according to mutual information.
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of binding occurring at that particular miRNA position
in the miRNA-site duplex, such as a GC match, AU
match, or GU wobble. Together with the number of
bulges (Seed_bulge), these features are indicative of the
stability of the duplex binding in the seed region.
The two remaining seed-focused features, Seed_cons_score

and Seed_P01_acc, are related to conservation and
accessibility of the target site (Table 1). Since miRNAs are
involved in regulating many vital biological processes, it is
not surprising that many target sites are conserved across
species and that the average conservation score of the
target site’s seed region of the miRNA (Seed_cons_score)
is selected. This is in agreement with SVMicrO that
also selects the conservation score of the seed region
computed using PhastCons28way [18]. The accessibility
of the first position of the target site’s seed region
Table 1 Selected site-level features by correlation-based
feature selection

Feature Description

miR_match_P01 Match status of miRNA position 1

miR_match_P03 Match status of miRNA position 3

miR_match_P04 Match status of miRNA position 4

miR_match_P08 Match status of miRNA position 8

miR_match_P15 Match status of miRNA position 15

Seed_bulge Number of bulges in seed region

Total_AU Number of AU matches in target site

Total_mismatch Number of mismatches in target site

Total_bulge Number of bulges in target site

Total_bulge_nt Number of nucleotides within bulges in target site

Seed_P01_acc Accessibility score position 1 of seed region

Seed_cons_score Conservation score of seed region
(Seed_P01_acc) is selected. Corresponding to our
result, it has been shown that the accessibility of the
target site’s seed region is highly predictive by analysis
of HITS-CLIP data [41].
It is also experimentally observed that a group of

target sites exist with relative weak binding in the
seed region that is compensated for by strong binding
on the target sites overall. Examples are centered and
3′ compensatory sites that have strong pairing on positions
4 to 15 and 12 to 17 of the miRNA, respectively [10,42].
Our CFS selected features provide evidence to support
such observations (Figure 2, Table 1). A group of features
examine the stability of the target site duplex overall
(Total_AU, Total_mismatch, Total_bulge, Total_bulge_nt).
Most impressively, a feature for matching at position 15 of
the miRNA (miR_match_P15) that is critical to both
centered and a 3′ compensatory site is selected by CFS
(Figure 2, Table 1).
Compared to the 12 CFS-selected features, the top

12 ranking features selected by another closely related
feature selection method mRMR (Additional file 3:
Table S3) show 75% agreement. The top 12 features of
mRMR do not contain the miR_match_P15, Seed_bulge,
Seed_P01_acc, and Total_mismatch features selected by
CFS. Instead, mRMR chooses two seed match type features
(Seed_match_6mer2GU and Seed_match_7mer2) and two
3′ region features (3p_bulge and 3p_mismatch).

Evaluation of site-level classifiers
To evaluate different classifiers for site-level target
prediction, we perform 10-fold cross-validation on the
training set where CFS is performed per fold. We
consider four types of linear classifiers: logistic regression
(LR) [43], Fisher’s linear discriminant analysis (FLDA)
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[44], naïve Bayes (NB) [45], and the support vector machine
(SVM) [19] with a linear kernel. In addition, we include
two non-linear classifiers: the random forest (RF) [46] of
100 random trees and the SVM with the Gaussian radial
basis function kernel (Gaussian SVM). Increasing the
number of random trees has diminishing returns and it was
empirically observed through cross-validation results that
100 random trees are sufficient for site-level classification.
The SVM complexity parameter and the Gaussian kernel’s
width parameter are selected through cross-validation. The
SVM classifiers also include a LR model to approximate
posterior probabilities using Platt’s method [47] to improve
performance.
Figure 3A to D compare the cross-validation perform-

ance of the above six classifiers using four different per-
formance metrics: area under the ROC (AUC), F-measure,
accuracy, and Matthew’s correlation coefficient (MCC).
A

C

E

G

Figure 3 Evaluation of site-level mirMark. Performance of site-level mirM
(B) accuracy, (C) F-measure, and (D) MCC using 10-fold cross-validation. Sim
The RF classifier performs very closely to the Gaussian
SVM in cross-validation. Moreover, the results on the
hold-out test set in Figure 3E to H suggest that the RF
generalizes better than the Gaussian SVM.
In addition, Gaussian SVM, RF, and LR models are

trained using the top ranking mRMR features and the AUC
over varying number of features is given in Additional file
6: Figure S1. The AUC achieved is comparable to that of
the classifiers using CFS-selected features. Given the prac-
tical issue that mRMR only provides a ranking of features
and the number of top ranking features to use is left to be
determined by other methods (such as cross-validation), we
elect to use the features selected by CFS from now on.

Site-level comparison with other existing methods
Using the site-level independent hold-out test set, we
compare the performance of RF, Gaussian SVM, and LR
B

D

F

H

ark using various classification methods according to (A) AUC,
ilarly, the performance is shown using a hold-out test set (E-H).
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to existing publically available miRNA target prediction
software: SVMicrO [18], TargetScan [4], MiRanda [9],
RNAhybrid [12], and PITA [13]. Only publically available
software is considered in order to obtain predictions on
the mock miRNAs. The RF and Gaussian SVM are chosen
as they are the top performers in the cross-validation
evaluation and LR is chosen as a representative of linear
classifiers. Here we only consider site-level predictions in
this comparison, and leave UTR-level predictions provided
by SVMicrO, TargetScan, MiRanda, and PITA in UTR-level
comparisons described later. Note that TargetScan and
PITA are seed-level predictors; we extend the seeds to
obtain 25 nt long target site regions, so that TargetScan and
PITA can be compared with other site-level models.
The miRNA-site duplexes are predicted, rather than

using the experimentally validated duplex structures in
miRecords. Therefore the predicted target site locations
will not exactly correspond to the expected target site
locations in the test set. To allow for this discrepancy,
we consider predicted target sites as ‘true target sites’ if
they overlap some percentage of an expected target site.
Figure 4A to D display ROC curves for minimum overlap
thresholds of 25%, 50%, 75%, and 95%. Note that classifiers
may not be able to reach a true positive rate of 1.0 due to
lack of a predicted target site with sufficient overlap. Since
not all methods span the entire false positive rate range, we
compute the AUC from the shared false positive rate region
from 0.0 to 0.4. The AUC using different minimum overlap
thresholds are given in Figure 4E. RF, Gaussian SVM, and
LR site-level classifiers clearly outperform the other existing
methods in this low false positive rate regime. Among
them, the RF classifier achieves the highest AUC across
the board.
Next, we investigate the biases that a method may

have in the locations overlapping between the expected
target sites from miRecords and the predicted target
sites. Since the expected target sites vary in length, we
divide the length of the expected target sites into 10
equal sized bins. We also include five flanking bins of
equal size upstream and downstream of the expected
sites from miRecords. The bins count the number of
predicted sites that overlap with the coordinates located
in the expected target site. We use the predicted target
regions given by the methods at about 0.6 true positive
rate, according to the 75% overlap ROC curve in
Figure 4C. Therefore RNAhybrid is omitted form
this analysis. The results are given in Figure 4F to H
corresponding to RF, SVMicrO, and MiRanda, respectively.
LR and Gaussian SVM have similar results as RF, and they
are given in Additional file 7: Figure S2.
In Figure 4F we see that the RF classifier performs very

well, as the majority of overlapping predicted target sites
are mostly contained within the expected target sites, with
only a common overhang at the 5′ end of the expected
target site. It also yields most number of predicted regions
among the three classifiers tested. In contrast, SVMicrO
shows a large overhang at the 5′ end, but a relatively clean
cut at the 3′ end that pairs with miRNA seed region
(Figure 4G). The clean cut at the 3′ end is expected
as potential target sites are first identified by seeking
loose seed matches to the miRNA, and then extended
by alignment using MiRanda to form a full target region
prediction. The results for MiRanda in Figure 4H have
relatively similar shape to those for RF in Figure 4F. This
is due to the fact that the RF classifier uses MiRanda’s
alignment algorithm to identify CTSs. The key difference
between MiRanda and the RF classifier is how the CTSs
are filtered: MiRanda uses the minimum free energy
of the CTS, whereas RF uses a posterior probability
estimated from 12 CFS selected-features selected by
CFS. This results in a different selection of predicted
target sites and therefore some variation in the overlap
plots in between the two (Figure 4F, H).
Finally, we also evaluate the performance of mirMark

vs. TargetScan using published PAR-CLIP experiment
results [39,40]. PAR-CLIP results provide direct ‘finger-print’
information on putative miRNA binding sites genome-wide
by pulling down the nucleotide sequences associated with
the RNA-binding proteins, making them good additional
testing data to detect the sensitivity of the tools. However,
note that the direct miRNA and target pairing information
is missing in PAR-CLIP data which makes them un-
desirable as the positive dataset in mirMark. We randomly
selected about 1,000 sites from 100 UTRs detected in
PAR-CLIP data as the truth measure, where the UTR
sequences are determined by BLAST matching of
cross-linked centered regions (CCRs) in PAR-CLIP results.
We test the performance of mirMark site-level model on
these sites, in comparison with the predictions from
TargetScanHuman 6.2 on the same sites. We extend
TargetScan predicted seed matching regions to 25 bp,
to make it comparable to mirMark. As shown in
Additional file 8: Figure S3, in the regions of the high
overlap percentages (more than 90%) between prediction
and PAR-CLIP results, mirMark with the stringent poster-
ior probability threshold of 0.95 still predicts significantly
(27%) more true-positive sites than TargetScan that has a
loose threshold of 50% percentile Context + score. This
result again shows that mirMark is a better performer at
the site level, compared to TargetScan.

UTR-level feature selection
UTR-level positive training data are taken from miRecords
and miRTarBase. These are experimentally validated
human miRNA-gene pairs with high confidence. A negative
set of mock miRNA-gene pairs associated with the real
miRNA-gene pairs is generated by random permutations
of the miRNA sequences paired with real UTRs. Like
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Figure 4 Comparison to existing methods at site level. ROC curves for site-level mirMark and existing methods on the hold-out test set using
different overlap thresholds to the expected target regions: (A) 25%, (B) 50%, (C) 75%, and (D) 95%. (E) The AUC of the ROC curves from false
positive rate 0 to 0.4 (chosen based on results from a-d) under different overlap thresholds. (F, G) The number of predicted regions overlap the
expected regions at about 0.6 true positive rate for (F) mirMark random forest, (G) SVMicro, and (H) MiRanda.
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the site-level classification, the dataset is split in two
with 80% for training and cross-validation and 20%
reserved for independent evaluation.
A total of 624 UTR-level features are considered. They

include 3′ UTR level features, such as the density of the
predicted targets sites within the 3′ UTR, and summary
statistics (maximum, minimum, mean, and summation)
based on each of the previously mentioned site-level
feature of a miRNA-gene pair (see Methods for details).
Also included are the total, minimum, maximum, and
mean of the posterior probabilities from the RF site-level
classifier on the CTSs of the miRNA-gene pair. The RF
site-level classifier is chosen due to its best performance
in the site-level evaluation in the previous section.
A total of 15 UTR-level features are selected by

performing CFS on the training set (Table 2), and
they are ranked in Figure 5 along with their relevance
to target prediction. The stability of seed regions of the
CTSs is again clearly important among the selected 15
features. Four of the features are either related to seed
match or MFE in seed regions. The former category is
Table 2 Selected UTR-level features by correlation-based
feature selection

Feature Description

Miranda_score.max Maximum alignment score between
miRNA and target sites

Seed_match_6mer2.mean Proportion of target sites with P02-P07
WC match

miR_match_P01.min Match status of miRNA position 1

Seed_match_7mer2.max Proportion of target sites with P02-P08
WC match

Seed_match_7mer1.mean Proportion of target sites with P01-P07
WC match

Seed_MFE.min Minimum MFE of seed region of miRNA:site
duplexes

X3p_MFE.mean Mean MFE of 3′ region of miRNA:site duplexes

Target_UC_comp.mean UC dimer composition of the CTS

miR_match_P09.mean Match status of miRNA position 9

miR_match_P02.min Match status of miRNA position 2

Seed_GU.mean Mean number of GU matches in target
site seed regions

miR_match_P07.mean Match status of miRNA position 7

Start_position.min Minimum distance of target sites to
the 5′ end of the 3′ UTR

miR_match_P19.min Match status of miRNA position 19

miR_match_P15.min Match status of miRNA position 15
demonstrated by the proportion of CTSs that have some
form of 6mer or 7mer seed match (Seed_match_6mer2.
mean and Seed_match_7mer1.mean) and the existence of
a CTS with a 7mer match in positions 2 to 8 of the
miRNA (Seed_match_7mer2.max). MFE of seed regions is
important, demonstrated by the selected features of the
minimum MFE (Seed_MFE.min) and mean number of
G-U matches (Seed_GU.mean) within the CTSs’ seed
regions. These features also give an aggregated account to
the overall stability of the CTSs. Lastly, three features
for binding that occurs on seed positions of the
miRNA (miR_match_P01.min, miR_match_P02.min,
and miR_match_P07.mean) are selected, as expected.
As mentioned in the results of site-level feature selection,

there exist target sites with relative weak binding in the
seed region that are compensated for by strong binding on
the target site overall. There are three selected features
focused on the 3′ region of the miRNA (Table 2, Figure 5).
The mean MFE (X3p_MFE.mean) in the 3′ region of the
CTSs is indicative of the stability of the duplex beyond the
seed region. Furthermore, the existence of a CTS with
good binding on positions 15 and 19 of the miRNA
(miR_match_P15.min and miR_match_P19.min) provides
strong evidence of the importance of central region and 3′
compensatory pairing respectively, which were observed
by others experimentally [10,42]. Additionally, the maximum
Figure 5 Selected UTR-level features. List of UTR-level features
selected by correlation-based feature selection and sorted by their
relevance according to mutual information.
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MiRanda alignment score (Miranda_score.max) of the CTSs
provides evidence of the overall presence of stable CTS
bindings.
Finally, the literature has shown that the location of a

target site is biased toward the ends of the 3′ UTR [4]
and CFS has partially detected this bias through its
selection of a feature indicating the distance to the 5′
end of the 3′ UTR to the closest CTS (Start_position.
min in Table 2).

UTR-level comparison with existing methods
Using the UTR-level hold-out test set that is independent
of mirMark models, we compare the performances of RF,
LR, and Gaussian SVM classifiers in mirMark to those of
TargetScan, SVMicrO, MiRanda, RNAhybrid, and PITA.
With the exception of RNAhybrid and TargetScan, all
other methods provide predictions at the UTR level by
integrating site-level evidence. RNAhybrid produces
UTR-level predictions solely based on the minimum
MFE in predicted target site.
The performances of the UTR-level classifiers on

hold-out test set are shown by ROC curves in Figure 6.
RF, LR, and Gaussian SVM classifiers of mirMark clearly
dominate over the other existing methods that are
publicly available for comparison, including TargetScan,
SVMicrO, MiRanda, RNAhybrid, and PITA. Among
these three classifiers of mirMark, the Gaussian SVM
classifier achieves the highest AUC of 0.958, closely
followed by the AUC of 0,953 from RF, and subsequently
0.901 from LR. For both site-level and UTR-level classifiers,
RF and Gaussian SVM classifiers achieve strong
performance. However, the Gaussian SVM performs
marginally better for the UTR-level classifier.
Given the wide application of TargetScan, we next ask

what is the sensitivity of mirMark in the false-negative
Figure 6 Comparison to existing methods at UTR level. ROC curves for
UTR targets of TargetScan? To answer this question, we
obtain 19641 UTR targets detected by PAR-CLIP
[39,40], among which 1757 UTR targets are not predicted
by TargetScanHuman version 6.2. We randomly select
300 of these targets as inputs to mirMark’s UTR-level
classifier, in combination with miRNAs in miRBase. We
choose the posterior probability from the best match for
each UTR target, and plot the posterior probability density
distribution in Additional file 9: Figure S4. Most of
the UTR targets from PAR-CLIP are detected with
high confidence from mirMark.

Discussion
Mock miRNA based vs. real biologically negative dataset
It is debatable what type of negative datasets are the best
for miRNA target predictions, with the machine learning
approach. True negative target data are simply the
complement of the true positive target data, whereas
the set of ‘true positive target data’ are an unknown
entity. The true negative target dataset is quite large.
To obtain a balanced classification design, a subset of
negative data must be chosen in an unbiased manner
as the negative training data.
We have taken the mock miRNA and real targets pairing

approach to generate the negative data, whereas others
used negative data with some experimental support, such
as using real miRNAs and genes with no experimental
evidence of being the targets of miRNAs. In order to inves-
tigate which approach applies better in partner with the
positive data that we use, we compare mirMark’s negative
dataset composed of mock miRNA and real targets pairs,
with another approach using real miRNAs and genes lack-
ing experimental evidence of being miRNA targets, similar
to Marin et al. [41] and Ritchie et al. [48]. In this alternative
approach, we combine all potential targets from miRecords,
UTR-level mirMark and existing methods on the hold-out test set.



Menor et al. Genome Biology 2014, 15:500 Page 12 of 15
http://genomebiology.com/2014/15/10/500
miRTarBase, and 7 PAR-CLIP datasets [39,40] to obtain a
set of miRNA targets, and then exclude them from RefSeq
genes to get the ‘biologically negative targets’. We then ran-
domly pair the real positive miRNAs with these biologically
negative targets to generate a biologically negative dataset.
This biologically negative dataset is then split into training/
testing data, with/without combination with the mirMark’s
mock miRNAs as the testing/training data. This results in
four scenarios: (1) mock miRNAs for both model building
and validation (the mirMark method); (2) biologically nega-
tive data for both model building and validation; and (3, 4)
two more cases with mixed mock miRNAs and biologically
negative data for model training and validation, and vice
versa. We show that the mirMark mock miRNA negative
data approach has the best predictive performance on test-
ing dataset (Additional file 10: Figure S5) among the four
combinations, including the scenario where biologically
negative data are used for both model building and testing-
data validation. This consolidates the suitability of using
mock miRNA real targets pairs as negative data, in partner
with the experimentally validated positive data from
mirRecords and mirTarBase.
Due to the use of miRanda to align CTS for the site-level

negative data, biases might be introduced for features
relevant to the miRanda algorithm. To minimize possible
biases, we use a stringent miRanda alignment score thresh-
old for the negative data. Only CTS with a miRanda score
of 155 or higher are allowed as part of the negative data.
Such a stringent threshold potentially dampens or dilutes
the importance of seed matching. Even so, the selected
features still (Figure 2, Table 1) highlight the importance of
the seed region in miRna targeting, as seven out of the
twelve selected features are focused on the seed region.

Relevance of selected features to classes
The correlations of the site- and UTR-level features to the
class in Figures 2 and 5, respectively, are not very strong,
with values around 0.55 or below. This suggests that an
individual feature by itself is not a very strong predictor of
miRNA targets. Rather, a set of features is necessary to
make target predictions reliably. This is supported by the
prediction results given in Figures 4 and 6, where the
target predictions based on duplex MFE (MiRanda and
RNAhybrid) and accessibility (PITA) underperform the
machine learning-based predictors that integrate multiple
features (mirMark and SVMicrO).

Comparison of mirMark classification methods
Random forest and Gaussian SVM are two top classifiers
that have very close predictive performances overall. At site
level, the non-linear methods of mirMark are only margin-
ally superior in cross-validation (Figure 3), regardless of
metrics, suggesting that the decision boundary between
target sites and non-target sites is nearly linear. Since the
SVM learning algorithm approximately optimizes accuracy,
it is not surprising the non-linear Gaussian SVM outper-
forms all other methods in accuracy. Also the training data
are balanced between target site and non-target site
examples, this may explain why Gaussian SVM yields
better F-measure and MCC than other classifier. It
has been shown that Platt’s method is unreliable at
estimating posterior probabilities from SVM outputs
[49], which may explain the slight underperformance
of Gaussian SVM compared to random forest in the
AUC measure that relies on the posterior probability
estimates. However, there is a drop in SVM performance
from cross-validation to test results at site level. This may
be due to selection bias in the cross-validation results,
which was used to select the SVM parameters. The results
on the test set suggest that some overfitting of the SVM
models is caused by choosing the SVM model with the best
observed AUC in cross-validation. On the other hand,
random forest is an ensemble of decision trees where the
classification is determined by most popular vote among all
model trees. It is known to converge without the overfitting
problem [46]. This advantage of random forest is exhibited
in the hold-out testing set at site-level.

Site-level vs. UTR-level predictions of mirMark
None of the posterior probability features, the outputs of
the RF site-level classifier, are selected by CFS for
UTR-level classification. This suggests that UTR-level
target prediction can be largely independently of results
out of the site-level target prediction. Indeed, the majority
of the CFS-selected UTR-level features are highly cor-
related to the posterior features, as the heatmap in
Additional file 11: Figure S6 shows. Thus we propose that
necessary predictive information for the UTR-level is
contained in the summary site-level features and the results
of a site-level classifier are not an absolute require-
ment for UTR-level target prediction. In fact, two summary
statistics of site-level features (miR_match_P01.min and
miR_match_P15.min) are selected as the UTR-level fea-
tures, confirming the importance of complementary match-
ing in both the seed region and positions 13 to 16 in the
central region that were observed by others experimentally
[10,42]. The finding that miR_match_P15 is an important
feature has prompted us to conduct more detailed analysis
on the type of binding between miRNA and targets at this
position. As shown in Additional file 12: Figure S7, this pos-
ition has slightly more match (23% G-C matches and31%
A-U matches) than the no-match cases (15% G-U wobbles,
27% mismatches and 3% gaps), supporting the result that
miR_match_P15 is an important feature in the model.

Comparison to SVMicrO
SVMicrO is a recent SVM based miRNA target prediction
tool that showed superior performance to earlier methods
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such as TargetScan and PicTar [18]. Compared to the
other programs discussed in this paper, mirMark is
algorithmically more similar to SVMicrO. Both methods
start with a large variety of features and use feature
selection methods to select a smaller subset of features
for use in the site- and UTR-level classifiers. mirMark
predictors and SVMicrO share a common structure of
using MiRanda to identify CTSs and using machine
learning methods to train site- and UTR-level classifiers.
Unlike the mock miRNA approach for generating

negative data in mirMark, SVMicrO created a negative
dataset based on genes that positively correlated to miRNAs
in miRNA expression microarray experiments [18].
However, compared to the mock miRNA approach,
SVMicrO’s approach may be biased to experimental
conditions, as well as too restrictive since there may
exist many true negative data that are not positively
correlated in microarray experiments. These may also
explain our observations that SVMicrO performs better
than TargetScan at the site level (Figure 4), but not at the
UTR level (Figure 6).
Besides the different datasets from SVMicrO, mirMark

has improved method design, which may also lead to
the significantly better performance than SVMicro.
SVMicrO uses MiRanda to identify potential seed
matches. This prevents SVMicrO from identifying target
sites that have a weak seed match, such as 3′ compensa-
tory and centered sites [10,42]. Thus one improvement of
the mirMark predictors is the use of MiRanda to identify
full CTSs in order to find strong binding regions overall
but not just in the seed region. Another improvement
arises from the much more features considered by
mirMark. At the UTR level, the feature selection
conducted for SVMicrO only consists of 60 features
relating to the total number of predicted target sites
of particular seed types, the top score of the sites
provided by the site-level classifier, and the density of the
predicted sites [18]. Whereas the feature selection
conducted for mirMark casts a wider net of 624 features,
including summary statistics of every site-level feature
considered. This allows the selection of a subset of
UTR-level features that are more predictive than
those of SVMicrO.

Potential limitations of mirMark and future work
As mentioned earlier, mirMark is built on the machine
learning approach, thus the results of the model are
dependent on input data, like all statistical models. Positive
data for mirMark are obtained through the combined
results from miRecords and a stringent selection of
miRTarBase. Unavoidably, the miRNA and target
interactions from these databases may simply reflect the
miRNAs and genes of interest to the experimentalists
who performed the validation [50], and they may not
be representative of the landscape of target interactions in
general. Furthermore, the choice of the negative dataset
potentially introduces bias in the model. mirMark uses the
mock miRNA approach for negative dataset generation.
Mock miRNAs are in silico constructions and are not found
in nature, according to current knowledge of miRNAs, it is
possible that they have different sequences and properties
compared to ‘true negative miRNAs’, which we do not
know the complete set yet. We used the mock miRNA to
pair with true positive targets in the generation of negative
data, thus any potential target bias from the positive dataset
is carried over to the negative dataset as well. Additionally,
miRanda is used to find candidate target sites with seed
matching in both positive and negative datasets of mir-
Mark, therefore the selected features may be biased against
seed matching but favor other features that are not used by
miRanda filtering. This could explain why Total_AU, the
number of AU base matches between the miRNA and the
target, is selected in our site-level classifier and has better
relevance to the classification outcome than other features
that are related to seed matching.
While recognizing the potential problems due to the

input data, we are optimistic that the machine learning
approach is the state-of-art methodology for more
accurate miRNA target prediction. The quality and quantity
of training data are continuously improving, as more and
more miRNA-target interaction data are recorded by
databases such as miRecords and miRTarBase. We
plan to maintain and update mirMark regularly as
new training data become available. Moreover, we will
expand mirMark from predicting human to other species,
such as mouse, in the near future.

Conclusions
A new site- and UTR-level miRNA target tool, mirMark,
is proposed. It initially considers an extensive list of over
700 features. This list is narrowed down to find the sets
of the most relevant and minimally redundant features
using feature selection. Evaluation of mirMark at the site
and UTR levels reveals the overall superior performance
of the random forest classification method. Furthermore,
mirMark shows significant improvement in predictive
performance compared to existing publically available
methods for human miRNA target prediction.
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