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Abstract

About 30% of patients with acute myeloid leukemia (AML) harbour mutations of the receptor tyrosine kinase FLT3, mostly
internal tandem duplications (ITD) and point mutations of the second tyrosine kinase domain (TKD). It was the aim of this
study to comprehensively analyze clinical and functional properties of various FLT3 mutants. In 672 normal karyotype AML
patients FLT3-ITD, but not FLT3-TKD mutations were associated with a worse relapse free and overall survival in multivariate
analysis. In paired diagnosis-relapse samples FLT3-ITD showed higher stability (70%) compared to FLT3-TKD (30%). In vitro,
FLT3-ITD induced a strong activating phenotype in Ba/F3 cells. In contrast, FLT3-TKD mutations and other point mutations –
including two novel mutations – showed a weaker but clear gain-of-function phenotype with gradual increase in
proliferation and protection from apoptosis. The pro-proliferative capacity of the investigated FLT3 mutants was associated
with cell surface expression and tyrosine 591 phosphorylation of the FLT3 receptor. Western blot experiments revealed
STAT5 activation only in FLT3-ITD positive cell lines, in contrast to FLT3-non-ITD mutants, which displayed an enhanced
signal of AKT and MAPK activation. Gene expression analysis revealed distinct difference between FLT3-ITD and FLT3-TKD for
STAT5 target gene expression as well as deregulation of SOCS2, ENPP2, PRUNE2 and ART3. FLT3-ITD and FLT3 point
mutations show a gain-of-function phenotype with distinct signalling properties in vitro. Although poor prognosis in AML is
only associated with FLT3-ITD, all activating FLT3 mutations can contribute to leukemogenesis and are thus potential targets
for therapeutic interventions.
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Introduction

The Fms-like tyrosine kinase 3 (FLT3) plays an essential role in

hematopoiesis, driving differentiation of early myeloid and

lymphoid lineages, but being down-regulated at later stages. Its

expression is usually tightly restricted to early progenitor cells and

deregulation of the FLT3 receptor plays a major role in the

pathogenesis of leukemia [1,2]. Mutations of FLT3 are found in

30% of acute myeloid leukemia (AML) cases, making it the most

frequently mutated tyrosine kinase in this otherwise heterogeneous

group [2,3]. The most common alterations, internal tandem

duplications (ITD) in the juxtamembrane (JM) domain of the

FLT3 receptor are associated with poor prognosis, with respect to

event free survival, relapse rate and overall survival [4,5].

Disruption of the FLT3-JM through ITD results in a loss of its

autoinhibitory function and conveys ligand-independent phos-

phorylation and activation of FLT3 [1,6]. A second class of

recurring mutations are gain-of-function mutations at the amino

acids (AA) 835/836 in the second tyrosine kinase domain (TKD)

[3,7,8]. In addition to these, rare activating point and length

mutations have been described [9–13]. Although FLT3-ITD

strongly influence disease-phenotype and prognosis, the genotype-

phenotype relationship is not so clear for FLT3 point mutations,

which are not considered to be an independent prognostic factor.
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However, acquired FLT3 point mutations can induce resistance to

FLT3 tyrosine kinase inhibitors in AML patients [14–16]. The

results in terms of classification into gain-of-function mutations

and mutations without activating phenotype in the FLT3 gene in

vitro and in vivo are inconsistent [4,5,7,9,17].

Here we analyzed clinical data regarding different parameters

and outcome variables with respect to FLT3 mutation status and

investigated the influence of various FLT3 mutations in a

comparative setting. We present data showing that FLT3 point

mutations are gain-of-function mutations which induce a range of

changes in cell growth and apoptosis susceptibility in vitro. These

mutations differ considerably from FLT3-ITD with respect to

prognosis, mutation stability at relapse and signaling patterns in

vitro and in vivo.

Materials and Methods

Analysis of Clinical Outcome
The independent prognostic effect of FLT3-WT*, FLT3-ITD,

FLT3-TKD or both FLT3 mutation types on overall survival (OS),

relapse free survival (RFS) and complete remission (CR) was

evaluated in 672 of 802 CN-AML patients. The asterisk denotes

the fact that only the mutational hotspots, and not the entire FLT3

gene, were sequenced. These patients were enrolled in the

AMLCG99 trial [18]. The AMLCG clinical trial was approved

by the local institutional review boards of all participating centers

and informed consent was obtained from all patients in

accordance with the Declaration of Helsinki. 329 patients were

female (329/672, 58.3%). The median age was 60 years (range:

16–85 years). 554 patients (82.4%) had de novo AML, 70% had a

performance status according to Eastern Cooperative Group

(ECOG) of #1. 19% underwent allogeneic transplantation.

Mutations of NPM1, biallelic CEBPA mutations (biCEBPA) and

partial tandem duplications of the MLL gene (MLL-PTD) were

present in 53% (329/620), 5% (29/638) and 7% (48/645) of cases,

respectively.

The outcome parameter OS was calculated from the time of

randomization to death from any cause or to the latest follow-up

date. RFS was determined for responders from the first day of CR

until relapse or death without relapse. In patients who had

undergone allogeneic transplantation, survival times were cen-

sored at the timeof transplantation. Kaplan Meier estimates of

survival as well as univariable and multivariable Cox regression

analyses were performed for OS and RFS. Factors included in the

model were: age, performance status (ECOG), de novo AML,

white blood count (WBC), platelet count, hemoglobin level, lactate

dehydrogenase (LDH) level, bone marrow (BM) blasts, mutation

status of NPM1, FLT3, MLL-PTD and CEBPA. Due to correlation

between NPM1 and FLT3-ITD, an interaction term was included,

which was 1 when both mutations were present and 0 if either

NPM1 or FLT3-ITD were present or both were WT*. Indepen-

dent prognostic factors were identified with an exclusion

significance level of 5%. Statistical analyses were performed using

SPSS version 20.0 (SPSS Inc., Chicago, IL).

Analysis of FLT3 Stability
The stability of FLT3 mutationsduring the course of the disease

was evaluated in 156 patients (out of 352 patients with relapsed

AML) with available bone marrow aspirates at diagnosis and at

relapse that were screened for FLT3-ITD and FLT3-TKD

mutations as previously described [19,20]. FLT3-ITD mRNA

levels at diagnosis and relapse were calculated a following: (FLT3-

ITD/FLT3-WT)/(FLT3-ITD/FLT3-WT+1) [21]. In case of

absence of hotspot mutations the receptor mutation status was

named WT*. 74 of 156 patients were female. The median age was

60 years with a range of 21 to 90 years. 130 (85.5%) patients had de

novo AML, 16 (10.5%) sAML and 5 (3%) t-AML. In five patients

the origin of AML was not reported. The majority of patients had

an intermediate karyotype (n = 102; cytogenetically normal (CN-

AML) n = 92), eight patients showed a favorable karyotype, and 46

had an adverse type at first diagnosis [22]. The majority of patients

(76.3%) had been treated within AMLCG studies (AMLCG92

n = 3; AMLCG99 n = 98; AMLCG2004 n = 9; AMLCG2008

n = 6; others: n = 3) [18,23,24]. The AMLCG clinical trials were

approved by the local institutional review boards of all participat-

ing centers and informed consent was obtained from all patients in

accordance with the Declaration of Helsinki.

Plasmids and Antibodies
DNA constructs and vectors were used as described before

[9,25]. FLT3-I867S and FLT3-D839G constructs were generated

using QuikChange II XL Site-Directed Mutagenesis Kit (Agilent,

Santa Clara, CA). Denotation: W78: ITD1, Npos: ITD2, W51:

ITD3. Figure S1 displays the locations and insertions respectively

substitutions of the analyzed mutations.

The following antibodies were used: FLT3 (S18) and goat anti-

mouse secondary antibody from Santa Cruz Biotechnology (Santa

Cruz, CA). AKT, MAPK, pSTAT5 (Tyr694), pAKT (Ser473) and

pMAPK (Thr202/Tyr204) all from Cell Signaling Technology

(Danvers, MA). STAT5 from R&D Systems (Minneapolis, MN).

b-actin and goat anti-rabbit secondary antibody from Sigma-

Aldrich (St. Louis, MO). CD-135-PE from Beckman Coulter

(Brea, CA). IgG1 PE Isotype control from BD Pharmingen (BD

Bioscience, Franklin Lakes, NJ).

Cell Lines and Reagents
Murine Ba/F3 and WEHI-3B cell lines were obtained from

Deutsche Sammlung von Mikroorganismen und Zellkulturen

(DSMZ) (Braunschweig, GER). Phoenix Eco cells were purchased

from Orbigen (San Diego, CA). Method of characterization can be

obtained from the respective cell bank. Cells were cultured

according to vendors’ instructions.

Recombinant human FLT3 ligand (FL) was purchased from

Promokine (Heidelberg, GER) and recombinant murine IL-3 from

Immunotools (Friesoythe, GER). The inhibitor MK 2206 was

obtained from Selleck Chemicals (Houston, TX).

Transient Transfection of Phoenix Eco and Stable
Transduction of Ba/F3 Cells

These experiments were carried out as described previously

[26]. BaF3 cells were stable transduced with FLT3 plasmids

including an EGFP-IRES site (MSCV-IRES-EGFP). Fluorescence

activated cell sorting was performed to generate pure cell lines.

cDNA of all generated cell lines were screened for the presence of

ITD using a fragment length analysis after FLT3 amplification by

PCR. Additionally presence of FLT3 mutations in the generated

cell lines was confirmed by Sanger sequencing.

Proliferation and Apoptosis Assays
Proliferation and apoptosis assays were performed as described

before [9]. Cells were counted using Trypan blue exclusion,

automated by Vi-CELL AS from Beckman Coulter (Brea, CA).

Analysis of flow cytometry data was performed using Windows

Multiple Document Interface for Flow Cytometry 2.8. (WinMDI;

Joe Trotter).

Oncogenic Potential of FLT3 Mutations
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Western Blot Analysis
Experiments were performed as described before [26]. Proteins

were visualized by chemiluminescence using ECL Plus Western

Blot Detection Kit (GE Healthcare, Chalfont St.Giles, UK). Semi-

quantitative analysis of protein bands was performed using Image

J 1.44 (Wayne Rasband, National Institutes of Health). Values

indicate ratio of phosphoylated to total protein expression levels.

ELISA
PathScan Phospho-FLT3 (Tyr591) Chemiluminescent Sand-

wich ELISA, Cell Signaling Technology (Danvers, MA) was used

according to the manufacturer’s instruction.

Statistical Analysis of In Vitro Data
Statistics were implemented with SigmaPlot 11.0 and two sided

t-test as well as Mann-Whitney Rank Sum test were used.

Heatmap was created using R Development Core Team (2011).

R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria.ISBN 3-

900051-07-0.Retrieved fromhttp://www.R-project.org/.

Gene Expression Analysis
A subgroup of patients included in the gene expression data set

GSE37642 was analyzed [27]. All patients were enrolled in the

AMLCG-99 trial [18]. The subgroup was selected according to

the following characteristics: CN-AML and information on FLT3,

MLL, NPM1 and CEBPA mutation status. In case of absence of

hotspot mutations the receptor was named WT*. Table S1 shows

detailed patient characteristics.

Pretreatment bone marrow samples were analyzed using

Affymetrix HG-U133 A/B and 2.0 plus microarrays (Affymetrix,

Santa Clara, CA) following standard protocols [27]. For probes to

probe set annotation we used custom chip definition files (CDFs)

based on GeneAnnot version 2.0, synchronized with GeneCards

Version 3.04 (available at http://www.xlab.unimo.it/GA_CDF)

[28]. These CDFs decrease the total number of probe sets (one

probe set per gene), and potentially increases the specificity of the

analyses by eliminating cross-hybridizing probes (probes are

restricted by sequence specificity). Data normalization was

performed as described previously [29]. 17389 probe sets present

both on the A, B chips and the 2.0 plus chips were included in the

analysis.

Gene set enrichment analysis (GSEA) was performed with

GSEA software (MIT) to assess significant changes in gene

expression levels [30]. The GSEA was run with 1,000 permuta-

tions and compared with Signal2Noise to the ‘‘c3_tft’’ collection

from the Molecular Signatures Database MsigDB 3.0 (http://

www.broadinstitute.org/gsea/msigdb/index.jsp) consisting of 615

gene sets that share a transcription factor binding site defined in

the TRANSFAC (version 7.4, http://www.gene-regulation.com)

database and the ‘‘c2_kegg’’ collection consisting of 186 gene sets

from the Kyoto Encyclopedia of Genes and Genomes data base

(KEGG). The minimum size of tested gene sets was 15 and the

maximum was 500. The Linear Models for Microarray Data

(Limma) package was used to compute differentially expressed

probe sets based on the FLT3-status. All statistical analyses were

performed using the R 2.11.0 software and routines from the

biostatistics software repository Bioconductor.

Results

FLT3-TKD Mutations Are Associated with Superior RFS
and OS Compared to FLT3-ITD

The impact of the FLT3 mutation status was evaluated in 672

patients with CN-AML. The majority of patients were FLT3-WT*

(64.7%). FLT3-ITD and FLT3-TKD mutations were present in

28.6% and 5.5%, respectively. 1.2% of patients had both types of

mutations. 128 of 673 patients (19%) underwent allogeneic

transplantation. The proportion of allogeneic transplanted patients

in the FLT3-WT* (n = 76/436; 17.4%), FLT3-ITD (n = 42/192;

21.9%) and FLT3-TKD (n = 8/37; 21.6%) group were not

significantly different (p = 0.556).

The median OS of patients with FLT3-WT* (n = 435), FLT3-

ITD (n = 192), FLT3-TKD (n = 37) and both types of FLT3

mutations (n = 8) was 27.7, 11.8, 17.5 and 8.4 months, respec-

tively. Patients with FLT3-ITD displayed a significantly worse OS

compared to patients expressing FLT3-WT* (Hazard Ratio (HR):

1.4, 95% confidence interval (CI): 1.1–1.8). In contrast, OS in

FLT3-TKD mutation positive patients was not different compared

to FLT3-WT* (HR: 0.8, 95% CI: 0.7–1.7). The last surviving

patient under observation in the group of FLT3-TKD positive

patients died of esophageal cancer. Patients who had both types of

FLT3 mutations showed a trend towards worse OS compared to

patients with single FLT3-ITD mutation status (HR: 1.1, 95% CI:

0.4–3.3) (Figure 1A).

443 of 672 patients achieved a CR. The median RFS was 23.7

months for FLT3-WT* cases (n = 288), 7.7 months for FLT3-ITD

(n = 129), 36.1 months for FLT3-TKD (n = 20) and 5.2 months for

FLT3-ITD and FLT3-TKD mutation positive cases (n = 6). The

presence of a FLT3-ITD was associated with a significantly shorter

RFS compared to FLT3-WT* (HR: 1.7; 95% CI: 1.3–2.2). The

positive effect of a FLT3-TKD mutation compared to FLT3-WT*

status remained non-significant (HR: 0.8; 95% CI: 0.4–1.4).

Patients with both types of FLT3 mutations showed the worst RFS,

which was not significantly different from RFS in patients with a

single FLT3-ITD mutation (HR: 1.2; 95%: 0.3–5.0) (Figure 1B).

To evaluate the independent prognostic effect of FLT3-ITD or

FLT3-TKD on OS (n = 535) and RFS (n = 348) a multivariable

Cox regression model was applied.

FLT3-ITD significantly worsened OS in NPM1-mutated

patients (HR: 2.0; 95% CI: 1.4–3.0), whereas a FLT3-TKD had

no significant effect on OS. NPM1 mutations in the absence of

FLT3-ITD (HR: 0.3; 95% CI: 0.2–0.4), and biCEBPA mutations

(HR: 0.3; 95% CI: 0.2–0.7) represented favorable prognostic

factors of OS, whereas older age (HR: 1.05; 95% CI: 1.03–1.05)

and high initial WBC (HR: 1.8; 95% CI: 1.4–2.2) were associated

with unfavorable OS (Table 1).

Whereas the effect of a FLT3-TKD mutation was not significant

with respect to RFS, the presence of FLT3-ITD in NPM1-mutated

patients, significantly worsened RFS (HR: 2.4, 95% CI: 1.49–3.7).

Older age (HR: 1.01; 95% CI: 1.00–1.03) and a high initial WBC

(HR: 1.5; 95% CI: 1.1–2.04) had an independent negative impact

on RFS. Independent prognostic factors leading to a significantly

prolonged RFS included mutations of NPM1 (HR: 0.2; 95% CI:

0.1–0.3) and biCEBPA (HR: 0.24; 95% CI: 0.1–0.5). Performance

status, de novo AML, platelet counts, hemoglobin level, LDH level,

initial BM blasts and MLL-PTD did not significantly influence

RFS (Table 1).

Analysis of FLT3-ITD mRNA level in a multivariate Cox

regression model for OS and RFS revealed the same independent

prognostic factors as analysis of FLT3-ITD in multivariate Cox

regression models. The effect of a high FLT3-ITD mRNA level

was restricted to NPM1-mutated patients (as shown previously;

Oncogenic Potential of FLT3 Mutations
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[21]). A high FLT3-ITD mRNA level had a stronger negative

effect on OS and RFS (HR for OS: 4.7; 95% CI: 3.4–9.6 and HR

for RFS: 5.4; 95% CI: 2.4–12.2) compared to the mere presence of

a FLT3-ITD.

The logistic regression model for CR revealed NPM1 (Odds

Ratio (OR): 0.3; 95% CI: 0.2–0.6), and biCEBPA mutations (OR:

0.3; 95% CI: 0.1–0.8), as well as initial WBC (OR: 1.7; 95% CI:

1.2–2.6) and platelet count (OR: 0.6; 95% CI: 0.4–0.8) as

significant variables. Neither FLT3-ITD, nor FLT3-TKD muta-

tions displayed a significant impact on CR (Table 1).

Similar results for OS and RFS with respect to FLT3-ITD and -

TKD mutation status were obtained without censoring for

allogenic transplantation and irrespective of age (patients ,60

versus .60 years).

Figure 1. Prognostic impact and genetic stability of FLT3-ITD and FLT3-TKD mutations in AML. (A) OS in 672 patients was significantly
different between FLT3-mutated patients compared to patients with FLT3-WT*. OS in patients with FLT3-TKD mutations was not different compared
to FLT3-WT* expressing patients (HR: 0.8, 95% CI: 0.7–1.7). Patients with a FLT3-ITD showed a significantly worse OS compared to those with FLT3-WT*
(HR: 1.4, 95% CI: 1.1–1.8). There was no significant difference in the OS of patients with both FLT3-ITD and FLT3-TKD mutation compared to those with
FLT3-ITD (HR 1.1, 95% CI: 0.3–3.4). (B) RFS in 443 patients in first complete remission was significantly different between FLT3-mutated patients
compared to patients with FLT3-WT*. Patients with FLT3-TKD mutation had no significant superior RFS compared to FLT3-WT* (HR: 0.8, 95% CI: 0.4–
1.4). Patients with a FLT3-ITD showed a significantly worse RFS compared to those with FLT3-WT* (HR: 1.7, 95% CI: 1.3–2.2). There was no significant
difference in the RFS of patients with both FLT3-ITD and FLT3-TKD mutation compared to those with FLT3-ITD (HR 1.2, 95% CI: 0.3–5.0). (C) 10 of 113
patients positive for FLT3-WT* at diagnosis acquired a FLT3 mutation at relapse. 27 of 35 (77%) patients with a FLT3-ITD at initial diagnosis displayed a
FLT3-ITD at relapse, whereas the majority of patients with a FLT3-TKD mutation (7/11; 63%) lost this mutation at relapse. (D) FLT3-ITD mRNA levels in
20 patients with a FLT3-ITD at diagnosis and at relapse were calculated. FLT3-ITD mRNA levels were calculated as following: (FLT3-ITD/FLT3-WT)/(FLT3-
ITD/FLT3-WT+1). Median FLT3-ITD mRNA level was significantly higher at the time of relapse compared to first diagnosis (0.54 [range 0.37–1.00] versus
0.40 [range 0.08–0.88]; p,0.001, Wilcoxon test).
doi:10.1371/journal.pone.0089560.g001
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Table 1. Multivariable analysis of prognostic factors for OS, RFS and CR.

OS n = 535

95% CI

Parameter Stratum P HR Lower CL Upper CL

FLT3-ITD NPM1-WT* 0.280 0.76 0.46 1.25

FLT3-ITD NPM1+ ,0.001 2.05 1.39 3.03

FLT3-TKD vs. FLT3-WT* 0.154 1.44 0.87 2.40

interaction NPM1+/FLT3-ITD 0.001 2.71 1.48 4.96

NPM1 pos. vs. neg. FLT3-WT* ,0.001 0.30 0.20 0.44

biCEBPA vs. CEBPA-WT*/moCEBPA 0.004 0.33 0.16 0.69

MLL-PTD pos. vs. neg. 0.829 0.95 0.61 1.49

Age, yrs +1 yr ,0.001 1.05 1.03 1.06

Performance Status, ECOG 2–4 vs 0,1 0.017 1.39 1.06 1.82

De novo AML vs. non-de novo 0.788 0.96 0.68 1.33

WBC, 6106/l 10-fold ,0.001 1.77 1.40 2.23

Platelets, 6106/l 10-fold 0.525 0.89 0.62 1.27

Hemoglobin level, mg/dl +1 g/dl 0.258 1.00 0.99 1.00

LDH, U/l 10-fold 0.874 1.00 1.00 1.00

BM blasts, % +10% 0.827 1.00 0.99 1.01

RFS n = 348 in CR

95% CI

Parameter Stratum P HR Lower CL Upper CL

FLT3-ITD NPM1-WT* 0.083 0.61 0.34 1.07

FLT3-ITD NPM1+ ,0.001 2.35 1.49 3.73

FLT3-TKD vs. FLT3-WT* 0.923 1.04 0.51 2.10

Interaction NPM1+/FLT3-ITD ,0.001 3.89 1.94 7.78

NPM1 pos.vs. neg. FLT3-WT* ,0.001 0.17 0.11 0.27

biCEBPA vs. CEBPA-WT*/moCEBPA ,0.001 0.24 0.12 0.52

MLL-PTD pos.vs. neg. 0.981 0.99 0.56 1.78

Age, yrs +1 yr 0.024 1.01 1.00 1.03

Performance Status, ECOG 2–4 vs 0,1 0.099 1.32 0.95 1.84

De novo AML vs. non-de novo 0.908 1.03 0.67 1.57

WBC, 6106/l 10-fold 0.006 1.52 1.13 2.04

Platelets, 6106/l 10-fold 0.284 0.80 0.53 1.20

Hemoglobin level, mg/dl +1 g/dl 0.886 1.00 0.99 1.01

LDH, U/l 10-fold 0.533 1.00 1.00 1.00

BM blasts, % +10% 0.200 1.01 1.00 1.01

CR n = 536

95% CI

Parameter Stratum P OR Lower CL Upper CL

FLT3-ITD 0.280 1.50 0.72 3.11

FLT3-TKD vs. FLT3-WT* 0.154 0.65 0.30 1.45

Interaction NPM1+/FLT3-ITD 0.001 0.52 0.21 1.26

NPM1 pos.vs. neg. FLT3-WT* ,0.001 3.08 1.77 5.36

biCEBPA vs. CEBPA-WT*/moCEBPA 0.004 3.52 1.19 10.45

MLL-PTD pos.vs. neg. 0.829 0.64 0.31 1.30

Age, yrs +1 yr ,0.001 0.99 0.97 1.00

Performance Status, ECOG 2–4 vs 0,1 0.017 0.76 0.49 1.16

De novo AML vs. non-de novo 0.788 1.59 0.94 2.70

Oncogenic Potential of FLT3 Mutations
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Stability of FLT3 Mutations at Relapse
Out of 156 patients with available FLT3 mutation status at

diagnosis and relapse (matched pair samples), 113 were FLT3-

WT*, eight patients expressed a single FLT3-TKD mutation and

31 displayed a single FLT3-ITD mutation. Three patients were

positive for both types of mutation (ITD/TKD) and one patient

had an ITD and a point mutation in the JM region (V592) of

FLT3.

10 of 113 (9%) patients with FLT3-WT* at diagnosis acquired a

FLT3 mutation during relapse. 7 of 113 (6%) acquired a FLT3-

ITD, 3 of 113 (3%) acquired a FLT3-TKD. 27 of 35 (77%)

patients with a FLT3-ITD at initial diagnosis displayed a FLT3-

ITD at relapse. None of those eight patients that had lost the

FLT3-ITD expressed a FLT3-TKD mutation at relapse. In

contrast, FLT3-TKD mutations present at diagnosis were lost in

the majority of patients (n = 7/11; 63%) at the time of relapse

(Figure 1C). 4 of 11 patients displayed the same FLT3-TKD

mutation (D835) at diagnosis and relapse. One patient with a

stable FLT3-TKD had acquired an additional FLT3-ITD at the

time of relapse. In all three patients with simultaneous FLT3-ITD

and FLT3-TKD mutation as well as FLT3-ITD and FLT3-V592

mutation at first diagnosis only the FLT3-ITD was present at

relapse.

Patients with FLT3-ITD at diagnosis and relapse showed

significantly higher FLT3-ITD mRNA levels at the time of relapse

(Figure 1D).

FLT3 Mutants Show a Broad Spectrum of Activating
Phenotypes in Ba/F3 Cells

To clarify the potency to induce aberrant activation and

signaling we analyzed eight different FLT3 mutations: Three

different FLT3-ITD constructs, FLT3-JM mutation V592A,

common FLT3-TKD mutations D835Y and D835V as well as

D839G and I867S in the second TKD (Figure S1). FLT3-D839G

and -I867S were recently found in AML patients by our group

during routine diagnostics but have not been functionally

characterized before. The corresponding remission samples did

not express these mutations showing that they are not rare

germline variants.

Proliferation experiments revealed significant growth advantag-

es for all FLT3 mutants relative to FLT3-WT expressing cells

(p#0.001). FLT3-ITD expressing cells grew completely IL-3

independent, regardless of length and insertion site. Cell lines

expressing FLT3-V592A, -I867S, -D839G or -D835V/Y muta-

tions showed a clear gain-of-function phenotype, but differed

significantly with respect to their IL-3 independence. Defining the

average growth of FLT3-ITD expressing cells as 100%, FLT3-

WT, -V592A and -I867S transfected cells displayed growth rates

of 2.8%, 7.8% and 8.2%, respectively. FLT3-TKD mutants grew

on a range between 14.5% and 42.5% (Figure 2A).

All FLT3 mutants conveyed protection from apoptosis to

different degrees (apoptosis ratio of FLT3-WT = 100%). FLT3-

V592A and -I867S achieved 59.7% (p = 0.057) and 58.9%

(p = 0.059), respectively. FLT3-TKD apoptosis rates ranged

between 26.9–35.6% (p#0.039) and FLT3-ITD cell lines showed

apoptosis rates similar to IL-3 controls (13.3–13.7%; p = 0.002)

(Figure 2B).

We evaluated the effects of FLT3 ligand (FL) stimulation using

Tyr591 phosphorylation as readout. In FLT3-WT, -I867S and -

V592A expressing cells a distinctive effect of FL on receptor

phosphorylation was seen. FLT3-TKD mutants showed interme-

diate response , whereas no effect was seen in FLT3-ITD

compared to FLT3-WT expressing cells (p#0.046) (Figure 2C).

Taken together, all FLT3 mutations analyzed in this cell line

model expressed a distinct gain-of-function phenotype.

FLT3 Receptor Mutants Show Distinct Glycosylation and
Cell Surface Expression Patterns

To further analyze the differences in cell growth we performed a

Western blot assay for the FLT3 protein. As reported before,

FLT3 is detectable as two bands, representing the strong

glycosylated 150 kDa and weak glycosylated 130 kDa FLT3

species [31]. The FLT3 protein was present in all cell lines, with

equal actin controls (Figure 3A). We noted that a strong signal for

the 150 kDa-sized FLT3 protein could be detected in FLT3-WT,

FLT3-V592A and FLT3-I867S expressing cells in comparison to

FLT3-ITD mutants which show a higher proportion of the

130 kDa-sized form. The remaining FLT3-TKD mutation

expressing cells fall in between those two extremes (Figure 3B).

In order to evaluate the distribution of the FLT3 receptor on the

cell surface, the Ba/F3 cell lines were stained with a CD135

antibody and evaluated using flow cytometry. Difference of

geometric mean fluorescence to isotype control antibody showed

no significant difference between FLT3-WT and -I867S express-

ing cells. Interestingly, the cell surface expression of the FLT3

receptor was significantly reduced by a factor of approximately

two between FLT3-WT and FLT3-V592A expressing cells

(p = 0.029). The cell surface expression of the FLT3 receptor

decreased further for FLT3-TKD and FLT3-ITD cell lines

Table 1. Cont.

CR n = 536

95% CI

Parameter Stratum P OR Lower CL Upper CL

WBC, 6106/l 10-fold ,0.001 0.58 0.39 0.86

Platelets, 6106/l 10-fold 0.525 1.80 1.25 2.59

Hemoglobin level, mg/dl +1 g/dl 0.258 1.00 0.99 1.01

LDH, U/l 10-fold 0.874 1.06 0.53 2.13

BM blasts, % +10% 0.827 1.00 0.99 1.01

To evaluate the independent prognostic impact of FLT3-ITD and FLT3-TKD on OS, RFS and CR, all candidate prognostic factors were included in the Cox regression
model without selection of variables. The analyses were performed using 535 complete datasets of patients with regard to OS for the candidate prognostic factors. HR:
Hazard Ratio; CI: confidence interval; CL: confidence limit.
doi:10.1371/journal.pone.0089560.t001
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(p#0.029) (Figure 3C). Reduced cell surface expression of FLT3

was directly correlated with the 150/130 kDa ratio.

FLT3-ITD Mutants Induce STAT5 and FLT3 Tyr591
Phosphorylation

To gain insight into the signaling properties of the various FLT3

mutants, we analyzed STAT5 phosphorylation by Western blot

(Figure 4A).

STAT5 was only activated in FLT3-ITD expressing cells

(p#0.010), but not in the cell lines expressing FLT3 point

mutations. Ba/F3 cells expressing FLT3-ITD1 showed the

weakest STAT5 activation in the group of ITD mutations

(Figure 4B).

To further confirm the role of STAT5 activation in FLT3

mutants, an ELISA detecting phosphorylation of the FLT3

receptor at Tyr591 was performed. Tyr591 has been described

to be critical for the regulative activity of STAT5 and becomes

accessible through the conformational changes induced by ITD

[32]. All FLT3-ITD mutants induced considerable phosphoryla-

tion of Tyr591. Probably due to the small number of values,

significance compared to FLT3-WT could be verified for FLT3-

ITD2 and -ITD3 (p#0.027), but not for FLT3-ITD1 expressing

cells. FLT3-I867S, -D839G and -D835Y expressing cells exceeded

phosphorylation levels of Tyr591 of FLT3-WT expressing cells

significantly (p#0.031) (Figure 4C).

In Contrast to FLT3-ITD Mutants FLT3 Point Mutation
Expressing Cells Rely on AKT and MAPK Signaling and are
Inhibited by AKT Inhibitor MK 2206

In Western blot analysis, activation level of AKT for FLT3-

I867S, D839G and -D835V expressing cell lines were significantly

stronger than in FLT3-WT expressing cells (p#0.047). FLT3-

V592A and FLT3-ITD mutants did not show statistically

significant differences of AKT activation levels compared to

FLT3-WT expressing cells (Figure 4A, Figure S2). FLT3-D839G, -

D835V and -D835Y expressing cells displayed enhanced activa-

tion levels of MAPK compared to FLT3-WT expressing cells

Figure 2. FLT3 mutants display a wide range of activating
phenotypes in Ba/F3 cells. Ba/F3 cells stably transduced with
indicated constructs were seeded at a density of 46104 cells/ml and
cultured in presence and absence of 10 ng/ml IL-3. (A) Viable cells were
counted after 72 h using trypan blue exclusion. Control indicates viable
Ba/F3 MIY cells treated with 10 ng/ml IL-3. Values are expressed as
mean +/2 S.D. of nine independent experiments. (*) indicates
significant higher growth compared to FLT3-WT expressing cells. (B)
After incubation for 48 hours cells were stained with Annexin-V and 7-
AAD. The percentage of apoptotic cells was determined using flow
cytometry. Values are expressed as mean +/2 S.D. of at least three
independent experiments. (*) indicates significant higher apoptosis
compared to FLT3-WT expressing cells. (C) Ba/F3 cells expressing FLT3
mutations were cultured without IL-3 for 24 hours. Cells were treated
with 100 ng FLT3-ligand for 10 minutes prior to lysis to analyze
phosphorylation of FLT3 receptor at Tyr591 in a chemiluminescent
ELISA assay. The differences of FLT3-ligand stimulated to untreated
results are shown. Values are expressed as mean +/2 S.D. of three
independent experiments. For further statistical analyses FLT3 mutants
were divided into groups of FLT3-WT-like (FLT3-I867S/-V592A), FLT3-
TKD (FLT3-D839G/-D835V/-D835Y) and FLT3-ITD (FLT3-ITD1/-ITD2/-
ITD3) cell lines. In grouped analysis FLT3-WT expressing cells were
significantly different compared to the FLT3-TKD (p = 0.019) but not to
FLT3-WT-like cell lines. Groups of FLT3-WT-like, FLT3-TKD and FLT3-ITD
cell lines were significant among each other (p#0.030). (*) indicates
significance of grouped analyses and individually compared to FLT3-WT
expressing cells. RLU: Relative light units.
doi:10.1371/journal.pone.0089560.g002
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(p#0.020). The results were not statistically significant for FLT3-

ITD mutants (Figure 4A, Figure S2).

In order to detect a correlation between enhanced AKT

signaling and proliferation we treated the FLT3 mutants

expressing cell lines with MK 2206, a novel highly selective

AKT inhibitor [33]. MK 2206 inhibited growth of FLT3-WT,

FLT3-I867S, FLT3-D839G and FLT3-D835Y expressing cell

lines, but showed a significant effect on cell growth only for FLT3-

V592A (p = 0.024) and -D835V (p = 0.048). FLT3-ITD cell lines

were not affected in their growth by MK 2206 (Figure 4D). These

data show that AKT and MAPK activation plays an essential role

in the activating phenotype of FLT3-non-ITD mutants.

The data of the in vitro experiments are summarized in a

heatmap, visualizing the functional characteristics of all analyzed

FLT3 mutants (Figure 5A).

Gene Expression Profiles Reveal Distinct Differences with
Respect to FLT3 Mutation Type

We compared gene expression profiles (GEP) with respect to

FLT3 mutation status (FLT3-ITD vs. FLT3-TKD). We defined

subgroups according to NPM1 mutation status, due to the

correlation with FLT3-ITD and influence on gene expression.

Out of the GSE37642 data set 76 patients were FLT3-ITD

positive, 11 patients showed a TKD mutation and six patients had

both genetic aberrations. Most patients expressed none of these

mutations (FLT3-WT*; n = 120).

In differential gene expression analysis, FLT3-ITD showed a

stronger impact on gene expression than FLT3-TKD with respect

to NPM1 mutational status after adjustment for multiple testing

(p#0.05). Compared to FLT3-WT* 8573 genes were differentially

expressed in FLT3-ITD patients, of those 3048 were up-regulated.

Interestingly, when we analyzed the subgroup of patients without

an additional NPM1 mutation only 23 genes were deregulated (19

up-regulated). When FLT3-ITD positive patients were compared

to the group of FLT3-TKD mutations, 709 genes were differen-

tially expressed, of those 143 were up-regulated. In the GEP of

patients with FLT3-TKD mutations irrespective of NPM1 status,

there were no genes that showed significant differential expression

levels compared to FLT3-WT* patients (Table S2). However, in

both subgroup analysis (NPM1 mutated and NPM1-WT*)

PRUNE2 and ART3 were significantly higher expressed in patients

with FLT3-TKD. The genes most prominently differently

expressed in FLT3-ITD positive patients were SOCS2, ENPP2

and MRC1, which were up-regulated. The results for selected

genes are presented in a heatmap, showing a heterogeneous profile

possibly influenced by additional mutations (Figure 5B). Details of

differential gene expression analysis are available upon request.

We used Gene set enrichment analysis (GSEA) to identify

differences in signaling pathways related to the FLT3 status. The

Figure 3. Glycosylation pattern and cell surface expression of FLT3 receptor differ in FLT3 mutants. (A) FLT3 mutants were cultured
without IL-3 for 24 hours prior to lysis. One out of three independently representative experiments is shown. (B) To illustrate the expression of the
150/130 kDa forms of FLT3 semi-quantitive analyses of western blot band intensity were performed. Depicted is the ratio of the 150 kDa to the
130 kDa FLT3 form. Values are expressed as mean +/2 S.D. of three independent experiments. Ratio of 150 kDa to 130 kDa form of FLT3 was
significantly different for each FLT3-TKD (p#0.009) and each FLT3-ITD (p#0.002) cell line, but not for FLT3-V592A and -I867S expressing cells
compared to FLT3-WT expressing cells. FLT3-WT expressing cells showed a significant differnence to the groups of FLT3-WT-like mutants (p = 0.039),
FLT3-TKD mutants (#0.001) and FLT3-ITD mutants (p#0.001). Further FLT3-WT like mutants were significantly different compared to the FLT3-TKD
group (p#0.001) and FLT3-TKD mutants were significantly different compared to FLT3-ITD cell lines (p = 0.004). (*) indicates significance of grouped
analyses and individually compared to FLT3-WT expressing cells. (C) Ba/F3 cell lines stably expressing the indicated FLT3 constructs were stained with
CD-135 antibody and analyzed by flow cytometry. Expression is depicted as difference of geometric mean to isotype control (DGmean). Values are
expressed as means +/2 S.D. of four independent experiments. (*) indicates significance compared to FLT3-WT expressing cells.
doi:10.1371/journal.pone.0089560.g003

Oncogenic Potential of FLT3 Mutations

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e89560



comparison of FLT3-ITD to FLT3-WT* revealed 30 gene sets

significant at false discovery rate (FDR) ,25% and 24 gene sets

significantly enriched at nominal p-value,5%. The comparison of

FLT3-TKD mutations with FLT3-WT* showed 13 gene sets

significant at FDR ,25% and 15 gene sets significantly enriched

at nominal p-value,5%. The gene sets present in both subgroups

were apoptosis and glycan structures degradation. The FLT3-ITD

subgroup showed enrichment of a variety of metabolic pathways,

whereas in the group of FLT3-TKD cytokine and immunologic

pathways including the JAK/STAT signaling pathway were

enriched (Table S3).

Figure 4. FLT3-ITD mutants induce STAT5 and Tyr 591 phosphorylation whereas FLT3 point mutations rely on AKT and MAPK
activation. (A) Ba/F3 cells expressing FLT3 mutations were cultured without IL-3 for 24 hours prior to lysis. Blots were probed against STAT5
pTyr694, AKT pSer473 and MAPK pThr202/pTyr204 stripped and subsequently reprobed against total STAT5, AKT and MAPK. One out of three
independent representative experiments is shown. (B) Semi-quantitive analysis of (p)STAT5 band intensity was performed to calculate the ratio
between pSTAT5 and total STAT5. Values are expressed as mean +/2 S.D. of three independent experiments. (*) indicates significance to FLT3-WT
expressing cells. The signal intensity of Ba/F3 MIY expressing cells has been subtracted from FLT3-WT and FLT3 mutant values. (C) Ba/F3 cells
expressing FLT3 mutations were cultured without IL-3 for 24 hours prior to lysis. Equal amount of whole cell lysates were used in a chemiluminescent
ELISA assay detecting phosphorylation of FLT3 receptor at Tyr591. Values are expressed as mean +/2 S.D. of three independent experiments.
Grouped analysis of FLT3 mutants revealed significant differences between FLT3-WT expressing cells and FLT3-WT-like cell lines (p = 0.045) as well as
FLT3-WT expressing cells and FLT3-ITD cell lines (p = 0.005). Further the group of FLT3-ITD cell lines showed significant differences compared to FLT3-
WT-like mutants (p = 0.008) and FLT3-TKD cell lines (p#0.001). (*) indicates significance of grouped analyses and individually compared to FLT3-WT
expressing cells. The signal intensity of Ba/F3 MIY expressing cells has been subtracted from FLT3-WT and FLT3 mutant values. RLU: Relative light
units. (D) 46104 cells/ml stably transduced with indicated constructs, were cultured in presence or absence of 2 mM MK 2206 and/or 10 ng/ml IL-3.
Cells were counted after 72 hours by trypan blue exclusion. (*) indicates significant growth reduction by MK 2206 compared to untreated cells.
Proliferation with MK 2206 is shown in relation to untreated cells. Control indicates for Ba/F3 MIY expressing cells treated with 2 mM MK 2206 in the
presence of IL-3. Values are expressed as mean +/2 S.D. of three independent experiments.
doi:10.1371/journal.pone.0089560.g004

Oncogenic Potential of FLT3 Mutations

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e89560



To verify our in vitro data showing differences in STAT5

signaling regarding FLT3 mutation type we used predefined gene

sets implemented in GSEA (STAT5A_01 – 04, STAT5B_01).

Since NPM1 is correlated with FLT3-ITD and has significant

impact on gene expression, we tried to avoid this confounding

variable by analyzing different subgroups regarding NPM1

mutation status. We were able to demonstrate that predefined

STAT5A_02 was significantly enriched in the NPM1-WT*

subgroup, whereas STAT5A_01 and STAT5B_01 were also

significant in the NPM1-mutated subgroup comparing FLT3-ITD

with FLT3-WT* [34]. FLT3-TKD in comparison to FLT3-WT*

showed significant enrichment of STAT5A_01 – 04 and

Figure 5. Heatmap of FLT3 signaling and gene expression profiles in AML blast cells. (A) Graphic illustration of FLT3 mutants with respect
to biological characteristics according to performed experiments. FLT3 mutants were clustered hierarchically based on similarity and displayed in
columns. Experiments were ordered in rows as indicated. (B) Heatmap of probe sets differentially expressed in FLT3-ITD, -TKD and -WT CN-AML. The
27 probe sets were selected according to FLT3 and NPM1 mutation status (Table S3) with following characteristics: Log fold change . or ,1.5. If no
probe set met this criterion, the ten most significant probe sets were selected. Rows: probe sets (n = 27); Columns: patients (n = 213).
doi:10.1371/journal.pone.0089560.g005
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STAT5B_01 in the NPM1-WT* subgroup (Table 2). This data has

to be interpreted with caution but suggests that depending on the

type of FLT3 mutations different transcription factors are

activated.

Discussion

The most common FLT3 mutations are ITD and mutations in

the second TKD, which are frequently found in AML but also to a

lower frequency in ALL [2,3]. Other groups have shown the

adverse impact of FLT3-ITD mutations on OS and RFS in the

group of CN-AML which could be confirmed in our study [5,20].

However, the results for FLT3-TKD mutations are inconclusive

[4,5,7,19]. Our group found a trend towards a better RFS in

FLT3-TKD positive patients compared to FLT3-WT* cases.

However, this was not statistically significant. The FLT3-TKD

mutations did not have a significant impact on OS or RFS in

multivariable Cox regression analysis. The majority of FLT3-TKD

mutations were lost at relapse, whereas no additional TKD

mutations were detectable at relapse. Evaluation of the stability of

FLT3-TKD mutations in AML patients has so far only been

described in very small patient cohorts and represents a superior

response to treatment [19,35].

In order to compare the prognostic data with functional aspects,

we investigated multiple FLT3 mutations in vitro, including two

novel mutations that had not been described before. The point

mutation at AA 839 has been found in AML patients before and is

similar to known FLT3 mutations of the second TKD [36,37]. Not

only do FLT3 point mutations cluster at AA 835, but alterations of

AA 834, 836, 840, 841 and 842 have been described before [4,9–

13,17,37–39]. The corresponding positions were analyzed on the

crystal structure of human FLT3 (Figure 6; PDB code: 1RJB; [6]).

D839 like D835 maps to the activation loop of FLT3, stabilizing its

conformation in the autoinhibited state. FLT3-D839G and -

D835Y presumably lead to a more flexible activation loop and

consequently higher propensity for tyrosine phosphorylation

(Figure 6). The corresponding amino acid (D820) of the

homologous c-KIT receptor has been described to be mutated

in mast cell related diseases, gastrointestinal stromal tumors,

haematologic and lymphoid malignancies as well as seminomas

[40]. This suggests an aberrant activity of this FLT3 mutant.

Furthermore, there are reports of point mutations in other regions

of the receptor [9,10,37,39]. The newly identified FLT3-I867S

mutation is located directly at the beginning of an alpha helix and

is part of a hydrophobic interaction site that stabilizes the helical

bundle that forms the C-lobe of the FLT3 kinase domain. A serine

at this position likely destabilizes the surface region of the helical

bundle. This surface region is an important binding site for the JM

domain, which forms several hydrogen bonds as well as

hydrophobic interactions with this region (Figure 6). I867S

Table 2. FLT3-ITD and FLT3-TKD show distinct associations with predefined STAT5 target gene subsets.

(A) Enrichment of predefined STAT5 target genes in FLT3-ITD

STAT5A_01 STAT5A_02 STAT5A_03 STAT5A_04 STAT5B_01

No selection regarding
NPM1 mutation FLT3-
ITD+ (n = 76) vs. FLT3-
WT* (n = 120)

FDR 29%, p = 0.07 FDR 9%, p = 0.02 n.s. n.s. FDR 9%, p = 0.007

Subgroup A NPM1
mutation + FLT3-ITD+
(n = 50) vs. FLT3-WT*
(n = 48)

FDR 27%, p = 0.03 FDR 26%, p = 0.05 n.s. n.s. FDR 23%, p = 0.008

Subgroup B NPM1
mutation 2 FLT3-ITD+
(n = 25) vs. FLT3-WT*
(n = 64)

n.s. FDR 10%, p = 0.04 n.s. n.s. n.s.

(B) Enrichment of predefined STAT5 target genes in FLT3-TKD

STAT5A_01 STAT5A_02 STAT5A_03 STAT5A_04 STAT5B_01

No selection regarding
NPM1 mutation FLT3-
TKD+ (n = 11) vs. FLT3-
WT* (n = 120)

FDR 32%, p = 0.07 n.s. FDR 17%, p = 0.01 FDR 30%, p = 0.08 FDR15%, p = 0.007

Subgroup A NPM1
mutation + FLT3-TKD+
(n = 6) vs. FLT3-WT*
(n = 48)

n.s. n.s. n.s. n.s. n.s.

Subgroup B NPM1
mutation 2 FLT3-TKD2

(n = 5) vs. FLT3-WT*
(n = 64)

FDR 5%, p,0.001 FDR 11%, p = 0.04 FDR 11%, p = 0.04 FDR 3%, p = 0.001 FDR 8%, p,0.001

Analysis of STAT5 target genes in context of FLT3-ITD (A) and FLT3-TKD (B) mutation status in primary AML bone marrow samples. To avoid the interference of NPM1
mutations subgroups were composed, according to NPM1 mutation status. The differences in transcription factor target gene sets (STAT5A_01-04) result from different
targeted motifs representing the broad spectrum of potential binding sites. FLT3-ITD was associated in all subgroups with significant enrichment of STAT5A_02 target
genes and in no subgroup with enrichment of STAT5A_03 and STAT5A_04 target genes. FLT3-TKD showed a more diverse picture with enrichment of STAT5A_03 and
STAT5A_04 target genes in some groups. In FLT3-TKD and NPM1-mutated patients no enrichment of STAT5 target genes could be detected. (+) indicates the presence
of a mutation; (2) indicated the absence of a mutation; FDR: false discovery rate; p: nominal p-value (estimates the statistical significance of the enrichment score of the
gene set); n.s.: not significant.
doi:10.1371/journal.pone.0089560.t002
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presumably alters the fold or stability around the interaction site to

the JM domain and leads to a reduced affinity between JM domain

and C-lobe. As a consequence, I867S could reduce the auto-

inhibition of FLT3 and lead to an increased activation.

For functional evaluation we analyzed proliferation, apoptosis,

receptor alteration and signaling in vitro. In contrast to prior

findings, the various mutations did not present themselves

functionally as two distinct groups of mutations, one as drivers –

resulting in a completely transformed phenotype – and the second

as silent passengers – without influence on cell growth and

signaling [17]. The investigated FLT3 mutations were all gain of

function mutations that presented a continuous spectrum of

receptor activation in vitro. Our results showed gradual growth

advantages for FLT3 point mutations in proliferation and

apoptosis experiments, rather than an on/off behavior. FLT3-

ITD mutants presented maximal aberrant activity as reported

before, in contrast FLT3 point mutation expressing cells differed

clearly from FLT3-WT but also from FLT3-ITD expressing cells

[41].

Interestingly, the capacity for additional stimulation by FLT3

ligand (FL) was inversely proportional to receptor phosphorylation

levels. This might be due to the fact that FLT3 mutants result in

different subcellular localizations of the receptor. This is also

represented in the proportional change of expression of the mature

150 kDa isoform expressed on the cell surface to the less

glycosilated 130 kDa isoform of FLT3 protein located inside the

cell [31,42]. Stronger cytokine-independent proliferation and

weaker FL response was associated with higher amount of

intracellular localization of the receptor. In contrast, FLT3-WT

receptor was mainly found on the cell surface and showed a clear

response to FL. Again those effects were on a continuum within

the group of FLT3 mutants representing the diverse activating

potential of FLT3 mutations. FLT3 receptors in ITD expressing

cells were mainly located intracellular and non-responsive to FL

treatment. The localization of the FLT3-ITD in the endoplasmic

reticulum seems to be a major factor in compartment-specific

activation of STAT5 [31,42]. The analysis of signaling revealed a

distinct activation of STAT5 by FLT3-ITD mutants, as reported

before [41,43–46]. STAT5 is directly or SRC-dependently

activated in FLT3-ITD expressing cells in vitro via tyrosine residues

589 and 591 [47–49]. Accordingly, enhanced phosphorylation of

Y591 was found in FLT3-ITD expressing cells in contrast to

FLT3-WT expressing cells. Interestingly, also FLT3-I867S, -

D839G and -D835Y expressing cells showed phosphorylation of

Y591, indicating additional functions of this residue or undetected

STAT5 activation. Y591 was identified as a docking site for

suppressor of cytokine signaling 6 (SOCS6), Lnk, an adaptor

protein with negative regulator influence on FLT3 and as

interaction site of c-CBL, inducing degradation of the FLT3

receptor [26,50,51].

We used predefined STAT5 target gene sets for the evaluation

of our GEP analysis to demonstrate a potential influence of FLT3

mutations on STAT5 activity in primary AML cells. We were able

to show differences in STAT5 target gene expression between

FLT3-ITD and -TKD with distinct characteristics. These results

have to be interpreted carefully due to the highly complex role of

transcription factors and many unknown variables. To account for

this, we tried to adjust our analysis for additional well known

mutations in AML by defining subgroups. The reproducibility of

these results indicates a significant role but diverging pathways and

targets of FLT3 mutations in STAT5 activity.

AKT and MAPK are signaling pathways of the membrane-

bound FLT3-WT receptor [1,41,52]. Our Western blot analysis

revealed an activation of MAPK and AKT in FLT3 point

mutation expressing cells in contrast to FLT3-WT and FLT3-ITD

expressing cells. Accordingly, only FLT3 point mutation but not

FLT3-ITD expressing cells showed growth inhibition after

treatment with the AKT pathway inhibitor MK 2206, indicating

Figure 6. Structural mapping of FLT3-I867 and FLT3-D839. (A) Ribbon representation of the human FLT3 crystal structure (PDB code: 1RJB),
with highlighted secondary structure. Mapped mutations are shown as stick models (magenta). (B) Close up view showing the position of I867
(magenta) at the contact face between the C-lobe of the kinase (grey) and juxtamembrane domain (yellow). Notable hydrogen bonds between the
juxtamembrane domain and the C-lobe are shown as dashed lines. (C) Close up view showing that D835 and D839 stabilize the fold of the activation
loop (green) via hydrogen bonds (dashed lines).
doi:10.1371/journal.pone.0089560.g006
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aberrantly enhanced activation of this pathway. There are

differing reports of AKT and MAPK activation by FLT3-ITD

mutants [43–46].

Consistent with our in vitro analysis we were able to detect

differences in the gene expression with respect to FLT3 mutation

status. Our analysis of 213 CN-AML patients was able to validate

a distinct gene expression profile especially in case of FLT3-ITD,

but also FLT3-TKD. Genes that were highly significantly

differentially expressed in our analysis like SOCS2 and ENPP2 in

the ITD subgroup have also been described by other groups

recently [53,54]. FLT3-TKD positive patients showed an associ-

ation with higher PRUNE2 and ART3 expression levels which has

not been described before. In an earlier study, gene expression

levels of patients with newly diagnosed CN-AML showed distinct

differences in gene expression profiles with respect to FLT3-ITD

and FLT3-TKD mutation [55]. This analysis did not exclude a

potential influence of NPM1 mutations, which are highly

significantly associated with FLT3 mutations, and was conducted

in a relatively small patient cohort. This might account for the very

minor overlap with our data.

This study is the first comprehensive work evaluating clinical

data with respect to prognosis and gene expression as well as

comparative in vitro analysis of multiple FLT3 mutations. Our

results strengthen the evidence that FLT3 mutations have varying

activating potential and reject the strict division into driver and

passenger mutations [17,19]. Although not every single mutation

might affect the prognosis and outcome of AML, all functionally

characterized mutants showed a gain-of-function phenotype in

vitro. Therefore FLT3 point mutations can contribute to leuke-

mogenesis and are thus potential targets for therapeutic interven-

tions especially with regard to tyrosine kinase inhibitor resistance

[14–16].

Supporting Information

Figure S1 Sequence and location of FLT3 mutations analyzed

in this study.

(TIF)

Figure S2 FLT3 point mutation expressing cells show AKT and

MAPK phosphorylation in contrast to FLT3-ITD cell lines. Ba/F3

cells expressing FLT3 mutations were cultured without IL-3

supplement for 24 hours prior to lysis. Blots were probed against

(A) AKT pS473 and (B) MAPK pThr202/Tyr204 stripped and

subsequently reprobed against total (A) AKT and (B) MAPK.

Semi-quantitive analysis of (p)AKT and (p) MAPK band intensity

was performed to calculate the ratio between (A) pAKT and AKT

as well as (B) pMAPK and MAPK. Values are expressed as mean

+/2 S.D. of three independent experiments. (*) indicates

significance to FLT3-WT expressing cells. The signal intensity of

Ba/F3 MIY expressing cells has been subtracted from FLT3-WT

and FLT3 mutant values.

(TIF)

Table S1 Patient characteristics. Patient characteristics of 213

CN-AML patients included in GSE37642. All patients were

enrolled in the AMLCG-99 trial and received intensive induction

treatment.

(DOCX)

Table S2 Differential gene expression analysis of FLT3 muta-

tions in AML patients. Differential gene expression analysis of

FLT3-ITD and -TKD mutations with respect to NPM1 mutation

status. Only genes significant at p#0.05 after adjustment for

multiple testing are displayed.

(DOCX)

Table S3 Comparison of signaling pathways according to FLT3

mutation status using GSEA. GSEA analysis of FLT3-ITD (A) and

-TKD (B) with FLT3-WT* using the ‘‘c2kegg’’ gene sets. Only

gene sets with FDR ,25% are displayed. ES: enrichment score;

NES: nominal enrichment score; NOM p-val: nominal p-value;

FDR q-val: false discovery rate.

(DOCX)
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