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Abstract

Resident physicians (residents) experiencing prolonged workplace stress are at risk of developing 

mental health symptoms. Creating novel, unobtrusive measures of resilience would provide an 

accessible approach to evaluate symptom susceptibility without the perceived stigma of formal 

mental health assessments. In this work, we created a system to find indicators of resilience using 

passive wearable sensors and smartphone-delivered ecological momentary assessment (EMA). 

This system identified indicators of resilience during a medical internship, the high stress first-year 

of a residency program. We then created density estimation approaches to predict these indicators 

before mental health changes occurred, and validated whether the predicted indicators were also 

associated with resilience. Our system identified resilience indicators associated with physical 

activity (step count), sleeping behavior, reduced heart rate, increased mood, and reduced mood 

variability. Density estimation models were able to replicate a subset of the associations between 

sleeping behavior, heart rate, and resilience. To the best of our knowledge, this work provides the 

first methodology to identify and predict indicators of resilience using passive sensing and EMA. 

Researchers studying resident mental health can apply this approach to design resilience-building 

interventions and prevent mental health symptom development.
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1. INTRODUCTION

Individuals encounter a variety of stressors within the workplace, and navigating these 

stressors requires resilience. In 2015, the American Psychological Association found that 

65% of Americans believed work to be one of the top two stressors within their lives [4]. 

In addition, those who work in psychologically demanding environments are more likely to 

develop depression, anxiety, and substance abuse disorders [23, 73]. Under prolonged stress, 

individuals may experience a decline in mental health [25, 31] which could be prevented 

with early-intervention.

Resident physicians, both employees and trainees, work within a psychologically demanding 

environment, which requires resilience. Resident physicians often work 80 hours per week 

[6], and experience a variety of emotional stressors while treating patients [62]. This demand 

may contribute to higher rates of depression (25–33%) [56] among resident physicians 

compared to graduate students overall, and other young adults within the general population 

(8–15%) [32]. Ideally, residents could frequently assess their own mental health and seek 

early-intervention, but residents are unlikely to engage with mental health services due to 

systemic factors including the perceived stigma around mental health [9, 58], and a lack 

of time to seek professional mental health support [32]. Thus, stress-mediated interventions 

often focus on coping mechanisms (eg, exercise) [84], considering these systemic factors.

Finding unobtrusive indicators of resilience may provide a more accessible approach to 

identify mental health risk without the associated stigma. Researchers have leveraged 

unobtrusive measurement, using smartphone and wearable devices, to create personalized 

digital phenotypes of mental health and well-being [15, 38, 90]. Previous work has analyzed 

the potential for creating digital phenotypes of students [88, 97, 106], schizophrenia patients 

[99, 100], and more recently employees [57] by combining features derived from passive 

sensors and short, self-reported survey measures, called ecological momentary assessments 

(EMA). There is now potential to develop equivalent unobtrusive measures of resilience [59, 

67, 69].

The goal of this study was to identify unobtrusive indicators of resilience using data 

collected from mobile devices. We specifically focused on finding indicators that could 

be identified or predicted early-on in the internship, and thus be used to design preventive 

resilience-building interventions. Resilience was measured within a specific population: 

medical interns (first-year resident physicians) experiencing prolonged workplace stress. 

Thus, we specifically studied stress-resilience. We would like to state upfront that 

identifying indicators of resilience for medical interns more broadly has both positive and 

negative implications. Residents may feel uncomfortable with using passive data-collection 

technologies to understand their mental health and resilience.

We will review these implications in our discussion.

The contributions for this work are:
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1. We developed a system using passive sensing features collected from wearable 

devices and ecological momentary assessment (EMA) to find indicators of 

stress-resilience.

2. We used quarterly measures of depression symptoms, collected from medical 

interns, to identify stress-resilient and stress-sensitive individuals. The stress-

resilient individuals experienced minimal depression symptom changes during 

the internship. Depression symptoms were measured via the nine-item patient 

health questionnaire (PHQ-9).

3. We then identified specific passive sensing and EMA features that were 

indicators of stress-resilience, because they were significantly (α = 0.5) 

associated with distinguishing stress-resilient from stress-sensitive individuals. 

We found significant links between resilience and physical activity (step count), 

sleeping behavior (seconds of sleep and in bed), heart rate, and daily mood.

4. We developed and validated novel density estimation approaches to predict 

during-internship stress-resilience indicators from pre-internship data. We then 

validated if the predicted indicators followed the same associations with stress-

resilience as the actual indicators. We found that our generated data accurately 

replicated a subset of the associations between sleeping behaviors, heart rate, and 

stress-resilience.

5. We discussed the implications of this work for communities studying resilience, 

resident well-being, and generative models, as well as the ethical implications of 

predicting employee mental health more broadly.

2. BACKGROUND AND RELATED WORK

2.1 Resilience and Mental Health

Resilience can be described as a process in which individuals positively respond or 

adapt to changing circumstances within their lives. Traditionally, when defining resilience, 

circumstances imply an adverse event, or negative life circumstance, that requires some 

amount of adjustment within an individual [54]. That being said, resilience can be applied 

to circumstances that individuals face day-to-day [14], rather than a specific adverse 

event, and also many events that are viewed positively (eg, marriage, a job promotion, 

beginning school) might require some amount of resilience [22]. Resilience also implies 

that individuals adapt positively to the circumstances they face, which requires context-

dependent indicators to describe whether individuals are resilient within a specific situation 

[53].

There are multiple methods to measure resilience. Trait resilience measures describe 

resilience as a set of personality traits that help individuals adapt to adverse circumstances. 

Trait resilience is measured using a variety of rating scales, and the outcomes of these 

scales correlate with mental health symptoms [35]. However, reliability between major trait 

resilience scales is low [104]. A potential better method to describe and measure resilience is 

as an outcomes-based process (process resilience) [21, 40, 54] that occurs when individuals 

adapt to minimize the impact of stress. Process resilience can be measured by tracking 
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trajectories of mental health while individuals are under stress [34]. Individuals who do not 

experience mental health changes over a prolonged period are identified as stress-resilient, 
and this type of resilience tracking has become common in research studying the effects 

of workplace stress on mental health [26, 31]. For convenience, we will use resilience, 

stress-resilience, and process resilience interchangeably throughout the rest of this work.

2.2 Resident Physicians and Mental Health

Resident physicians, part employee and part trainee, are a specific population that 

experience a variety of situational, personal, and professional stressors throughout the 

duration of their programs [50]. Residents can experience prolonged sleep deprivation 

[41, 42, 50], often caused by extremely long shift hours [6, 27], and endure emotional 

trauma through consistent encounters with fatalities, childhood illness, and chronic disability 

[16, 62]. After prolonged occupational stress, residents can develop burnout, which is 

described by emotional exhaustion, cynicism, and a sense of self inefficacy [55, 89]. 

Burnout is dangerous for resident physicians’ mental health, and is associated with increased 

depression and anxiety [44].

Resident physicians are particularly at risk for changes in mental health during the first year 

of their program, called a medical internship. Research has shown that interns have high 

levels of depression, anxiety, fatigue, and distress that can persist throughout the duration 

of their residency programs [7, 94]. There are a number of pre-internship factors that are 

associated with changes in mental health and well-being during an internship [31, 83], and 

behavioral changes that occur during the internship may be indicative of future mental health 

changes [41, 42]. Understanding whether mental health will change early-on could offset the 

potential effects of prolonged stress if residents are able to build resilient behaviors.

2.3 Identifying Methods to Improve Resident Physician Resilience

Introducing resilience-building programs early-on within a medical internship can reduce the 

impact of stress on mental health. Researchers have proposed resiliency training programs 

and identified resilience-building behaviors that reduced burnout and improved mental 

health [62, 109]. That being said, residents often choose not to engage in interventions to 

improve resilience and mental health [58, 79, 93], citing that they do not have time or access 

to treatment, they would prefer to self-manage their mental health, and they are concerned 

about the confidentiality and potential social consequences of seeking external treatment 

(perceived stigma) [32]. Research suggests that improving sleep and physical activity habits 

may improve resident mental health and well-being [47, 68], but it may be difficult for 

residents to modify these behaviors during the internship. Creating unobtrusive measurement 

systems that can detect resilient behaviors early-on could help residents identify mental 

health risk factors and take action before symptoms develop. This data could also be 

anonymized and aggregated to guide program directors towards structural interventions (eg, 

increased schedule flexibility) that improve mental health.

2.4 Unobtrusive Mental Health Monitoring Using Passive Sensors and EMA

Passive sensing along with ecological momentary assessments (EMA) delivered through a 

smartphone application (i.e. mobile sensing) can be used to predict trajectories of mental 
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health and well-being. A passive sensor is any sensor that can collect data with little-to-no 

human interaction. EMAs are in-the-moment assessments, often delivered digitally, used 

to collect more frequent measurements of mental health outside of a clinic [30, 74, 86]. 

Thus, both passive sensing and EMA are unobtrusive on-device measurements. Previous 

studies leveraged smartphone sensors, wearables, and EMAs to find significant correlations 

between the collected mobile sensing data and mental health [15, 42, 61, 82, 88, 97, 98]. 

These technologies can also be used to predict trajectories of serious chronic mental illness, 

including bipolar disorder [24], schizophrenia [2, 8, 11, 12, 99, 100, 102], and depression 

[80, 81, 101].

In this work, we found unobtrusive indicators of medical intern stress-resilience using 

passive sensing and EMA. We specifically focused on identifying indicators using data 

collected prior to the internship, or predicted from data collected prior to the internship, 

because this information could guide interns and program directors towards effective and 

targeted mental health symptom prevention strategies.

3. THE INTERN HEALTH STUDY AND DATASET

The Intern Health Study is an ongoing multi-site prospective cohort study to understand the 

links between behaviors, mental health, and well-being as resident physicians adapted to 

the stress of their programs. The first year of residency, also called a medical internship, 

is known to impact resident mental health and well-being [7, 94]. Participating sites were 

located across the United States, and a full list of participating sites can be found on the 

study websites [48, 87].

Interns starting their residency at a participating site were eligible to enroll online. 

After consenting to the study, participants were mailed a Fitbit Charge 2 [18] for 

passive behavioral and physiological tracking, and completed a baseline assessment via a 

smartphone study application 1–2 months prior to the commencement of the internship. 

In addition, the study application sent notifications to complete daily mood ecological 

momentary assessments (EMAs), and facilitated data transfer from the Fitbit to a secure 

storage platform. Participants were asked to participate in Fitbit tracking and complete daily 

EMAs beginning 1–2 months prior to their internship through the end of the internship 

(~14 months total). Lastly, participants completed quarterly mental health assessments for 

depression symptoms at internship months 3, 6, 9, and 12, to further gauge how they adapted 

to their new work. Table 1 summarizes the passive sensing and EMA data.

This study was approved by the University of Michigan Institutional Review Board (IRB) 

and all subjects provided informed consent after receiving a complete description of the 

study. The collected data was used for research purposes only. Participants were incentivized 

to participate by receiving the Fitbit device and up to US $125, distributed five times 

throughout the year (US $25 each time) with continued participation.

3.1 Passive Wearable Sensing

Participants were mailed a Fitbit Charge 2 [18]. The Fitbit device continuously tracked 

minute-by-minute step count, heart rate, whether a participant was sleeping, and the type of 
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sleep. Prior research has examined and determined that Fitbits are an accurate consumer 

product for tracking sleep, activity, and heart rate for research purposes [17, 60, 63]. 

Information about how Fitbit devices track heart rate, steps, and infer sleep states is available 

on the Fitbit website, but is limited due to the proprietary nature of Fitbit’s algorithms [19, 

20]. We will briefly describe what is known below.

Fitbit uses a three-axis accelerometer to infer step count information. To detect heart 

rate, LED lights installed on the bottom of the Fitbit flash many times per second, and 

light-sensitive photodiodes then detect volume changes within wrist capillaries to infer 

heart rate beats per minute (BPM). Lastly, Fitbit combines the accelerometer and heart 

rate information to infer when an individual is sleeping, by measuring when an individual 

has stopped moving for one hour, and then measuring changes in heart rate to infer the 

sleep stage. The Fitbit application programming interface (API) outputs two different sleep 

categorizations, and a query to the API may respond in a mix of the two categorizations. 

The classic categorization uses the accelerometer to infer general sleep categories (asleep, 

restless), and the newer stages categorization uses the accelerometer and heart rate monitor 

to infer sleep stages (deep, light, rapid eye movement). The Fitbit also collects data on short 

wake cycles (<3 minutes) that occur between sleep.

3.2 Mood Ecological Momentary Assessment (EMA)

Ecological Momentary Assessments (EMAs) are a standard method for assessing in-situ 

mental health and well-being [30, 97, 99]. EMAs were completed once per day by 

participants through a smartphone application created for this study at a participant-

designated time between 5PM and 10PM. Please refer to the Intern Health Study website for 

more information on the study application [87]. The EMA contained one question that asked 

participants to rate their daily average mood from 1 (low) to 10 (high).

3.3 Baseline and Quarterly Assessments

Participants completed baseline (BL) and quarterly (Q1–4) assessments upon beginning their 

internship that contained questions regarding demographics, including age, sex, ethnicity, 

and also information on their medical specialty. In addition, at baseline and at the end of 

each quarter, interns completed the nine-question patient health questionnaire (PHQ-9), a 

self-reported measure for depression symptoms [46]. A higher PHQ-9 score indicates a 

higher severity of depression symptoms. A variety of other survey measures were taken 

baseline and quarterly, but were not used in this work. Please refer to the Intern Health Study 

website [87] for more details.

We chose to not use the demographic variables or specialty information as indicators 

of resilience, but these variables were used as controlled covariates in some analyses 

throughout this work. We decided that we did not have enough contextual information to 

understand individuals’ circumstances that may explain why demographic variables were 

related to resilience. We discuss potential methods to account for demographics within 

mental health models in section 7.6.
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3.4 Feature Creation

Features were created from the Fitbit passive sensing and EMA data collected. We now 

briefly describe each feature in more detail. A summary of features can be found in Table 2.

3.4.1 Heart Rate.—The Fitbit tracks minute-by-minute heart rate. We computed the 

mean hourly heart rate for each hour and participant. We chose to use the mean instead of 

the median as a summary feature, as we believed extreme heart rate values recorded within 

an hour would be captured by using the mean as our summary statistic. Heart rate variability, 

which can be used as an indicator for stress [43], was not available for all participants within 

our dataset, and was not used within this study. We hope to analyze heart rate variability and 

its relationship to intern stress within future research.

3.4.2. Daily Mood Ecological Momentary Assessment (EMA).—Participants 

were notified to complete a daily mood EMA through the study smartphone application. 

Modeling sensor data sampled at different frequencies is an active area of research. For 

simplicity, we used local interpolation to approximate an hourly mood EMA from the daily 

mood EMA. Prior work found that local interpolation of irregularly sampled features in time 

series still preserves key characteristics of the original time series [45]. The interpolating 

procedure follows.

If a mood EMA was completed on a given day, we filled the hours of that day with the 

EMA value, from the time the participant woke up from a previous sleep cycle, up to the 

time when the participant woke up following the next sleep cycle that was greater than two 

hours. Using sleep cycles as start and end points for the interpolation procedure allowed 

us to capture the spirit of the mood EMA question prompt, which asked participants for 

their average mood over the entire day (see Table 1). We expected most participants would 

answer this question thinking back to when they woke up that day. If multiple mood EMAs 

were recorded on a day (implying the participant completed the survey more than once), the 

average of the mood EMAs was taken, and this average value was used for interpolation. 

Mood EMAs were filled up to 24 hours after the EMA was completed.

Similar to previous work, we added random noise ϵ ~ Uniform (0, 0.2) to each mood EMA 

so that we could model mood as a continuous variable [105]. 0.2 was chosen, because after 

averaging daily mood values, mood EMA values existed on a scale from 1–10 with 0.5 

increments. Adding noise ≤0.2 allowed us to create continuous values, while preserving a 

gap between neighboring discrete mood values so they could be recovered.

3.4.3 Sleep.—The Fitbit algorithm categorizes the type of sleep (see section 3.1), and 

records short wake cycles that occur in-between sleep. For simplicity, we aggregated the 

recorded time sleeping within an hour (within any type of sleep), and the total number of 

seconds in bed (which includes both sleep and short wake cycles). Note that if a sleep cycle 

extends beyond an hour, the Fitbit may record one long multi-hour sleep cycle.

3.4.4 Steps.—The Fitbit tracks minute-by-minute step counts. We summed through all 

steps taken within an hour to create an hourly step count feature.
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3.5 Data Cleaning

3.5.1 Missing Data.—After creating the initial hourly features from raw data, we 

analyzed the data for missing values and outliers. The following types of missing data were 

identified, with mitigation procedures:

• For step and sleep features, we identified hours that contained classified sleep, 

but no recorded steps, and vice-versa. We deemed that these hours could be 

considered “non-random missing data”, which assumed, for example, that the 

reasoning behind the missing sleep values was due to an individual being awake. 

Given this assumption, missing data for step and sleep features were filled with 

0s during hours where either of these cases occurred.

• After creating the interpolated mood EMA, we dropped all remaining data points 

without a mood score. This occurred when a mood score had not been recorded 

within the past 24 hours.

• Heart rate data should be continuously recorded by the Fitbit. We dropped hours 

that did not contain any heart rate data for a participant.

3.5.2 Outlier Filtering.—After dropping missing values, we identified multivariate 

outliers within the hourly features listed in Table 2. Prior work using mobile sensing data 

to model mental health included methodological choices that reduced model sensitivity 

to outliers [99, 100]. There were two potential types of outliers within this work: (1) 

extremely unrealistic sensor values (eg, walking 20,000 steps in a single hour) within the 

study population, or (2) outliers that have an implication for mental health (eg, long sleep 

duration). We aimed to filter outlier type (1), but not outlier type (2).

Outliers were filtered using an Isolation Forest [52] algorithm. Isolation forests recursively 

partition data through randomly selected features. A set of partitions can be described as a 

path to a set of samples, and samples that are partitioned by shorter paths are classified as 

outliers. We created an Isolation Forest using the scikit-learn library [70], with 250 trees, and 

randomly partitioned samples into each tree. The maximum number of features per tree was 

set to the length of the feature space.

The results of outlier filtering are summarized in Table 3. Note that some features, such as 

the seconds of sleep per hour, are likely to have majority “0” values because individuals 

spend most of their hours awake. 73,722 samples (2.9% of the total samples) were classified 

as outliers, and removed. We would like to note that it is possible some type 2 outliers 

were likely filtered during this process, which may affect our ability to find indicators of 

resilience in this work. We provide further analysis to investigate the impact of outliers on 

distinguishing stress-resilient from stress-sensitive individuals in section 4.2.

3.5.3 Filtering Out Participants with Extremely Low Data Quality.—Similar 

to previous work in mobile sensing for mental health prediction [2, 92], we required 

participants to have a minimum number of hours of data collected for training prediction 

models. We filtered out study participants that did not have at least 100 total hours of data 

prior to the internship starting, and during the internship year. Though it is possible that 
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low data availability for a participant could have an implication for mental health, we still 

believed that having a minimum threshold was important for modeling. To account for the 

effect of low data on mental health, we added an additional feature for analysis to account 

for low data quality, described in the following sections. We lastly filtered out individuals 

who had an hourly feature variance of zero, for any hourly feature. A summary of the data 

filtering procedure can be found in Table 4.

The objective of this work was to find indicators of resilience when individuals experienced 

internship stress. Ideally, we would have predicted changes that occurred at each quarter of 

the internship and developed a more fine-grained notion of when individuals were resilient. 

As the internship progressed, the availability and quality of participant data, specifically 

after the second quarter of the internship (see Table 4), decreased. Thus, we focused 

on a simpler task, and grouped the hourly features together before the internship into a 

single multivariate baseline distribution per participant, and the hourly features during the 

internship (Q1 to Q4) as another multivariate internship distribution per participant. We then 

created indicators from these two distributions, described below.

3.6 Indicator Creation

We developed 37 different passive sensing and EMA indicators from the hourly 

features based upon multiple characteristics from the multivariate baseline and internship 

distributions. A summary of the indicators can be found in Figure 1. Similar indicators 

were used in prior work measuring the effect of mobile data on mood [42]. Let us define 

the multivariate baseline distribution of hourly features for an individual as A, and the 

multivariate internship distribution of hourly features for an individual as B. Suppose we 

have m features, and defining j ∈ {1, ...m}, Aj and Bj are the distributions for each hourly 

feature per participant. We computed the mean and standard deviation of the hourly features 

in both the baseline XAj, SDAj  and internship XBj, SDBj  distributions.In addition, to 

create a measure of missing data, we computed the number of hours of total data collected 

for both the baseline (nA) and internship (nB) periods.

We computed the empirical skew for each feature in both the baseline internship 

distributions, which is a measure of how “balanced” a distribution is. We expected many of 

the features in our dataset, such as the mood EMA, to be non-gaussian. We initially created 

nonparametric indicators (eg, median and interquartile range), but found these statistics were 

highly correlated with their parametric counterparts. Thus, the skew indicator per feature 

was used to capture how the non-gaussian nature of each feature distribution was associated 

with stress-resilience. We used the Pearson’s skew coefficient [95], which measures the 

difference between the empirical mean (X) and the median (v) divided by the standard 

deviation (SD). For example, for the baseline distribution, a multivariate data point with m 
features, and a single hourly feature (Aj) for an individual:

SkewAj =
3 XAj − vAj

SDAj
j ∈ 1, …, m

(1)
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Finally, we computed the standardized difference in means, or Cohen’s ds, between the 

baseline and internship period, for each hourly feature. The formula for the Cohen’s ds is 

found in equation 2. We will refer to the vector of Cohen’s ds for each feature as ds, and the 

Cohen’s ds for each feature as dsj . For each feature, this is computed as follows:

dsj =
XBj − XAj

nA − 1 SDAj
2 + nB − 1 SDBj

2

nA + nB − 2
j ∈ 1, …, m

(2)

4 EVALUATION: IDENTIFYING INDICATORS OF RESILIENCE

Table 5 shows a summary of the data used for analysis after cleaning and outlier filtering. 

Table 6 displays demographic information from the analysis cohort compared to sex and 

race/ethnicity 2018–19 statistics of graduating medical students from the Association of 

American Medical Colleges (AAMC) [65, 66]. Significant differences were found between 

the analyzed data and AAMC demographic information for both sex (χ2 = 12.46, P < .001) 

and race/ethnicity (χ2 = 35.90, P < .001). Table 7 describes the medical specialties of interns 

within the dataset. Specialties were not compared to AAMC specialty statistics, as we only 

captured a subset of specialties and thus categorical comparison was difficult.

4.1 Identifying Stress-Resilient and Sensitive Participants

Resilience is defined as adaptation to circumstance. We looked to identify a set 

of individuals within the population whose depression symptoms changed minimally 

throughout the internship. Previous studies [25, 31] labeled population subsets that 

experienced minimal mental health changes as the “stress-resilient” population. By 

identifying this population, we could then find passive sensing and EMA indicators that 

distinguished stress-resilient and stress-sensitive individuals. We used quadratic growth 

mixture models (GMMs) [75] to identify distinct trajectories of depression symptom 

changes across the population, measured using recorded PHQ-9 changes during baseline 

and the internship. Previous work used GMMs to identify mental health trajectories 

distinguishing stress-resilient from stress-sensitive individuals [25, 31]. GMMs are similar 

to linear mixed-effects models, but the key difference is that GMMs identify distinct 

latent classes within a dataset, and fit a curve to each of these distinct classes. Expectation-

maximization is used to optimize both the model parameters and fit classes across 

individuals as a latent variable [76]. Quadratic models were chosen over linear models, 

as previous studies modeling resilience within medical interns [31] found that depression 

symptoms increased when individuals experienced stress, and decreased after a period of 

time.

We experimented with identifying 2–5 distinct classes within our dataset. We then chose 

the number of classes that minimized both the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC). The resulting AIC and BIC for each pre-defined 

number of classes can be found in Table 8. We found the 4-class model minimized 

the AIC (17,127) and BIC (17,215). The depression symptom change (ΔPHQ − 9) 
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trajectories from the 4 class model can be found in Figure 2. The majority class (n = 

525, 68% of participants) who experienced minimal PHQ-9 (depression symptom) changes 

was qualitatively determined to be the “stress-resilient” population, and the combined 

other classes (n = 250, 32% of participants) were determined to be the “stress-sensitive” 

population. We acknowledge that the stress-sensitive population combined the trajectories 

from 3 distinct classes, and we plan to analyze distinct stress-sensitive classes in future 

work.

4.2 The Impact of Outliers on Identifying Stress-Resilient Participants

We analyzed if our outlier filtering procedure affected our ability to distinguish stress-

resilient versus stress-sensitive individuals. If outlier values were characteristic of stress-

sensitivity, we would expect that a higher number of outliers would be filtered out for 

stress-sensitive compared to stress-resilient participants. A Shapiro-Wilk test showed that 

the outlier count distribution across participants was non-normally (P < .05) distributed. A 

Mann-Whitney U test was performed to examine if the number of outliers identified across 

stress-sensitive participants was significantly greater than the number of outliers identified 

across stress-resilient participants. The test was non-significant (U = 69, 510.5, P > .05). 

We also confirmed that participants were not entirely filtered out of our dataset during the 

outlier removal procedure. Thus, we believe these outliers did not contain information that 

distinguished stress-resilient from stress-sensitive individuals.

4.3 Identifying Passive Sensing and EMA Indicators of Resilience

4.3.1 Generalized Estimating Equations (GEE).—We used generalized estimating 

equations (GEE) [33, 100] to find which indicators, defined in Figure 1, significantly 

differentiated stress-resilient and stress-sensitive individuals. We initially used logistic 

regression, a simpler generalized linear model, but the regression failed to identify indicators 

that distinguished stress-resilient from stress-sensitive individuals. GEE is a type of linear 

model that can be applied to measure population effects on clustered or grouped data, and 

GEE can be more robust compared to other grouped linear models such as linear mixed-

effects models because GEE requires less assumptions on the underlying data distributions 

[37]. Sex and age were controlled for within each model. Sex and age were chosen as 

controls because we believed these are two characteristics that an individual might be more 

comfortable to share with an implemented resilience-measurement system, compared to a 

characteristic like ethnicity, or baseline depression status. We used the internship specialty as 

the grouping variable, because the intensity of work can vary by specialty [6]. Continuous 

indicators were standardized by subtracting the mean and dividing by the standard deviation 

prior to conducting the regression. In addition, a constant term of “1” was added to the 

regression model as a y-intercept.

A summary of the indicators used within the GEE can be found in Figure 1. We first created 

a set of “univariate GEE” models with each potential indicator isolated and controls, to 

first find which features significantly differentiated stress-resilient and sensitive individuals. 

We then conducted a “multivariate GEE” where we modeled the significant indicators and 

controls together, after removing indicators that were highly correlated. More information 
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on identifying and removing correlated indicators can be found in Appendix I, within the 

supplementary material.

4.3.2 GEE Results.—The univariate and multivariate GEE results are listed in Table 

9. A positive GEE β coefficient shows a positive association between an indicator and the 

likelihood an individual is stress-resilient with all other independent variables held constant. 

The magnitude of the β coefficient can be interpreted as the strength of the association.

Out of the 37 potential indicators, 17 were significantly associated with stress-resilience 

within the univariate GEEs. For space, we only describe the most significant (P < .001) 

indicators within the text. Having a higher average number of seconds in bed and sleep 

during the internship increased the likelihood of resilience. Hourly sleep distributions are 

skewed (most individuals are not sleeping during the day). Increasing the skew translates 

to the tail of the distribution (more hours with higher seconds of sleep) becoming larger, 

and this increase in skew during the internship increased the likelihood of stress-resilience. 

The mood EMA feature showed a number of significant associations with stress-resilience, 

which was expected given low mood is a direct symptom of depression on the PHQ-9 

[46]. A higher mood score during the baseline and internship, as well as lower fluctuations 

in mood (decreased standard deviation) increased the likelihood of stress-resilience. An 

increased mood score (positive Cohen’s ds) increased the likelihood of stress-resilience.

After removing correlated features, 3 indicators were included in the multivariate GEE 

model. The 3 indicators were the INTERN step count skew, seconds in bed Cohen’s 

ds, and mood EMA Cohen’s ds. The high number of filtered indicators showed that the 

potential indicators were highly correlated. All 3 indicators were significantly associated 

with resilience, and we describe them further. The step count distributions are skewed 

because there are many hours during the day when an individual is not moving (hourly 

step count = 0). Thus, decreasing this skew shifts the mode of the distribution away 

from 0, i.e. there are more hours spent with nonzero step counts. This decrease during 

the internship period increased the likelihood of stress-resilience (βM = − 0.16, PM < .01). 
Increasing the amount of time spent in bed increased the likelihood of stress-resilience 

(βM = 0.11, PM < 0.05), as well as increasing one’s mood (βM = 0.26, PM < 0.05).

5. PREDICTIVE MODELING APPROACH

5.1 Motivation

The results in Table 9 showed that there were a variety of indicators that summarized both 

the baseline and internship hourly feature distributions and were significantly associated 

with distinguishing stress-resilient versus stress-sensitive individuals. An application of 

this analysis would be to use the found indicators to guide interns towards wellness 

interventions [47, 68], or help residency program directors create interventions that improve 

resilience. Interns may be more willing to engage in these interventions before they are 

time-constrained by their residency program, and are impacted by internship stress. For 

example, if the system indicates an individual is less likely to engage in physical activity 
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during the internship, which is linked to higher stress-sensitivity, an intern could begin to 

build exercise goals into their routine before the internship begins [47].

13 out of 17 of the found indicators were associated with mobile data collected during 

the internship. These indicators are unknown during the baseline period. We aimed to 

predict these indicators using mobile data collected during the baseline period, which would 

be needed for early-assessment and intervention. We first experimented with regression 

models, including random forests, gradient boosting trees, and multilayer perceptrons, to 

approximate the resilience indicators from baseline data. We found that these models were 

unable to achieve accurate predictions across all indicators.

We thus pivoted our analysis to a more complex approach, specifically using density 

estimation techniques, to predict a multivariate distribution of the hourly features per-

individual. Per these multivariate distributions, we would be able to calculate a set of 

predicted resilience indicators, and verify whether the relationships between the predicted 

indicators and resilience aligned with the actual indicators and resilience. Figure 3 

summarizes our analysis.

5.2 Overview of Density Estimation Models Used in this Work

We now give an overview of the density estimation techniques used to generate the during-

internship multivariate hourly feature distributions from the multivariate hourly baseline 

distributions per participant. More specific details, including the equations, architecture, and 

hyperparameters for each model can be found in Appendix II within the supplementary 

material.

5.2.1 Conditional Generative Adversarial Networks (CGAN).—We specifically 

chose to use generative adversarial networks (GANs) for predicting the multivariate 

internship distributions B from the multivariate baseline distributions A. We decided to 

use this approach because GANs can generate high quality samples of complex data 

distributions [29] compared to simpler density estimation approaches (eg, kernel density 

estimation), and there is a large amount of previous work using GANs in a supervised 

format to predict a specific distribution from an input distribution [3, 39, 108]. GANs are 

also easier to optimize compared to other generative models (eg, variational autoencoders), 

because GANs do not attempt to approximate intractable likelihoods [29]. GANs are a type 

of deep learning model, and the models we used were based upon different encoder-decoder 

neural networks, similar to [39].

In this work, we wanted to generate a specific multivariate hourly feature internship 

distribution B, from a multivariate hourly feature baseline distribution A, per participant. 

There is a family of GANs, called conditional GANs (CGAN), that are used to teach 

a GAN to generate distributions in a supervised manner. The input to the CGAN was 

a multivariate hourly baseline data point, for a participant a ∈ A, a ∈ ℛm (assuming we 

have m features), and the output was a generated multivariate hourly internship data 

point b′ ∈ B′, b′ ∈ ℛm. After inputting multiple different baseline hourly data points, A 
for a participant, the CGAN can generate a multivariate hourly internship distribution 
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B′ for the same participant. Distribution characteristics from the actual B and generated 

B′ multivariate hourly distributions can then be compared to assess density estimation 

performance.

5.2.2 Multitask CGANs.—Multitask learning (MTL) is a machine learning technique 

used to train separate, but related prediction tasks together [13]. Previous work [88, 92] 

using mobile sensing data to predict mental health

leveraged MTL to improve model performance. We experimented with MTL approaches 

based upon the following two assumptions:

1. Data generation for each hourly feature is a separate, but related prediction task. 

Adding separate neural network output layers for each feature could improve the 

data generation performance for each feature.

2. Participants experienced a variety of feature changes when beginning the 

internship, but training a model for each participant would result in overfitting, 

and not generalize to unseen individuals. MTL can prevent this overfitting by 

training individual-level models together.

We created three new multitask learning models based upon the CGAN framework. These 

models were composed of fully connected neural networks, and similar to [88], the models 

had input “shared layers” where neural network parameters were shared across tasks, and 

output “single-task” layers, where parameters were specific to each task:

1. Feature Multitask Learning CGAN (F - CGAN): We treated predicting each 

internship hourly feature distribution (eg, step count, mood EMA) as a separate, 

but related, prediction task.

2. Participant Multitask Learning CGAN (P - CGAN): We treated clusters 

of individuals who experienced similar feature changes when they began the 

internship as a separate task. We first identified clusters of participants who 

experienced similar feature changes, by clustering participants based upon their 

Cohen’s ds. We experimented with different clustering approaches and varied the 

number of clusters. The clustering with the highest silhouette score was chosen 

(see Appendix II within the supplementary material).

3. Feature and Participant Multitask Learning CGAN (FP - CGAN): We 

integrated both feature and participant multitasking into one model. In this 

model, output single-task layers were specific to each feature and cluster.

5.3 Training and Testing Procedure

All predictive models were trained using data from 80% (n = 611) of the study participants, 

and we used a form of leave-subject-out validation [99, 100] to report each model results 

with different hyperparameter choices for a held-out 20% (n = 154) of participants. The 

results from the 20% hold-out set simulate the prediction accuracy of predicting data from 

new participants who have recently joined the study. For simplicity, we will refer to the 

80% training set as the “training” data, and the held-out 20% dataset as the “test” data. An 

overview of the training and testing data can be found in Table 10. Hyperparameter choices 
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for each model are further explained in Appendix II, within the supplementary material. 

Clusters for participant multitasking models were created using both baseline and internship 

training data. For test participants, we predicted data for each cluster, and selected the cluster 

that minimized the error between the predicted and actual internship first quarter (Q1) data 

distributions.

In addition to the CGANs, we created two baseline density prediction models, and two 

baseline multilayer perception regression models. The first model was a density prediction 

model composed of a fully connected neural network (not a CGAN) trained to input an 

hourly baseline data point, and output an internship data point (GEN), and the second model 

was the GEN model with separate participant multitasking output layers (P - GEN). The 

baseline multilayer perception regression models predicted each feature’s Cohen’s ds from 

the baseline mean of the hourly features. We created a model with (P - MLP) and without 

(MLP) separate participant multitasking output layers. We show the baseline MLP models 

to predict the Cohen’s ds as examples, but other baseline models with similar architectures 

could be trained to predict the variety of resilience indicators described in Table 9.

5.4 Evaluation Metric

We calculated the skipped correlation (r ∈ [ − 1, 1]) between the actual and predicted Cohen’s 

ds for each hourly feature to measure model performance. The skipped correlation is less 

sensitive to bivariate outliers compared to other correlation coefficients (eg, Pearson’s, 

Spearman’s), which often overestimate model fit [71, 78, 103]. We measured model 

performance using the Cohen’s ds because it captures both the central tendency (mean) 

and variation (standard deviation) within the baseline and generated distributions, and is 

familiar to both technical and clinical audiences [2, 42, 49]. In addition, the majority of 

indicators within the multivariate GEE (Table 9) were calculated using the Cohen’s ds. We 

also evaluated the squared error between the predicted Cohen’s ds for each model, and the 

squared error calculated by assigning each test participant the average Cohen’s ds value 

within the training data. The squared error calculated using the average Cohen’s ds was the 

baseline error in our analysis, and we analyzed if our model error was significantly lower 

than the error using the average training Cohen’s ds for each feature.

6 EVALUATION: PREDICTING INDICATORS OF RESILIENCE

In this section, we evaluate whether the generative models were able to predict indicators of 

resilience. We first evaluate the generative models’ performance on the held-out test data, 

and then we validate whether the predicted indicators calculated using the generated data 

hold the same associations with resilience as the actual indicators.

Figure 4 shows the Cohen’s ds distributions for each feature split into the train (n = 611) 

and test (n = 154) sets. We highlighted the interquartile ranges of each feature’s Cohen’s 

ds, which were considerably larger in the training data for the hourly mean heart rate (0.33) 

and daily mood EMA (0.78) compared to the step count (0.22), seconds of sleep (0.18), and 

seconds in bed (0.19) per hour.
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6.1 Clustering for Participant Multitask Learning Models

We clustered training participants using their Cohen’s ds to create each task (each cluster) 

for the participant multitask learning models. The clustering that achieved the highest 

silhouette score (0.32) used Agglomerative Clustering with four principle components 

(using principal components analysis for noise-reduction), and resulted in two clusters with 

510 and 111 training participants in each cluster respectively. Figure 5 shows the training 

data distributions of the passive sensing features and EMA split by cluster. We conducted 

either an independent two-sample t-test or Mann-Whitney U test, with the null hypothesis 

that the feature means between the two distributions were equal. A Mann-Whitney U test 

was used if a Shapiro-Wilk test revealed that the Cohen’s ds distribution for a feature was 

non-normally distributed (P < .05). We found significant differences between the feature 

means for the hourly step count (U = 24, 998, P < .05), seconds of sleep per hour (U = 1, 

989, P < .001), seconds in bed per hour, (U = 1, 991, P < .001), and hourly mean heart rate 

(U = 13, 135, P < .001). There were no significant differences between clusters for the daily 

mood EMA.

6.2 Model Performance

We calculated the actual and predicted Cohen’s ds, using each predictive model, across test 

participants and feature. We then calculated the skipped correlation coefficient (r ∈ [ − 1, 1])
[103] and correlation significance between the actual and predicted Cohen’s ds. The 

resulting r values are found in Table 11. The FP - CGAN model had both significant (α 
= 0.05) and relatively high correlations between all features, with values of (r = 0.31, P < 

.001) for the hourly step count, (r = 0.50, P < .001) seconds of sleep per hour, (r = 0.49, P < 

.001) seconds in bed per hour, (r = 0.21, P < .05) hourly mean heart rate, and (r = 0.37, P < 

.001) for the daily mood EMA.

In addition, we compared the squared error between the predicted and actual Cohen’s ds for 

each participant and model to a baseline squared error achieved by assigning each individual 

the average Cohen’s ds for each feature from the training data. Shapiro-Wilk tests revealed 

that each feature error distribution was non-normally distributed (P < .05). We conducted a 

Wilcoxon signed-rank test to assess if the squared errors using the models were significantly 

less (P = 0.05) than the error achieved by assigning the average Cohen’s ds. Within the 

highest performing model (FP - CGAN), we found that the errors were significantly less for 

the seconds of sleep (W = 4, 066, P < .001) and seconds in bed (W = 4, 030, P < .001) 

features.

6.3 Comparing CGAN Performance to Other Models

Figure 6 highlights differences in performance between the P - MLP, P - GEN, P - CGAN, 

and FP - CGAN models. The left column bar charts show that all models achieved better 

performance around the mode of the distribution because the boxplots, which represent the 

error between the predicted and actual Cohen’s ds, fall within higher magnitude error for 

individuals whose Cohen’s ds are on the tails of the distribution. The histograms in the 

middle column highlight that the CGAN models were able to predict a wider range of 

Cohen’s ds compared to both the P - MLP and P - GEN models, which only predicted values 
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around the cluster modes. The right column scatterplots shows the improved prediction 

accuracy of the CGAN models at a participant-level.

6.4 Identifying Predicted Passive Sensing and EMA Indicators of Resilience

6.4.1 GEE.—We performed the univariate GEE analysis described in section 4.3 with the 

predicted passive sensing and EMA indicators to explore if the predicted indicators also 

differentiated stress-resilient and stress-sensitive individuals. The indicators were calculated 

using internship data generated from the FP - CGAN model, and we used data from both the 

train and test sets for this analysis. Specifically, we focused on the indicators of resilience 

identified in section 4.3. The GEE results are found in Table 12. We did not include any 

indicators exclusive to the BL period, because they would be equivalent to what was shown 

in Table 9. Out of the 13 predicted indicators, 5 were significant. This included the seconds 

in bed skew during the internship, the mean heart rate during-internship, the mood EMA 

Cohen’s ds, mean, and standard deviation. The step count and seconds of sleep skew were 

marginally significant (α = 0.10). After conducting the univariate GEE, we conducted the 

same multivariate GEE described in section 4.3 using the predicted indicators. There were 

no significant indicators within the multivariate GEE.

6.4.2 Comparing Actual and Predicted GEE Coefficients.—We then compared 

the coefficients of the significant predicted (Table 12) and actual (Table 9) passive sensing 

and EMA indicators associated with differentiating stress-resilient and stress-sensitive 

individuals. For this comparison, we concatenated the datasets containing the calculated 

actual and predicted features. We then created two variables: (1) a binary variable that 

dictated whether a given feature value was from the predicted or actual data, and (2) an 

interaction term between (1) and the feature values. We then used GEE with the same 

controls and specialty grouping to explore the associations between these two new features 

and the original feature for differentiating stress-resilient individuals. The interaction term 

coefficients modeled the change in the β coefficient when using the actual versus the 

predicted values for regression. If the coefficient was significant (α = 0.05), the difference 

between the actual and predicted coefficients were significantly different. We conducted this 

analysis for both the univariate GEE coefficients (βU) and multivariate (βM).

Figure 7a shows the comparison between the actual and predicted coefficients for the 

univariate GEEs. We found 3 indicator coefficients were not significantly different. These 

included the seconds in bed skew, the mean heart rate, and the seconds of sleep skew 

during the internship. Figure 7b shows the comparison between the actual and predicted 

coefficients for the 3 multivariate GEE indicators. We found 1 feature coefficient that was 

not significantly different, specifically the seconds in bed Cohen’s ds.

7. DISCUSSION

In this work, we found indicators of resilience using passive sensing and EMA features, 

and then presented a novel method to predict these indicators. We then validated that the 

predicted and actual indicators showed the same associations with resilience. This discussion 

focuses on interpreting the research.
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7.1 Implications

This research found specific passive and active sensing indicators of stress-resilience from 

mobile sensing data in a large (n = 775) population of medical interns. The associations 

between the indicators and stress-resilience are quantified in Table 9. These results show the 

potential for developing completely passive methods for measuring stress-resilience, and the 

mood EMA indicator shows that we may be able to develop less obtrusive active measures 

for monitoring resilience than repeated PHQ-9 measurements. These findings could help to 

identify both who may be most at risk for depression and, most importantly, provide an early 

signal of when they are most at risk. This knowledge can help inform more effective and 

targeted depression prevention and early detection strategies.

We also developed novel density estimation approaches that were able to approximate 

during-internship indicators. We then compared the associations between stress-resilience 

and the generated indicators to the original associations that existed between stress-

resilience and the actual indicators. Figure 7 shows that we were able to generate data 

that held accurate associations between stress-resilience and the internship seconds in bed 

skew and Cohen’s ds, sleep duration skew, and average heart rate. The implication is that we 

can potentially anticipate sleep and heart rate changes that individuals may experience. We 

can then apply the found associations in Table 9 and translate these predicted changes into 

stress-related mental health symptoms early-on during the internship. Only three months of 

internship data are required to generate these accurate predictions, and the relationships to 

resilience they hold pertain to the entirety of the 12-month internship.

Based upon our findings, one might ask: if an individual were to change their sleeping 

patterns or partake in activities that lower average heart rate, would stress-resilience 

increase? This is a question that requires researchers to understand the causal associations 

between behavior and stress-resilience, either through conducting a randomized-control trial 

(RCT) with specific behavior change interventions, or applying methods such as propensity 

score matching [5] to observational data, which can estimate a treatment effect. Propensity 

score matching requires careful design of the study cohort such that all meaningful 

confounding variables are controlled for and the sample is representative of the true study 

population. This study, though large, was not representative (see Tables 6 and 7), and 

thus we are hesitant to conclude our associations are causal. Even with propensity score 

matching, an RCT is the gold-standard for measuring the treatment effect. The associations 

in Table 9 identify behavioral targets that can be incorporated into RCTs to measure how 

modulating these behavioral targets affect resilience. The findings in Figure 7 indicate the 

potential to design predictive interventions, which tested through RCTs, may anticipate 

behavioral changes and offset the future effects of prolonged stress.

7.2 Interpreting Mobile Sensing Indicators of Resilience

We found 17 mobile sensing features (Table 9) that were significantly associated with 

distinguishing stress-sresilient and sensitive individuals within the univariate GEE models. 

These indicators included information across all created hourly features. We now briefly 

discuss these indicators in more context, and point to literature to understand how they 

impact stress-resilience more broadly.
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First, step count was intended as a proxy for physical activity. Physical activity mediates 

the effect of stress on impacting health [59, 77] and exercise can help individuals cope 

with stress [28]. We cannot state that the “step count” feature had a specific relationship 

to exercise, but we did find that individuals with less skew in their hourly step count 

distributions were more likely to be resilient. Since the step count distributions are right-

skewed with a mode near 0, we can interpret this association to mean that individuals who 

spend more time walking tend to be resilient. On the other hand, increased heart rate can be 

associated with stress, and it was not surprising that a lower heart rate was associated with 

higher stress-resilience [67, 96].

Maintaining regular sleep habits has an effect on mediating depression symptoms [41, 46], 

and poor sleep quality is associated with increased stress [36] and stress-sensitivity [51]. 

Thus, it is not surprising that the 4 indicators we found significantly associated with sleep 

and resilience all showed that increased sleep increases the likelihood of resilience. One 

important note is that increased sleep duration does not necessarily translate to increased 

sleep quality, and quality is more associated with fatigue [72]. We had hypothesized that 

time in bed would have less of an effect on resilience than time spent sleeping, but the 

differences between these features within the GEE were minimal. Lastly, higher mood 

scores were associated with an increased likelihood of resilience, which is not surprising 

given many PHQ-9 questions are associated with mood [46]. In addition, lower mood 

variability was associated with an increased likelihood of resilience, and mood instability is 

associated with depression, anxiety, and post-traumatic stress disorder (PTSD) [10].

The multivariate GEE (see Table 9) revealed 3 indicators that were significantly associated 

with stress-resilience. These indicators had the same relationships with resilience as their 

equivalent univariate GEE associations, including a negative association with internship step 

count skew (βM = −0.16), a positive association with increased time in bed (βM = 0.11), 

and a positive association with increased mood (βM = 0.26). These indicators all used data 

from the internship period, and thus showed that understanding the internship data and its 

relationship to resilience may be more important than using the baseline data alone.

7.3 Modeling Choices and Impact

7.3.1 Identifying Mobile Sensing Indicators of Resilience.—We identified only 

3 indicators of resilience in our multivariate GEE, compared to the 17 indicators of 

resilience identified within the univariate GEEs. The 3 indicators that remained in the 

multivariate GEE involved the internship step count skew, and the seconds in bed and mood 

EMA Cohen’s ds. The heart rate and seconds of sleep features were not included in the 

multivariate GEE, nor any indicators specific to the baseline period. This reduction could 

have been caused by our outlier filtering procedure, which may have homogenized our 

dataset and reduced differences between these indicators. In addition, we followed a strict 

method to reduce multicollinearity. The reduction of indicators showed that many indicators 

were correlated. This is expected for indicators such as seconds in sleep and in bed, where 

an increase in sleep increases time in bed. It also is reasonable when comparing indicators 

that are based upon a Cohen’s ds metric and the mean value, as modifying the mean value 
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directly changes the Cohen’s ds. In the future, a richer multimodal dataset could be used to 

find more diverse associations to resilience without high multicollinearity.

7.3.2 Predicting Mobile Sensing Indicators Using CGANs.—We developed novel 

CGAN models and applied these models to predict sensor and EMA data. Figure 6 

highlights how using a conditional GAN (CGAN) and multitasking improved model 

performance for one example feature. Both the P - MLP and P - GEN models performed 

well around the modes of each participant multitasking cluster, but could not generate 

diverse Cohen’s ds even with participant multitasking, a problem that may be similar to 

mode collapse [85]. Using a CGAN improved the model’s ability to generate diverse 

samples, as the middle column in Figure 6 shows a greater match between the actual 

and predicted Cohen’s ds distributions in both the P - CGAN and FP - CGAN models. 

Feature multitasking without participant multitasking did not appear to create noticeable 

model improvements (Table 11). Future work should seek to understand why the CGAN 

architecture created more sample diversity compared to direct prediction and specific 

multitasking adjustments did or did not improve prediction performance.

That being said, all models still predicted a lower range of Cohen’s ds compared to 

the actual data (Figure 6). Underestimating the magnitude of the Cohen’s ds could have 

implications towards modeling stress-resilience if we expect individuals with larger mental 

health changes to also experience larger feature changes between the BL and INTERN 

periods. Future models can integrate re-sampling strategies to increase the prediction 

performance at the tails of the distribution.

We saw larger error variability across models for the seconds of sleep, in bed, and mean 

heart rate features (Table 11). Participant multitasking CGAN models appeared to improve 

the performance of predicting these features, and a qualitative error analysis reveals that 

the clusters (Figure 5) had more differentiated modes for these three features compared 

to the step count and mood EMA. The clusters for the participant multitasking models 

were created using the Cohen’s ds. We found 2 clusters, and the differences between these 

clusters can be found in Figure 5. We were surprised that there was not a greater amount of 

heterogeneity in our population. Our outlier filtering procedure, and the dropping of missing 

hours of data, may have reduced the population heterogeneity and contributed to the small 

number of clusters. In the future, more modeling work should be performed to analyze how 

outliers affect model performance.

7.3.3 Analyzing the Relationships between Predicted and Actual Indicators 
of Resilience.—We found 5 significant and 2 marginally significant associations with 

resilience in the univariate GEEs using the predicted indicators of resilience, and analyzed 

their associations with coefficients from the same indicators using actual data (Figure 

7a).predicted indicators produced coefficients that were not significantly different with 

the actual indicators. The predicted indicators that did produce significantly different 

coefficients included 3 indicators from the mood EMA and 1 indicator based upon the 

step count skew. The correlation between the actual and predicted mood EMA Cohen’s ds 

was smaller (r = 0.37) than other features, so it is understandable that the predicted mood 

had a different relationship with resilience than the actual mood data. That being said, for 

ADLER et al. Page 20

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2022 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



both the mood EMA mean and standard deviation, the predicted associations (βU = 0.36 

and βU = −0.33) were in the same direction as the actual associations (βU = 0.54 and βU = 

−0.51) with stress-resilience, but the magnitude of the associations was less, potentially due 

to less variability within the GAN predictions.

The relationship between step count skew and resilience was positive in the predicted data, 

but negative in the actual data. There are a number of potential reasons why this association 

may be different. First, we did not directly optimize for the median value within the CGAN 

models, which is a component of the skew equation. Second, our models appeared to 

generate less diverse distributions than the actual data distributions (see Figure 6). Skew is 

a direct measure of extreme values within a dataset, and thus, if we were unable to generate 

extreme values, it is likely our generated distributions would be less skewed than the actual 

distributions.

The multivariate GEE using the predicted indicators showed 1 indicator whose coefficient 

was not significantly different than the multivariate GEE coefficients using the actual 

features and 2 that were (Figure 7b). The 2 coefficients that were significantly different 

were the step count count skew and mood EMA Cohen’s ds, and these differences are 

likely due to the same reasoning described above. The seconds in bed predicted and actual 

Cohen’s ds had the same association with resilience. It is important to note that the predicted 

indicator was not significant in the multivariate regression, so it is difficult to state whether 

the prediction follows the same association as the actual data, or the variation around the 

predicted coefficient happens to intersect with the actual coefficient value.

7.4 Ethics, Privacy, and Paths Forward

Passive sensing data can contain sensitive information, and individuals have expressed 

concerns with having this information collected for mental health monitoring [91]. This 

concern may be exacerbated among residents who already experience heightened perceived 

stigma for receiving mental health support [32]. Thus, we must be extremely careful when 

framing appropriate-use of technology to protect user-privacy and affirm the supportive role 

of passive data collection for improving resilience.

We propose that any intervention deploying our methods, or similar methods outlined in this 

paper should be codesigned by technologists and residents. Within this codesign process, 

ethical standards should be created by residents to articulate the capabilities and limitations 

of the technologies deployed, and these standards should become direct requirements 

of the intervention system. In addition, researchers should investigate integrating privacy-

preserving machine learning methods into symptom monitoring models such that training 

and prediction can occur without individual-level data leaving a user’s device [1, 107]. The 

same approach could be used for collecting sensitive information from mobile devices to 

monitor mental health more broadly.

7.5 Limitations

The analyzed population in this work was not representative of medical school graduates 

by sex and race/ethnicity (see Table 6), and thus the results only apply to the analyzed 

cohort, and may not generalize beyond this cohort. Also, we used a specific measure of 
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stress-resilience by analyzing PHQ-9 (depression symptom) changes over time, and labelled 

individuals who experienced minimal PHQ-9 changes as the “stress-resilient” population. 

Our results may differ if we chose to use trait resilience scales as a resilience measure, or a 

different mental health measure (eg, GAD-7). In addition, our held-out test dataset (n = 154) 

was large compared to other studies [97, 100] that have assessed feasibility for using mobile 

sensing data to model mental health, but a larger and more representative dataset would be 

needed to improve generalizability and approximate causal estimates.

The FP - CGAN model, which resulted in the best performance, required Q1 data for cluster 

matching. In addition, adherence to wearing the Fitbit and completing EMAs decreased 

across participants during the internship year, particularly between Q2 and Q3. Thus, the 

predicted passive sensing and EMA features were more specific to the first 6 months of the 

internship. We still believe this work is meaningful despite this limitation. Previous work 

[31] has found that by the end of Q2, mental health symptoms have peaked across a majority 

of interns. Most of our 775 participants (n=655, Table 3) had Q2 data, and we also found 

that the majority of participants’ (n=763, Figure 2) mental health symptoms peaked by the 

end of Q2.

In addition, we did not capture all features that could have been calculated from the Fitbit 

(eg, standard deviation of heart rate in an hour), and we did not collect EMAs that captured 

more information relevant to resilience other than mood. Future work should explore a richer 

feature space.

7.6 Future Work

Medical school graduates, who then begin their internship, are unequally represented 

across sex and race/ethnicity within the true population [65, 66]. Model performance may 

be inaccurate within specific demographic groups that are underrepresented even if the 

collected data is representative of medical school graduates. Future work should analyze 

whether the algorithms presented are biased in prediction due to underrepresentation and 

develop methods to reduce this bias.

GANs and stress-resilience models have not been rigorously studied in the context of survey 

and longitudinal behavioral and physiological data. Many of our design choices, including 

our interpolation of the mood EMA, adding noise to force mood EMA continuity, outlier 

filtering, and other data preprocessing procedures may have affected model performance. 

Follow-up work should be conducted to study the effects of these design choices on 

generative model performance using similar multivariate mobile sensing and survey data. 

We also wish to collect data that has better reliability, which would allow us to explore 

whether temporal features are associated with resilience. In addition, researchers could 

broaden the passive sensing feature set to capture other information about mental health. For 

example, prior studies have found that location-based [80, 81] and sleep regularity features 

[64] are associated with mental health symptoms.

Lastly, researchers should work with residents and other relevant program stakeholders 

to design interventions that use unobtrusive monitoring to improve mental health and 

well-being. While we have mentioned potential use cases that involve both the resident 
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(eg, routine changes) and program administration (eg, increased schedule flexibility), it is 

difficult to design the appropriate effective intervention without engaging with residency 

programs.

7.7 Concluding Remarks

To the best of our knowledge, we created the first approach to identify and predict indicators 

of resilience using passive sensing data collected from Fitbit devices and EMA. We 

formulated novel generative adversarial networks (GANs) that applied multitask learning 

to predict behavioral, physiological, and well-being features associated with starting a 

medical internship, and validated if the predicted features could also be used as indicators 

of resilience. We hope this work adds a meaningful contribution to communities studying 

ubiquitous computing, generative modeling, and psychology, and paves the way forward for 

leveraging unobtrusive measurement for resilience-building interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Summary of the 37 different indicators used in this work. Values are either specific to the 

period before (BL), during (INTERN) the internship, or captured a difference in a specific 

metric between the INTERN and BL periods (Cohen’s ds). The indicators on the right are 

calculated for each metric listed in the same section on the left. For example, we calculated 

the Mean, Standard Deviation, and Skew for both the BL and INTERN periods, as well as 

the Cohen’s ds for the mean heart rate. This results in 7 total indicators for the mean heart 

rate, and this process can be repeated for each of the 5 hourly features (35 indicators). 2 

additional indicators were created to capture information about missing data, specifically the 

count of data per participant in the BL and INTERN periods, resulting in 37 total indicators.
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Fig. 2. 
The resulting trajectories from the 4-class quadratic growth mixture model. Each curve 

represents the change in depression symptom trajectory for the subset of the population 

within that class. Points represent the mean ΔPHQ − 9 (change in depression symptoms) for 

that period and population subset represented by that trajectory, and error bars are a 95% 

confidence interval around the mean. The y-axis, ΔPHQ − 9, are the changes in depression 

symptoms compared to baseline (BL). The x-axis describes the period in which depression 

symptoms were measured, including the baseline period before the internship (BL), and 

each quarter, or 3-month period (Q1–4), of the year-long internship. One class was labeled 

the “Stress-Resilient” class, because it contained a subset of the population who experienced 

minimal changes in depression symptoms throughout the internship. The legend shows 

the labels for each class, as well as the size of the population subset (n) the trajectories 

represent.
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Fig. 3. 
The full analysis pipeline in this work. We let A be the multivariate hourly baseline (BL) 

feature distributions per-individual, and B′ be the predicted multivariate hourly internship 

(INTERN) feature distribution per-individual. (1) We first found relationships between the 

actual mobile sensing indicators using both the baseline and internship data and resilience 

(see Table 9). We then built conditional generative adversarial networks (CGANs) to 

predict the internship data (B′) from the baseline data (A) per-individual. We calculated 

predicted mobile sensing indicators using both A and B′. Lastly, in (3),we validated whether 

the associations between the predicted indicators and resilience were equivalent to the 

relationships between the actual indicators and resilience (see Table 12 and Figure 7).
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Fig. 4. 
The distribution (histograms) of Cohen’s ds for training (n = 611) and testing (n = 154) data. 

Within each histogram, the boxplots show the median and interquartile range (IQR) of each 

Cohen’s ds. The numbers below the x-ticks are the IQR of the Cohen’s ds for the specified 

dataset.
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Fig. 5. 
The distribution (histograms) of Cohen’s ds for the two clusters created for participant 

multitasking models within the training data. Cluster 0 contained n = 510 participants 

and cluster 1 contained n = 111 participants. Within each histogram, the boxplots show 

the median and interquartile range (IQR) of each Cohen’s ds. The P values listed above 

each boxplot are the result of either a two-sample t-test or Mann-Whitney U test with the 

null-hypothesis that the feature distribution centers of each cluster were equal.
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Fig. 6. 
Comparing test set results across different models for the seconds of sleep per hour feature. 

(a) shows results for the participant multitasking multilayer perceptron (P - MLP) model, 

(b) the participant multitasking generator model (P GEN), (c) the participant multitasking 
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conditional generative adversarial network (P - CGAN) model, and (d) the feature 

and participant multitasking conditional generative adversarial network (FP - CGAN) 

model. The left column plots show the error (predicted - actual) distributions between 

the individual-level actual and predicted Cohen’s ds. The boxplots overlay a histogram 

describing the number of participants whose actual Cohen’s ds fell into a designated range. 

Each box represents the error distribution for the participants within the underlying Cohen’s 

ds range. The middle column shows a histogram comparing the actual and predicted Cohen’s 

ds, and the right column shows this information in a scatterplot, where each point represents 

a test individual with the skipped correlation coefficient [103] values (r) labeled.
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Fig. 7. 
Plots of the shared significant coefficients from GEE using calculated features from the 

actual and predicted data. All features were either calculated using generated data from 

the internship (INTERN) or a difference between the internship and baseline periods 

(Difference). (a) shows the coefficient differences from the univariate and (b) from the 

multivariate GEE. There is a single plot per feature. The y-axis on each plot is the resulting 

β coefficient from conducting GEE to measure the effect of the feature from distinguishing 

stress-resilient versus sensitive individuals. The x-axis dictates whether the plotted values 

are from the GEE using the actual or predicted values. Points are the mean value of 

the coefficient, and error bars represent 95% confidence intervals. * indicates that the 

coefficients are significantly (α = 0.05) different.
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Table 1.

Passive sensing and EMA data collected during the Intern Health Study through the Fitbit and study 

application.

Data Type Description

Heart rate Heart rate each minute

Steps Step count each minute

Sleep The duration of sleep and short wake cycles, when the sleep event was recorded, as well as the category

Mood EMA Question prompt: On a scale of 1 (low) to 10 (high), what was your average mood today?
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Table 2.

Passive sensing and EMA features used within this work.

Data type Derived feature(s)

Heart rate The hourly mean heart rate

Mood EMA Interpolated daily self-reported EMA

Sleep Time (in seconds) spent sleeping and in bed over an hour

Steps Number of steps taken over an hour

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2022 April 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ADLER et al. Page 41

Table 3.

Summary of the hourly feature outlier filtering results. Outlier filtering was conducted using an Isolation 

Forest algorithm [52]. Results are listed in each cell using the following notation: (before filtering, after 

filtering). Some features, for example the seconds of sleep, have “0” values for the lower percentiles because 

individuals are not sleeping during most hours of the day. The mean heart unit is in beats per minute (BPM). 

Note that if sleep is continuous, the Fitbit may record one long multi-hour sleep cycle, but these cycles are 

usually broken-up by short wake cycles when someone moves while lying down or becomes restless.

Feature Minimum 25th Percentile Median 75th Percentile Maximum

Step Count (0, 0) (0, 0) (125, 135) (495, 494) (50017, 5496)

Seconds in Bed (0, 0) (0, 0) (0, 0) (600, 1320) (89580, 8190)

Seconds of Sleep (0, 0) (0, 0) (0, 0) (120, 870) (58920, 7740)

Mean Heart Rate (BPM) (35, 35) (63, 62) (72, 71) (82, 81) (204, 130)

Mood EMA (1, 1) (7, 7) (7, 7) (8, 8) (10, 10)
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Table 4.

Overview of the data filtering process, including the total number of participants, total hours of data, and the 

median (IQR) hours of data of across participants, split by baseline (BL) and each quarter (Q1–4). Each metric 

is listed for both the raw and cleaned data used for analysis. The median is the 50th percentile, and the IQR is 

a range representing the 25–75th percentiles of the data. Note that we enforced participants to have 100 hours 

of collected data in BL, and within the combined Q1–4, hence the median and 25th percentile increases in 

hours of data during certain periods after data cleaning. In addition, it is possible that participants may have 

dropped out of the study and returned, resulting in an increase in participants across specific periods of the 

study.

Period Number of Participants Total Hours of Data Hours of Data Across Participants

Raw Cleaned Raw Cleaned Raw Cleaned

BL 2,167 775 910,201 312,405 307 (28–634) 363 (237–532)

Q1 2,481 775 2,315,504 651,173 850 (20–1,850) 797 (408–1,220)

Q2 1,738 655 1,697,665 433,360 875 (60–1,867) 564 (205–1,060)

Q3 1,571 303 1,247,209 222,273 449 (18–1,667) 647 (275–1,130)

Q4 1,290 392 1,089,434 227,727 551 (20–1,719) 427 (155–939)

Total 2,668 775 7,260,013 1,846,938 495 (25–1,544) 508 (259–941)
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Table 5.

Overview of analyzed data.

Analyzed Data

Total Participants, n 775

Total Hours of Data, n 1,846,938

Total Days of Data, n 116,536

Baseline Hours of Data per participant, median (IQR) 363 (237–532)

Internship Hours of Data per participant, median (IQR) 1,411 (554–2,974)
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Table 6.

Demographic information of the analyzed data compared to U.S. medical graduates from 2018–19 [65, 66]. 

The AAMC does not report the age of graduating medical students, and thus was excluded.

Analyzed Data U.S. Medical Graduates

Age, median (IQR) 27 (26–28) Not reported

Female, n (%) 422 (55) 9,555 (48)

White, n (%) 505 (65) 10,879 (55)

Black, African American, n (%) 36 (5) 1,238 (6)

Hispanic, Latino, Spanish Origin, n (%) 25 (3) 1,063 (5)

Asian, n (%) 133 (17) 4,299 (22)

Native Hawaiian, Other Pacific Islander, n (%) 0 (0) 9 (<1)

American Indian, Alaskan Native, n (%) 0 (0) 38 (<1)

Mixed Race/Ethnicity, n (%) 63 (8) 1,598 (8)

Other Race/Ethnicity, n (%) 12 (1) 380 (2)

Race/Ethnicity Unlisted, n (%) 1 (<1) 124 (1)
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Table 7.

Intern medical specialties within the analyzed data.

Specialty Analyzed Data, n (%)

Internal Medicine 173 (22)

Surgery 76 (10)

Ob/Gyn 50 (6)

Pediatrics 108 (14)

Psychiatry 35 (5)

Emergency Medicine 70 (9)

Med/Peds 25 (3)

Family Practice 70 (9)

Transitional 28 (4)

Anesthesiology (w/o transitional year) 36 (5)

Neurology (w/o transitional year) 13 (2)

Otolaryngology (w/o transitional year) 7 (1)

Other 84 (11)
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Table 8.

Results from using growth mixture models to identify different trajectories of depression symptom changes 

within our population. We used the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC) to assess model performance.

# of classes AIC BIC

2 17,267 17,318

3 17,184 17,254

4 17,127 17,215

5 17,135 17,242
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Table 9.

Results from conducting GEE to understand how each potential passive sensing and EMA indicator 

distinguishes stress-resilient and stress-sensitive individuals. Specialty was used as a grouping variable, and 

we controlled for sex and age in the model. We list only significant results (α = 0.05) from the univariate 

regressions. The βU and PU are the univariate significance and p-value respectively. Multivariate regression 

was performed after filtering out highly-correlated indicators. βU and PM are the coefficient and significance 

values for the 3 indicators included in the multivariate regression. Values were either specific to the period 

before (BL), during (INTERN) the internship, or captured a difference in a specific metric between the 

INTERN and BL periods (Difference).

Hourly Feature Metric Period βU (95% CI) P U βM (95% CI) P M 

Step Count Skew BL −0.19 (−0.37 to −0.01) <.05

Step Count Skew INTERN −0.16 (−0.26 to −0.06) <.01 −0.16 (−0.26 to −0.06) <.01

Seconds in Bed Cohen’s ds Difference 0.15 (0.04 to 0.25) <.01 0.11 (0.00 to 0.22) <.05

Seconds in Bed Mean INTERN 0.17 (0.08 to 0.27) <.001

Seconds in Bed Skew INTERN 0.15 (0.06 to 0.24) <.01

Seconds in Bed Standard Deviation INTERN 0.13 (0.03 to 0.22) <.05

Heart Rate Mean BL −0.13 (−0.25 to −0.01) <.05

Heart Rate Mean INTERN −0.16 (−0.30 to −0.03) <.05

Seconds of Sleep Cohen’s ds Difference 0.15 (0.05 to 0.25) <.01

Seconds of Sleep Mean INTERN 0.18 (0.09 to 0.27) <.001

Seconds of Sleep Skew INTERN 0.16 (0.07 to 0.25) <.001

Seconds of Sleep Standard Deviation INTERN 0.13 (0.03 to 0.23) <.01

Mood EMA Cohen’s ds Difference 0.25 (0.12 to 0.37) <.001 0.26 (0.13 to 0.39) <.001

Mood EMA Mean BL 0.31 (0.14 to 0.48) <.001

Mood EMA Mean INTERN 0.54 (0.42 to 0.67) <.001

Mood EMA Standard Deviation BL −0.23 (−0.33 to −0.12) <.001

Mood EMA Standard Deviation INTERN −0.51 (−0.60 to −0.41) <.001
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Table 10.

Overview of the data used for model training and validation (80% of the total data), as well as the held-out 

data (20%) used to report model results.

Training (80%) Testing (20%)

Participants, n 611 154

Hours of data, n 1,452,667 394,271

Days of data, n 91,804 24,732
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Table 11.

Skipped correlation coefficient [103] (r ∈ [−1, 1]) values and significance between the predicted and actual 

individual-level Cohen’s ds for each model and feature.

Model Step Count Seconds of Sleep Seconds in Bed Mean Heart Rate Mood EMA

MLP 0.27 ** 0.23 ** −0.05 0.13 0.33 ***†

P - MLP 0.22 ** −0.18 *† 0.11 † −0.05 0.34 ***

GEN 0.32 ***† 0.14 0.08 0.07 0.37 ***

P - GEN 0.46 *** 0.15 † 0.08 † 0.20 * 0.35 ***

CGAN 0.12 0.02 0.00 0.15 0.41 ***

F - CGAN 0.38 *** 0.12 0.09 0.15 0.35 ***

P - CGAN 0.19 * 0.43 ***† 0.42 ***† 0.24 ** 0.36 ***

FP - CGAN 0.31 *** 0.50 ***† 0.49 ***† 0.21 * 0.37 ***

*
P < .05,

**
P < .01,

***
P < .001.

†
indicates significant (α = 0.05) values within a Wilcoxon signed-rank test, testing the hypothesis that the squared error between the actual and 

predicted Cohen’s ds is less than the squared error achieved from assigning the mean Cohen’s ds from the training distribution to each individual. 

MLP = baseline multilayer perceptron regression model. GEN = baseline density estimation models. CGAN = conditional generative adversarial 
network. P = participant multitasking, F = feature multitasking.
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Table 12.

Results from conducting a univariate GEE using each indicator of resilience identified in Table 9 calculated 

from the predicted distributions. The GEE modeled the relationship between predicted passive sensing and 

EMA indicators and stress-resilience, with intern specialty as a grouping variable, and controlling for age and 

sex. βU is the coefficient value, and PU is the significance level. Indicators exclusive to the baseline (BL) 

period are not shown because they would have the equivalent βU coefficient and significance level from Table 

9. Predicted values were either specific to during the internship (INTERN), or captured a difference in a 

specific metric between the INTERN and BL periods (Difference).

Hourly Feature Metric Period βU (95% CI) PU

Step Count Skew INTERN 0.14 (−0.02 to 0.30) <.1

Seconds in Bed Cohen’s ds Difference 0.07 (−0.05 to 0.19)

Seconds in Bed Mean INTERN 0.10 (−0.03 to 0.22)

Seconds in Bed Skew INTERN 0.12 (0.00 to 0.24) <.05

Seconds in Bed Standard Deviation INTERN 0.04 (−0.08 to 0.15)

Heart Rate Mean INTERN −0.17 (−0.29 to −0.05) <.01

Seconds of Sleep Cohen’s ds Difference 0.07 (−0.06 to 0.19)

Seconds of Sleep Mean INTERN 0.09 (−0.03 to 0.21)

Seconds of Sleep Skew INTERN 0.12 (−0.00 to 0.24) <.1

Seconds of Sleep Standard Deviation INTERN 0.04 (−0.07 to 0.15)

Mood EMA Cohen’s ds Difference −0.21 (−0.35 to −0.07) <.01

Mood EMA Mean INTERN 0.36 (0.18 to 0.53) <.001

Mood EMA Standard Deviation INTERN −0.33 (−0.43 to −0.22) <.001
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