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There is growing evidence that ketone bodies, which are derived from fatty acid oxidation

and usually produced in fasting state or on high-fat diets have broad neuroprotective

effects. Although the mechanisms underlying the neuroprotective effects of ketone

bodies have not yet been fully elucidated, studies in recent years provided abundant

shreds of evidence that ketone bodies exert neuroprotective effects through possible

mechanisms of anti-oxidative stress, maintaining energy supply, modulating the activity

of deacetylation and inflammatory responses. Based on the neuroprotective effects, the

ketogenic diet has been used in the treatment of several neurological diseases such as

refractory epilepsy, Parkinson’s disease, Alzheimer’s disease, and traumatic brain injury.

The ketogenic diet has great potential clinically, which should be further explored in

future studies. It is necessary to specify the roles of components in ketone bodies and

their therapeutic targets and related pathways to optimize the strategy and efficacy of

ketogenic diet therapy in the future.

Keywords: ketone bodies, ketogenic diet, neuroprotection, neurological diseases, underlying mechanisms

INTRODUCTION

Ketone bodies (KBs) are considered as an alternative source of energy supply (1–3). Ketone body
(KB)metabolism in humans has been a significant source of fuel of the brain in nutrient deprivation
state. In humans, KBs are involved in a variety of important metabolic pathways such as fatty
acid β-oxidation (FAO), gluconeogenesis, the tricarboxylic acid (TCA) cycle, de novo lipogenesis,
and sterol biosynthesis (2, 4). Also, these are produced mainly in the liver from FAO-derived
acetyl-CoA and transported to the extrahepatic tissues for terminal oxidation. This metabolic
mechanism provides an alternative source of energy, especially under fasting state, during which
the availability of carbohydrate decreases while the availability of fatty acid increases (4, 5). More
specifically, KBs are prone to exert as a significant source of fuel for extrahepatic tissues under
a group of physiological conditions, including fasting, starvation, post-exercise, low carbohydrate
diets, pregnancy, and neonatal period (6).

The ketogenic diet (KD) is defined as a high-fat, low-carbohydrate diet with appropriate
amounts of protein, vitamins, and minerals. This diet encourages the body to consume fats easily
rather than carbohydrates under normal physiological conditions, carbohydrates in food break
down into glucose and are transported around the body to supply energy. Glucose is considered
an especially important source of fuel in the brain. However, if small amounts of carbohydrate are
present in the diet, the fat will be converted into fatty acids and then KBs in the liver. These are
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then passed into the brain, replacing glucose as an energy
source. The elevated levels of KBs in the blood, a state is
known as ketosis, induces a therapeutic effect in several medical
conditions (7). KD is primarily used in the treatment of difficult-
to-control (refractory) epilepsy in children (8, 9). Besides its use
in epilepsy, it has been studied in various neurological disorders
such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
stroke, neurotrauma, brain tumors, amyotrophic lateral sclerosis,
autism, headache, pain, and sleep disorders (7).

Although the clinical efficacy of KD therapy is widely
recognized, there are still speculations about its potential
mechanisms for many years, which are not fully clarified yet.
Early clinical observations revealed that the mechanism of KD
therapy is associated with dehydration and acidosis (10, 11).
However, few pieces of evidence have shown that dehydration or
fluid restriction is associated with the therapeutic effect of KD. In
terms of acidosis, scholars believed that KD-induced pH changes
might directly affect the ion channels and neurotransmitter
receptors, exerting therapeutic effects (12). Recent studies now
highlighted the important roles for KBs in the treatment of
several neurological diseases (13–16). A series of potential
therapeutic mechanisms of KBs have been proposed. Among
these mechanisms, the neuroprotective effects of KBs have
attracted the attention of researchers in recent years. Hence,
in this review, we discussed the underlying mechanisms of the
neuroprotective effects of KBs and the application of KD in
different neurological diseases based on neuroprotection.

OVERVIEW OF KETONE BODY (KB)
METABOLISM

In physiological states such as starvation, the liver metabolizes
fatty acids to produce ketones for energy supply. Ketogenesis
primarily occurs in the hepatic mitochondrial matrix at rates
which are proportional to total fat oxidation. Fatty acids
undergo β-oxidation in the liver to produce large amounts
of acetyl-CoA that enters the tricarboxylic acid cycle, and the
remaining is converted into KBs (6). After the transportation
of acyl chains across the mitochondrial membranes and
underwent β-oxidation, the mitochondrial isoform of 3-
hydroxymethyl glutaryl-CoA synthase catalyzes acetoacetyl-
CoA and acetyl-CoA to generate HMG-CoA. Then HMG-
CoA lyase cleaves HMG-CoA to acetyl-CoA and acetoacetate
(ACA). ACA, in turn, is reduced to D-β-hydroxybutyrate (D-
βHB) by phosphatidylcholine-dependent mitochondrial D-βHB
dehydrogenase (BDH1) in an NAD+/NADH-coupled reaction

Abbreviations: ACA, acetoacetate; AD, Alzheimer’s Disease; AGE, advanced

glycation end products; BBB, blood-brain barrier; βHB, β-hydroxybutyrate; CAT,

carnitine acetyltransferase; CR, caloric restriction; ETC, electron transport chain;

FAO, fatty acid β-oxidation; FOXO3A, forkhead box O3A; GLUT-1, Glucose

transporter 1; GSH-Px, glutathione peroxidase; HCA2, Hydroxy-carboxylic

acid receptor 2; HDACs, histone deacetylases; HO-1, heme oxygenase-1; KBs,

ketone bodies; KD, Ketogenic diet; MCT, monocarboxylate transporter; mPT,

mitochondrial permeability transition; PD, Parkinson’s Disease; PPAR, peroxisome

proliferator-activated receptor; PUFAs, polyunsaturated fatty acids; RNS, reactive

nitrogen species; ROS, reactive oxygen species; SOD, superoxide dismutase; TBI,

traumatic brain injury; TCA, tricarboxylic acid; UCP, uncoupling protein.

(17, 18). The ratio of ACA/D-βHB is directly proportional to the
ratio of mitochondrial NAD+/NADH (19). ACA is also able to
decarboxylate to acetone spontaneously, which accounts for the
source of the sweet odor in patients suffering from ketoacidosis
(20). Normally, acetone that is produced in small amounts can
be exhaled through the lungs, while ACA and D-βHB enter
the blood circulation to provide energy for extrahepatic tissues.
In classical KD, the ratio of fat to carbohydrate and protein is
4:1, which significantly reduces the intake of carbohydrates (21).
Thus, KBs have become the primary source of energy to cell
metabolism instead of glucose.

NEUROPROTECTIVE EFFECTS OF KB AND
POSSIBLE UNDERLYING MECHANISMS

With the increasing research on KBs and KD, the application
of KD in patients with neurological diseases has gradually
become one of the research focuses in recent years. Although
KD is used for treating a group of neurological diseases,
the underlying mechanism remained uncertain. Recently, the
neuroprotective effects of KBs have attracted more and more
attention. This is because most of the neurons do not effectively
generate high-energy phosphates from fatty acids, but KBs
undergo oxidation in short supply of carbohydrates (22, 23).
The neuroprotective effects of KBs are considered especially
important (2, 24, 25). Data from recent years suggested that KBs
exert their neuroprotective effects through the following possible
mechanisms (Figure 1).

Anti-oxidative Stress
Oxidative stress is generally considered as a state in which the
reactive oxygen species (ROS) are in excess, and this might be
due to excessive production or impaired elimination (26, 27).
The anti-oxidative effect of KBs has been reported widely in
both in vivo and in vitro studies, especially in the context of
neuroprotection. ROS are mainly produced by mitochondria.
Glutathione peroxidase (GSH-Px) is a key rate-limiting enzyme
in the formation of ROS (28). During the normal process
of oxidative phosphorylation, superoxide anion is generally
produced at a lower concentration. When the mitochondria
are damaged, the content of ROS increases when the calcium
ions are overloaded, leading to excitotoxicity damage (29).
Majority of the neuronal injuries are secondary to glutamate
excitotoxicity, calcium overload, mitochondrial dysfunction, and
oxidative stress.

KD lowers blood glucose levels and increases ketone
production in the liver. The increase in KBs is mainly due to
the oxidation of fatty acids, particularly the polyunsaturated
fatty acids (PUFAs) (30). PUFAs activate peroxidase by blocking
voltage-gated sodium and calcium channels, and regulate the
membrane receptors in neurons or induce the expression
of mitochondrial uncoupling protein (UCP) to increase. The
uncoupling process reduces mitochondrial membrane potential,
ultimately reducing the production of ROS (28, 31), (Figure 1).

It has been reported that the (D or L)-βHB scavenge
ROS, while the ACA scavenges ROS species when their
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FIGURE 1 | Diagram of the sites of action that underlie in the neuroprotection by ketone bodies (KBs). (1) KBs reduces NAD couple, which decreases ROS

production; (2) KBs activate GSH-Px, which enhances ROS elimination; (3) KBs increase ATP concentration; (4) KBs inhibit HDACs, which increases endogenous

anti-oxidants. ETC, electron transport chain; FOXO3A, forkhead box O3A; GSH-Px, glutathione peroxidase; HDACs, histone deacetylases; ROS, reactive oxygen

species; TCA, tricarboxylic acid.

concentration exceeds physiological range (IC50 20–67mM)
(32). The beneficial effects on the redox potential of the electron
transport chain is a common mechanism which is related to
D-βHB (33). While all KBs (D/L-βHB and ACA) could reduce
ROS accumulation and neuronal death which is triggered by
the inhibition of glycolysis, but only D-βHB and ACA could
prevent ATP declination in neurons (34–36). Conversely, in an
in vivo model of hypoglycemia, where (D or L)-βHB prevented
hippocampal lipid peroxidation, while ACA did not exhibit
this effect (15, 32, 37–39). In vivo studies in mice that fed
on KD suggested neuroanatomical variation with antioxidant
capacity, and the most significant changes were observed in
the hippocampus, as well as increased glutathione peroxidase
level and total antioxidant capacities (40). In brain injury
models, KD could activate the NF-E2-related factor 2 (Nrf2)
pathway and then transported into the nucleus, followed by the
expression of downstream antioxidant protein Heme oxygenase-
1 (HO-1), which is considered to be one of the most essential
substances for protecting against oxidative stress (41, 42). In
a study with ischemic stroke model, ketone treatment after
transient middle cerebral artery (MCA) occlusion enhanced
the mitochondrial function, and reduced the oxidative stress,
thus reducing the infarct volume, and improving neurological
function after ischemic stroke. These neuroprotective effects were

due to the upregulation of NAD+-dependent Sirtuin 3 (SIRT3)
and its downstream substrates, superoxide dismutase 2 (SOD2)
and forkhead box O3A (FOXO3A) in the penumbra area (43).

KD, ketone esters or βHB administration exerts
neuroprotective effects as reported in models of a variety
of neurological diseases (13–16, 44). In contrast, a recent study
provided histopathological evidence of neurodegenerative
progression that is related to KD in a transgenic mice model
with impaired mitochondrial DNA repair, although there is an
increase in mitochondrial biogenesis and antioxidant signatures
(45). Other conflicting data suggested that exposure to high
concentrations of KBs could elicit oxidative stress. A study
in calf hepatocytes suggested that high doses of βHB or ACA
could induce nitric oxide secretion, and lipid peroxidation, and
reduced SOD, glutathione peroxidase and catalase expressions.
Another study in rat hepatocytes showed that activation of
mitogen-activated protein kinase (MAPK) pathway attributed to
ACA, but not to βHB (46–48).

In summary, most of the previous reports associated KBs
with the attenuation of oxidative stress, as they inhibited ROS
production, prevented lipid peroxidation as well as protein
oxidation, and increased the levels of antioxidant proteins. On
the other hand, few other studies reported a correlation between
KBs and induction of oxidative stress. Hence, it is necessary
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to consider that the antioxidative benefits conferred by KD
might not be attributed to KBs themselves, and neuroprotective
effects conferred by KBs might not be entirely attributed to
anti-oxidative effects.

Maintaining Energy Supply
Calorie intake is closely related to energy storage in the body.
Protein and glucose produce 4,000 Kal/g, while fat produces
9,000 Kal/g, which has higher calorie value. This subsequently
allows KD to stimulate mitochondrial biosynthesis, and increase
UCP activity, which produces brain ATP and phosphoric acid,
limiting the energy supply of patients (49). Increasing creatine
concentration can improve the efficiency of cell metabolism,
ultimately reducing the production of ROS while maintaining
no significant changes in single cell metabolic output (50). This
is because the mitochondrial damage and energy exhaustion are
the critical factors in many neurological diseases (51–54). KD can
increase metabolic efficiency and maintain the total metabolic
amount stable under the conditions of relatively insufficient
energy, thus enhancing the anti-injury ability of neurons.

Cerebral ketone metabolism significantly contributed to brain
metabolism under conditions of energy challenges (55). Studies
in suckling rats that rely on KBs as a necessary metabolic
substrate in addition to glucose (56, 57) suggested a faster
metabolic and behavioral recovery than adult rats with traumatic
brain injury (TBI) (58). This led to the idea that such alternative
substrates might have protective effects. The utilization of
cerebral ketone metabolism as a therapeutic approach is not
only feasible as it can bypass the early derangements of glucose
metabolism after brain injury, but also improves metabolic
efficiency (59, 60) and increases the 1G’ of ATP hydrolysis (61).
A previous study demonstrated that intravenous infusion of 14C-
3-βHB 3h after brain injury in adult rats resulted in greater
uptake of βHB as well as higher production of 14CO2 in the
brain (62). Increased ketone metabolism subsequently improved
the regional ATP concentrations, suggesting the potential for
the alternative substrate as a therapeutic approach after cerebral
injury (Figure 1).

ATP-sensitive potassium channel (KATP) is a critical ion
channel that links metabolism with electrical excitability and
acts as a metabolic receptor (63, 64). KATP opens and closes
depending on the intracellular ATP/ADP level. When the
intracellular energy is insufficient, and ATP decreases, the
channel opens up leading to potassium ion outflow, cell
membrane hyperpolarization and decreased excitability; and
when the intracellular energy is sufficient and ATP increases, the
channel closes (65). Studies showed that ATP changes caused by
glycolysis preferentially regulate the KATP activity (49, 66). In
KD treatment, the glycolysis pathway was inhibited, reducing the
energy produced by glycolysis (67). Thus, the ATP/ADP level was
decreased, leading to the activation of KATP, which in turn inhibit
the seizure activity and reduce the excitatory injury (65).

In studies of the aging brain, multimetric neuroimaging was
performed to characterize the caloric restriction (CR)-induced
changes in brain metabolic and vascular functions in aging
animals (68–70). The results showed that old rats (24 months of
age) with CR reduced glucose uptake and lactate concentration,

but increased the levels of KBs when compared with age-matched
and young (5 months of age) controls. These metabolic changes
were correlated with preservation of vascular function, where
old rats with CR have maintained their cerebral blood flow
compared to the age-matched controls. In the investigation of
mitochondrial TCA cycle, citrate and α-ketoglutarate were found
to be preserved in the old rats (71). These results suggested that
CR has neuroprotective effects; and KBs, cerebral blood flow, and
metabolism such as α-ketoglutarate might play an essential role
in maintaining brain physiological functions during the process
of aging (Figure 2). Thus, it is of profound implications to
Understand the nutritional effects of KBs on brain function in the
aging process and other age-related neurodegenerative disorders.

Modulating the Activity of Deacetylation
Deacetylase plays an essential role in regulating cell survival,
aging, apoptosis, and other physiological activities. Deacetylase
involves histone deacetylase activity that is dependent on NAD.
Histones are deacetylated to produce O-acetyl-ADP ribose and
nicotinamide by using NAD+ as substrate. The latter, which acts
as a signal factor, carries acetyl groups that are removed from
the histones (72). Histones, which are modified significantly in
post-translational stages, are important in regulating chromatin
structure in eukaryotic cells. Lysine residues on histones are
acetylated through acetyltransferases, which enables the unbound
DNA to undergo transcription. Removal of such acetyl groups by
histone deacetylases (HDACs) leads to tight binding of histones
to DNA and results in transcriptional repression (73). HDAC
inhibitors were previously reported as anti-inflammatory and
anti-cancer agents (74), while recent data showed that they might
also play certain roles in epileptogenesis (75). Valproic acid
(VPA) is a broad-spectrum anti-seizure drug that is widely used
clinically. It inhibits both classes I and class II HDACs which is
cytotoxic to various types of cancers (76). Inhibition of HDAC
might be an essential anti-epileptic mechanism of VPA (77).

Recent studies reported the inhibition of HDACs by βHB
both in vitro and in vivo. These effects were found to be
associated with an increase in resistance to oxidative stress
(78–80). In particular, βHB induced acetylation of histone H3
lysine 9 (H3K9) and histone H3 lysine 14 (H3K14), as the
transcription of genes was regulated by FOXO3A. In addition,
in vivo administration of βHB via osmotic minipumps for over
24 h led to decreased carboxylation and decreased levels of 4-
hydroxynonenal and lipid peroxides in the kidney. However, it
should be noted that these effects in deacetylation modulation
were not reported in brain cells or tissues. However, it might
be reasonable to infer that the inhibition of HDACs by βHB
and subsequent transcriptional changes might mediate some
antioxidative effects in the brain, which are known to occur with
KD (Figure 1).

However, evidence from a few other reports showed
that KD and CR could activate deacetylation (72, 73). The
expression of silence information regulator two related enzyme
1 (SIRT1) is usually up-regulated during neurodegeneration,
playing a neuroprotective role (81, 82). There are various
hypotheses regarding the neuroprotective mechanisms of
SIRT1. This has a widespread deacetylase activity, with a
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FIGURE 2 | Proposed metabolic and hemodynamic changes induced by caloric restriction (CR). CR downregulated glucose metabolic pathway but upregulated

ketogenic pathway. KBs are converted to acetoacetate (ACA) and then further to acetyl-CoA. The changes in metabolic pathway resulted in enhanced TCA cycle flux

and glutamate-glutamine recycling between neurons and glial cells. Elevated CBF might be due to enhanced neuronal activities and increased levels of KBs. βHB,

β-hydroxybutyrate; BBB, blood-brain barrier; CAT, carnitine acetyltransferase; GLUT-1, Glucose transporter 1; KBs, Ketone bodies; MCT1, monocarboxylate

transporter 1; TCA, tricarboxylic acid.

variety of targets including histone, tumor suppressor P53,
fork transcription factor (FOXO), DNA repair protein Ku70,
peroxisome proliferator-activated receptor (PPARγ) and
nuclear transcription factor-κB (NF-κB) (83). PPARγ can
reduce the expression of inflammatory factors, especially
the expression of NF-κB, thus alleviating the neuronal
damage caused by excitotoxicity of N-methyl-D-aspartate
(NMDA) (84).

Modulating Inflammatory Responses
KBs could modulate inflammatory responses and functions of
immune cells but have different and discrepant mechanisms
(6). Prolonged nutrient deprivation could reduce inflammation
(85). However, chronic ketosis that is induced in type 1 diabetes
is considered a pro-inflammatory state (86, 87). The influence
of βHB on inflammation is mainly because many cells in
the immune system, including monocytes or macrophages,
which express abundant GPR109A. While βHB exerts an
effective anti-inflammatory response, high concentrations of
KBs, especially ACA, might exert a pro-inflammatory effect
(85, 88, 89). GPR109A, also known as hydroxy-carboxylic
acid receptor 2 (HCA2), is a G protein-coupled receptor that
is located on neutrophils, macrophages, adipocytes. In the
brain, it is mainly found in the anterior cingulate cortex
(90). Of GPR109A ligands plays anti-inflammatory roles in
obesity, atherosclerosis, neurological diseases, inflammatory
bowel diseases, and various types of cancer, which have been
reported in several previous studies (91). GPR109A expression
was found to be augmented in RPE cells of diabetic animals and
patients (88, 89). Overexpression of GPR109A could enhance
the anti-inflammatory effects of βHB in RPE cells, while genetic
knockout or pharmacological inhibition of GPR109A could
abrogate such effects (89). Rahman et al. (13) hypothesized
that KD might exert its neuroprotective effects through βHB’s
actions on HCA2 receptors. The results showed that mice

fed on KD or given βHB through subcutaneous minipumps
had smaller ischemic infarct volumes following distal middle
cerebral artery occlusion, and such effect was absent in
HCAR2-null mice. βHB and exogenous nicotinic acid had anti-
inflammatory effects in LPS or TNF-α-induced inflammation
by decreasing pro-inflammatory proteins (i.e., COX-2, iNOS),
or secreted cytokines (IL-1β, IL-6, TNFα, CCL2/MCP-1), partly
by inhibiting NF-κB translocation (92). βHB decreases ER
stress and NLRP3 inflammasome, activating anti-oxidative stress
response (93). However, in neurodegenerative inflammatory
responses, GPR109A-dependent protection mediated by βHB
showed no involvement of the inflammatory mediators such
as MAPK pathway signaling (e.g., ERK, JNK, P38), but
may require COX-1-dependent PGD2 production (13, 88).
It is interesting that in ischemic stroke animals, GPR109A
in macrophage is required to play a neuroprotective role
(13), but the inhibition of NLRP3 inflammasome by βHB
in macrophages is found to be GPR109A independent (85).
Although most of the previous studies associated βHB with
anti-inflammatory effects, βHB might act as a pro-inflammatory
factor and increase the markers of lipid peroxidation in calf
hepatocytes (48). Whether βHB exerts anti-inflammatory or
pro-inflammatory effects might depend on the cell types, βHB
concentration, duration of exposure, and the presence of different
co-modulators.

ACA might activate pro-inflammatory signaling, which is
different from βHB. Increased level of ACA could intensify
endothelial cell injury via NADPH oxidase/oxidative stress-
dependent mechanism, especially when companies with high
glucose concentration (87). High level of ACA in the umbilical
cord of mothers with diabetes was associated with higher MCP-
1 concentrations and protein oxidation rate (86). High ACA in
diabetic patients was correlated with TNF-α expression. ACA
was also found to be associated with the induction of MCP-1
expression, ROS accumulation and diminish cAMP level (94).
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The underlying mechanisms still remain unclear whether
ketones exert pro-inflammatory or anti-inflammatory effects.
Additionally, due to the opposite effects of βHB vs. ACA on
inflammation, the influence of ACA/βHB ratio on mitochondrial
redox potential should be considered. The experiments to assess
the effects of KBs on different cellular phenotypes and to compare
the influences of ACA and βHB in different ratios, and at different
concentrations should be performed in future studies.

APPLICATIONS OF KD IN NEUROLOGICAL
DISEASES BASED ON
NEUROPROTECTION

Epilepsy
KD reduces oxidative damage and plays an anti-epileptic role.
Mitochondria are the primary source of ROS/RNS. Complex I/III
in the respiratory chain of ROS/RNS is sensitive to oxidative
regulation (95). Previous studies revealed that epileptic seizures
could lead to mitochondrial dysfunction and inhibit the activities
of complexes I, II, and III (96, 97). KD can improve the
inhibition of complex II/III, and significantly improve the
oxidative stress in cytoplasm and mitochondria (98, 99). Haces
et al. found that βHB and ACA could scavenge OH directly,
and ACA could scavenge HOCL, ONOO-, and singlet oxygen
directly in vitro (32). βHB and ACA were added to glutamic
acid-containing neurons and calcium-containing mitochondria
respectively, where both of these inhibited the accumulation of
O2•- ions. In cortical sections of rats with acute seizures, these
two ketones reduced cell death by inducing hydrogen peroxide.
Greco et al. reported that super-physiological concentration of
ketones could scavenge free radicals directly (100). In a further
study, the concentration of βHB in plasma was 0.371mM after
500 mg/kg of βHB was given to the hypoglycemic animal model,
which significantly reduces the oxidative stress in the brain
(32). In addition to scavenging free radicals directly, KD also
induced the expression of antioxidant proteins. Both SOD1/2
and NQO1 can scavenge O2•- through Nrf2 signaling regulation
(101–103). Nrf2 is activated by KBs and KD (104). Besides,
the mitochondria in the hippocampus of rats fed with KD for
more than 4 weeks were significantly higher than those in the
control group. Therefore, KD might stimulate mitochondrial
biosynthesis (49). After 10–12 days of KD feed, uncoupling
proteins (UCPs) in the hippocampus of mice were increased,
while the ROS produced by mitochondria was decreased (105).
This suggested that KD can up-regulate mitochondrial UCPs.
Fatty acids can also increase the expression of UCP, which may
be due to the activation of transcription factors such as PPAR
and FOX family. Recent studies showed that ACA and βHB
could prevent neuronal death through oxidative stress mediation
by mitochondrial permeability transition (mPT) activator. ACA
and βHB have similar effects to that of cyclosporine A, an mPT
blocker, which can increase the threshold of calcium-induced
mPT opening (106). Continuous epileptiform activity decreased
the Mg2+ in glial cells, depolarize cell membrane and opening
of mPT, resulting in cell death (107). Cyclosporin A can inhibit
this process and increase the survival rate of cells. Some scholars
used KCNA1 mutant mice as epileptic models to observe the

effects of KD and KBs on mPT pore and hippocampal long-term
potentiation. The data showed that KBs have anti-epileptic and
nootropic effects, and its anti-epileptic effect is directly related to
mPT (108).

Alzheimer’s Disease
Alzheimer’s disease (AD) is a multi-pathogenic
neurodegenerative disease that is characterized by memory
dysfunction, progressive cognitive impairment, visual-spatial
skill impairment, executive dysfunction, personality, and
behavioral changes. The main pathological changes include
diffuse atrophy of cerebral cortex, neurofibrillary tangles,
amyloid plaque deposition, loss of neurons and so on (109).

In recent years, more and more evidence showed that
KD could effectively treat AD through various mechanisms.
KD can enhance mitochondrial function and change glucose
metabolism, reduce the production of advanced glycation end
products (AGE) (110, 111). The accumulation of AGE during
healthy aging accelerates the progression of AD. In several
studies of AD model treated with low-dose USP methylene blue,
which is described as pharmacological intervention, successfully
increased mitochondrial respiration, memory enhancement and
neuroprotective effects (112). KBs, especially βHB, can reduce
the toxicity of 1-methyl-4-phenylpyridine (MPP+) to in vitro
cultured neurons and the toxicity of amyloid protein fragment
(Aβ) to hippocampal neurons (113), while KD can improve the
electrophysiological function of the brain in AD mice (114).

Compared with the favorable data obtained from animal
models, no definite conclusions have been drawn in clinical
research. Henderson et al. in a randomized, double-blind,
placebo-controlled, multicenter clinical trial demonstrated that
KD can reduce oxidative stress and inflammation and delay
the progression of AD, which is later manifested by improved
cognitive function in AD patients (115). At present, clinical
evidence for the therapeutic effects of KD on AD is still
insufficient. It would be significant medical progress if the
benefits of KD on this irreversible neurodegenerative disease
could be elucidated.

Parkinson’s Disease
Parkinson’s disease (PD) is the second common
neurodegenerative disease following AD and the most common
disorder associated with movement. It has been found that the
progression of PD is related to inflammation (116, 117). There
are several reactive human leukocyte antigens (HLA)-DR+
microglia in the substantia nigra of PD patients (118, 119).
Toxins, pathogens, endogenous proteins or neuronal death can
activate microglia, which might survive for a long time and self-
renew due to positive feedback from the degenerated neurons.
Activated microglia can release a variety of inflammatory
factors, such as IL-1β, IL-6, TNF-α, IFN-γ, macrophage colony-
stimulating factor, etc. and chemokines such as MIP-1α, MIP-1β,
MCP-1 and prostaglandin E (120). Prostaglandin E can enhance
the transmission between glutamatergic neurons through
inhibition of astrocytes and re-uptake of glutamate, which is
an excitatory neurotransmitter in the central nervous system,
resulting in apparent excitatory neurotoxicity in the central
nervous system (121, 122).
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The mechanisms of anti-inflammation and inhibition of
glutamate excitatory synapse transmission by KD can block
this positive feedback, thus playing a therapeutic role. In vitro
experiments have shown that KBs can improve mitochondrial
respiratory chain dysfunction caused by exogenous complexes
1 and two inhibitors rotenone and 3-nitropropionic acid (123).
According to a clinical study by Vanltallie et al. after 28 days
of KD treatment, all PD patients showed moderate or more
improvement in their symptoms. The score of MDS-UPDRS was
reduced by 43% (124). As the sample size is too small, the clinical
evidence of its conclusion further warranted confirmation in
larger sample size. However, further research confirmed that the
application of KD is expected to become a new strategy for the
treatment of PD.

Traumatic Brain Injury (TBI)
One of the early studies that explored the potential use
of alternative metabolic substrates after TBI suggested that
intravenous administration of βHB at 3 h following brain injury
in adult rats led to higher uptake of βHB in the brain. The
increased ketonemetabolism subsequently increased the regional
ATP concentrations, showing βHB as an alternative therapeutic
substrate following TBI (62). In PND35 rats (analogous to an
adolescent age group) fed on KD, plasma βHB levels increased
within 6 h and sustained for a week. However, in adult rats,
the plasma ketone levels showed no increase until 24 h after
injury (125, 126). In PND35 rats, KBs significantly decreased the
volume of the lesion and the number of degenerating fluoro-
jade positive cells. The PND35 rats on the ketogenic diet also
showed improvement in motor and cognitive function (127).
However, this improvement showed no significance in adult rats,
suggesting that the neuroprotective effects of KD on TBI were
age-dependent. In order to play a neuroprotective role, it is
necessary for KBs to enter the cerebral circulation in a short
period. The age difference in the uptake of ketones might reflect
the differences in the transporters or the timing of the increase
in plasma substrates (128). Both factors might play a role in
the effects of KBs in mitigating the cascades induced by TBI.
Expression of monocarboxylate transporter (MCT) 1 and 2 are
more abundant in the microvessels of PND35 rats than adult rats
following TBI. This may, in turn, increase the uptake of ketones
in the brain following injury (126).

Nevertheless, the plasma ketone concentrations in the adults
are relatively delayed, which would delay the counteraction of
ketones on pathological processes. In the adult brain, fasting
for over 24 h was found to increase the plasma level of ketones
levels and expression of MCTs (129). Besides, intravenous
administration of βHB is considered as an alternative approach
to KD. Considering the rapid pathological progression after TBI,

it would be helpful to increase the availability and delivery of
ketones (128).

SUMMARY AND PERSPECTIVES

KD is used in the treatment of several neurological diseases
for many years, and a large number of studies recently
have validated the role of KD in neuroprotection. It could

play the neuroprotective role by reducing oxidative stress,
maintaining energy metabolism, modulating inflammation,
modulating the activity of deacetylation, and other possible
mechanisms. Although the specific mechanisms of KD in the
treatment of neurological diseases are still uncertain, it is
inevitable that all neurological diseases could affect human
health through oxidative damage, energy metabolism disorders
or inflammatory reactions. Neurological diseases often involve
multiple mechanisms, and KD may also play a role through
these mechanisms. In some diseases, such as epilepsy, AD,
PD, KD can play a therapeutic role, while in some others, it
plays a supporting role, facilitating the therapy of the disease,
improving the symptoms and quality of life in patients. KD
has excellent potential in clinical application, which further
requires exploration. Future studies are necessary to further
specify the roles of components in KBs and their therapeutic
targets and related pathways, to optimize the strategy and efficacy
of KD therapy.
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