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Sex-dependent placental methylation quantitative
trait loci provide insight into the prenatal
origins of childhood onset traits and conditions

William Casazza,1,2,3 Amy M. Inkster,3,4 Giulia F. Del Gobbo,3,4,5 Victor Yuan,3,4 Fabien Delahaye,6

Carmen Marsit,7 Yongjin P. Park,8,9 Wendy P. Robinson,3,4 Sara Mostafavi,1,10 and Jessica K. Dennis1,2,3,4,11,*

SUMMARY

Molecular quantitative trait loci (QTLs) allow us to understand the biology captured in genome-wide as-
sociation studies (GWASs). The placenta regulates fetal development and shows sex differences in
DNA methylation. We therefore hypothesized that placental methylation QTL (mQTL) explain variation
in genetic risk for childhood onset traits, and that effects differ by sex. We analyzed 411 term placentas
from two studies and found 49,252 methylation (CpG) sites with mQTL and 2,489 CpG sites with sex-
dependent mQTL. All mQTL were enriched in regions that typically affect gene expression in prenatal tis-
sues. All mQTL were also enriched in GWAS results for growth- and immune-related traits, but male- and
female-specific mQTL were more enriched than cross-sex mQTL. mQTL colocalized with trait loci at 777
CpG sites, with 216 (28%) specific tomales or females. Overall, mQTL specific tomale and female placenta
capture otherwise overlooked variation in childhood traits.

INTRODUCTION

GWASfindings hold valuable clues about traitmechanisms.1,2 Deciphering these clues, however, requires additional data on gene regulation,

as over 90% of SNPs identified in GWAS lie in gene regulatory regions, as opposed to in the protein-coding gene region itself.3,4 Molecular

quantitative trait loci (molQTL) analysis is a powerful strategy to interpret the gene regulatory functions of GWAS SNPs. Under the umbrella of

molQTL, expression quantitative trait loci (eQTL) are the most widely studied, and they are enriched for GWAS loci relative to other SNPs

matched by minor allele frequency (MAF).5 However, only 43% of eQTL share the same causal variant (colocalize) with a GWAS locus,5

and up to 77% of eQTL in linkage disequilibrium (LD) with a trait-associated SNP are shared across more than one tissue.6 As a result, the

majority of GWAS loci have either no known effects on expression or their relationship with traits is clouded by their broad effects on

gene expression across tissues.5,7

Therefore, to advance the functional interpretation of GWAS SNPs, wemust extendmolQTL discovery acrossmolecular traits, tissues, and

biological contexts. In this study, we identify DNA methylation QTL (mQTL) in placenta, and additionally focus on mQTL that have different

effects in males vs. females. DNAm is an attractive molecular trait for the functional interpretation of GWAS results because it can provide

insights on the precise molecular mechanism by which GWAS SNPs associate with traits and conditions: through biochemical modification

to DNA sequence at a CpG site.8 In addition, variation in DNAm is genetically influenced. In blood, the tissue in which DNAm is most widely

studied, 21% of the variation of DNAm is explained by additive genetic variation in cis (i.e., via mQTL).9 Importantly, mQTL provide informa-

tion on gene regulation beyond what is provided by eQTL. For example, mQTL cover roughly twice as many genes as eQTL in blood.5,9,10 In

addition, a recent mapping of cis-mQTL across 8 GTEx tissues found that 79% of mQTL did not colocalize with an eQTL, and 55% of mQTL

colocalized with a trait, of which only one-third also colocalized with an eQTL.11 Thus, continuing to pursue mQTL in additional tissues could

increase our understanding of gene regulatory mechanisms involved in complex traits and conditions.

The placenta is of the same geneticmake up as the fetus and it is one of the first organs to form during gestation. Throughout pregnancy, it

is responsible for the exchange of oxygen, nutrients, and hormones between mother and fetus. Despite its central role in human
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development, however, placenta is under-studied and is not represented in large-scalemolQTL resources such as GTEx. Several studies have

previously investigated placental molQTL and their relationship with complex traits and conditions.12–17 In the largest mQTL analysis to date,

Delahaye et al.13 analyzed 303 placental samples from the the Eunice Kennedy Shriver National Institute of Child Health and Human Devel-

opment (NICHD) study and characterized a small number (N = 4,342) of strongly associated (i.e., passing a stringent permutation test and

quality threshold) mQTL, which were found to overlap two type 2 diabetes loci. Tekola-Ayele et al.14 analyzed the same samples with a similar

approach and using colocalization analysis, implicated four genes with placental DNAm and gene expression that shared genetic loci with

birth weight. While these analyses of the NICHD study demonstrated the relevance of placental molecular traits to postnatal outcomes, the

stringent thresholds used to map mQTL means that many mQTL remain unmapped, especially in larger sample sizes. In addition, both De-

lahaye and Tekola-Ayele analyzed atmost twoGWAS traits, and the relationship of placental mQTL tomultiple postnatal outcomes has yet to

be investigated. The Rhode Island Child Health Study (RICHS)16,18 is another large study that has collectedmolecular data from 149 placental

samples, but mQTL have not beenmapped in the RICHS study, and overall, a more comprehensive study is needed to better understand how

placental mQTL affect genome-wide risk of traits.

Additionally, neither the NICHD study nor RICHS have investigated sex differences in the genetic regulation of placental molecular traits.

Oliva et al. recently analyzed sex differences in eQTL across 44GTEx tissues and found that sex-dependent eQTL (i.e., cross-tissuemQTLwith

a genotype by sex interaction) were remarkably tissue specific: of 369 sex-dependent eQTL found in at least one tissue, only one was shared

by two tissues.19Moreover, they found 74 eQTL in eithermales or females that colocalizedwithGWAS loci, 24 of which showed no evidence of

colocalization in eQTL computed in all subjects. These results suggest that sex-dependent molQTL yield functional interpretations of GWAS

loci beyond what is provided by cross-sex analysis. Analyzing sex-dependent molQTL could be especially important in the placenta, since sex

is strongly associated with placental molecular traits such as DNAm, even after accounting for cell type proportions,20,21 which can bias sex-

dependent molQTL analysis.19

In this work, we identify placental mQTL with a shared effect in males and females (cross-sex mQTL) and mQTL that are modified by sex

(sex-dependent mQTL) by meta-analyzing data from 411 term placentas from the NICHD study and RICHS (Tables S1 and S2). We then

compare cross-sex and sex-dependent mQTL with regards to their genomic location. Finally, we quantify the relevance of cross-sex and

sex-dependent mQTL to childhood onset traits and conditions using stratified linkage disequilibrium score regression (S-LDSC)22–24 and co-

localization analysis.

RESULTS

Placental methylation quantitative trait loci replicate across studies despite differences in genetic ancestry

Both the NICHD study and RICHS selected participants with low risk pregnancies and analyzed placentas from birthsR37 weeks gestation.

However, participants in NICHD were selected from diverse race/ethnicity groups (25.5%White; Table S1), while those from RICHS were pri-

marily of White race/ethnicity (72.8% White; Table S1). Ancestry-specific differences in allele frequencies can lead to ancestry-specific

molQTL.25,26 Therefore, before meta-analyzing mQTL effects across NICHD and RICHS, we first identified and compared ancestry-specific

mQTL in NICHD using the three largest ancestry groups, as estimated by GRAF-pop (29.8% African American, or AFR_AM, 26.2% European,

or EUR, and 27.6% Latin American, or LAT_AM; Table S2). We calculated the overlap of mQTL between ancestries using thep1 statistic, which

is the proportion of associations in one population that have similar effects in another (STAR Methods).27,28 The p1 estimates calculated be-

tween each pair of ancestries were high (p1 = 0.89 EUR vs. AFR_AM, p1 = 0.90 EUR vs. LAT_AM, and p1 = 0.90 AFR_AM vs. LAT_AM,

computed at all mQTL significant at FDR <0.05, Figures S1A‒S1C). More CpG sites had at least one mQTL associated at a Bonferroni cor-

rected p < 0.05 in AFR_AM and LAT_AM samples compared to EUR samples (19,268 in AFR_AM, 12,158 in LAT_AM, and 8,748 in EUR), which

likely reflects the increased genetic variability in those populations relative to populations with EUR ancestry.26,29,30 Nonetheless, 6,754

(77.2%) CpGs with a significant mQTL in EUR were shared by one or more ancestral group, and 4,733 (54.1%) CpGs had a significant

mQTL in all populations (Figures S1D and S1E). While these ancestry-specific patterns warrant further investigation, our study was focused

on sex differences. Therefore, reassured by the overlap across ancestries, we proceeded with an ancestry-pooled analysis in NICHD and

RICHS, and accounted for ancestry using genotyping PCs in all analyses.

As a final check, we comparedmQTL computed in NICHD and RICHS and found ap1 estimate of 0.74 (computed over 2,691,024 SNP-CpG

pairs available in both studies showing association in NICHD at an FDR <0.05). Sex-dependent mQTL showed modest replication (p1 = 0.28,

computed over 80,363 SNP-CpG pairs available in both studies), which is in line with values previously reported for sex-dependent eQTL in

GTEx tissues (p1 = 0.28 in breast tissue, p1 ranging from 0 to 0.12 in the remaining 43 GTEx V8 tissues analyzed by Oliva et al.)19 Based on the

high replication between NICHD and RICHS, in all subsequent analyses, we meta-analyzed mQTL across studies.

Sex-dependent placental methylation quantitative trait loci are distinct from cross-sex placental methylation quantitative

trait loci

We meta-analyzed effects using MeCS31 software to account for bias induced by correlation in mQTL effects between studies, and meta-

analyzed mQTL effects (or genotype by sex interaction effects in the sex-dependent analysis) were called at a Bonferroni corrected

p < 0.05. We defined 6 sets of mQTL (Figure 1; Table 1) which we used in all downstream analyses: (i) cross-sex, which have an effect inde-

pendent of sex (typically just referred to as ‘‘mQTL’’); (ii) sex-dependent, which have an effect modified by sex; (iii) male-stratified, which have

an effect inmale samples; (iv) female-stratified, which have an effect in female samples; (v) male-specific,which have an effect inmales that also
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differs from the effect in females (intersection of sets (ii) and (iii)); and (vi) female-specific, which have an effect in females that differs from the

effect in males (intersection of sets (ii) and (iv)).

We counted all CpG sites with at least one mQTL. Since multiple SNPs can be associated with a CpG site, we indirectly controlled for LD

between SNPs by counting at the level of CpG sites,9,11,32,33 and by using a stringent threshold for declaring statistically significant mQTL

(Bonferroni-corrected p < 0.05).27 Note that we intentionally did not report the number of independent mQTL, as there is no standard on

how to compute independence,9,11,32,34 and none of our downstream enrichment analyses required independent mQTL. In total, we found

49,252 CpG sites with a cross-sex mQTL and 2,489 CpG sites with a sex-dependent mQTL. These significant cross-sex mQTL were highly

replicated in a recently released database of mQTL identified in 368 fetal placentas,35 having a p1 = 0.987 and a Spearman correlation of

r = 0.971.

Of the CpG sites with sex-dependent mQTL, we found 351 CpG sites with a male-specific mQTL, and 255 CpG sites with a female-specific

mQTL. Of the 351 CpG sites with a male-specific mQTL, 185 (53%) also had a cross-sex mQTL, with 68 sites sharing the same top-associated

SNP. Of the 255 CpG sites with a female-specific mQTL, 153 (60%) also had a cross-sex mQTL, with 65 sites sharing the same top-associated

SNP. Lastly, 75 CpG sites had both male- and female-specific mQTL effects (see Figure 1 for an example of these types of mQTL effects), of

which 74 (99%) also had a cross-sex mQTL. Of these 75 sites, 67 had the same top-associated SNP. See Figures S1F‒S1I for overlap between

significant mQTL sets and for a comparison with male- and female-stratified mQTL.

To benchmark the number of mQTL we found against the number found in other studies, we called mQTL at a less-stringent FDR <0.05

and assessed inflation via Q-Q plots. We detected 211,862 CpG sites with at least one cross-sex mQTL at FDR<0.05, which is consistent with

what is observed for mQTL in GTEx (108,844-206,802 depending on the tissue).9,11 We generated Q-Q plots of all meta-analyzed mQTL p

values (Figures S1J‒S1M) and found little systematic inflation in the larger p values, whereas inflation for smaller p values in the upper ranges

of these plots is expected and is consistent with deviation from the null observed in other mQTL studies.13,36

We further investigated the difference in male- vs. female-specific effect sizes (the strength of SNP-CpG associations). For computing cor-

relation between effects, we considered all SNP-CpG pairs with either male- or female-specific mQTL, which includes multiple mQTL for

certain CpG sites (8.2 SNPs per CpG site on average in male-specific mQTL, a median of 3 SNPs; 7.8 SNPs per CpG site on average in

female-specific mQTL, a median of 2 SNPs). We found that effects were highly correlated between male- and female-specific mQTL (Spear-

man’s r = 0.87, Figure S1N) and that male- and female-specific mQTL shared the same direction of effect at all CpG sites. In comparison,

across adult tissues in GTEx V8 the correlation between male- and female-specific mQTL was 0.78 (Spearman’s r), and 58% of associations

were in the same direction in both males and females.19 Whether sex-dependent mQTL share the same direction of effect in both males and

females in other tissues would be worth exploring. The average effect in male-specific mQTL was smaller than the effect observed in
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Figure 1. Defining placental mQTL sets from mQTL effects

We defined mQTL sets as: (i) cross-sex, which have an effect independent of sex; (ii) sex-dependent, which have an effect that differs between male and female

samples (a genotype by sex interaction effect); (iii) male-stratified, which have an effect in males; (iv) female-stratified, which have an effect in females; (v) male-

specific, which have an effect in males that also differs from the effect in females; and (vi) female-specific, which have an effect in females that also differs from the

effect in males.
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female-specific mQTL (mean effect size 0.021 in males, 0.035 in females, Wilcoxon rank-sum test two-sided p < 0.026, Figure 2A; Table S3).

This difference was larger when we considered the absolute value of the effect size (mean absolute beta 0.067 in males vs. 0.079 in females,

Wilcoxon rank-sum test two-sided p < 2.3e-11, Figure S1O; Table S3). This effect size difference did not appear to be driven solely by differ-

ences in mQTL effect sizes on the X chromosome: female-specific mQTL had a larger mean signed effect size than male-specific mQTL in 6

autosomes, and a larger mean absolute effect size in 9 autosomes (Wilcoxon rank-sum test one-sided, Bonferroni-Holm corrected p < 0.05,

Figure 2B; Table S3). This sex difference in effect sizes could be due to sex differences in responses to prenatal environmental stresses,37 which

would increase or decrease inter-individual variation in DNAm dependent on sex, ultimately affecting mQTL effect sizes.

Placental methylation quantitative trait loci are enriched in regions controlling gene expression and primarily occur at CpG

sites with intermediate levels of DNAm

In order to establish whether sex-dependent mQTL occur in distinct genomic regions compared to cross-sex mQTL, we applied GARFIELD38

to theminimummQTL p value for each SNP (STARMethods). Briefly, GARFIELD tests whether a given set of SNPs associated with a particular

phenotype are enriched in a set of genomic regions defined from functional experiments from the ENCODE Project Consortium39–41 and the

NIH Roadmap Epigenomics Consortium.42 Importantly, GARFIELD accounts for both LD between SNPs and redundancy in annotations. It

does not overestimate enrichment due to many correlated mQTL in the same genomic region, and it penalizes annotations with similar

enrichment across all mQTL in a set.

As expected, the enrichment of eachmQTL set in each annotationwas typically larger for sets with a larger number ofmQTL, with cross-sex

having the most mQTL, followed by male-stratified mQTL, female-stratified mQTL, and then sex-dependent mQTL (Table 1). Male- and fe-

male-stratified mQTL were most enriched within the same annotations as in cross-sex mQTL in the same order, albeit with smaller estimates.

Male- and female-specificmQTLwere excluded here, as GARFIELDuses only a single p value for each SNP and therefore could not handle the

main and interaction term p values that define the male- and female-specific analyses. Across ChromHMM annotations in human cell lines

(Figure 3A)40,43 we observed that cross-sex placental mQTLweremore enriched in transcription start sites (TSS) than in other chromatin states

(TSS odds ratio (OR) of 2.68 vs. a mean OR = 1.60 in the remaining selected states), which was not observed for sex-dependent mQTL (TSS

OR = 1.22 vs. a mean OR = 1.47 across other annotations). Within individual histone modifications averaged across experiments from

ENCODE,38,39 we found that cross-sex mQTL were most enriched in regions with H3K9 acetylation (mean OR = 2.50), followed by H3K4 tri-

methylation (mean OR = 2.41), both of which are indicative of active gene promoters (Figure 3B).44 For sex-dependent mQTL, the highest

enrichment was in H4K20 monomethylation (OR = 1.69), which is associated with transcription activation.45 Overall, enrichment tracked

strongly with the size of each mQTL set, and results suggested minor, but potentially meaningful, differences in the gene regulatory function

of sex-dependent vs. cross-sex mQTL.

Next, we investigated the weighted-mean DNAm of CpG sites with at least one cross-sex, sex-dependent, male-specific, or female-spe-

cific mQTL. Both cross-sex and sex-dependent mQTLwere primarily associated with CpG sites with intermediate levels of DNAm, and 72% of

cross-sex and 71% of sex-dependent CpG sites had a weighted mean beta between 0.2 and 0.8 (Figure 3C). These proportions are much

larger than what is observed in other human primary cell types (2% of sites with intermediate DNAm)46 and is not surprising given that up

to 40% of CpG sites in the placenta are intermediately methylated.47,48 CpG sites corresponding to male- and female-specific mQTL were

also primarily intermediately methylated (60% and 55%, respectively), but 31% of female-specific CpG sites had a weighted mean

beta>0.8, compared to 21% of male-specific sites, and 16% of cross-sex and sex-dependent sites.

We next investigated how the level of DNAm of CpG sites with mQTL was spread across regions related to gene regulation. Specifically,

we looked at the weighted-mean DNAm of these CpG sites relative to other CpG sites and gene regions, as included on Illumina’s

HumanMethylation450k array annotation (STARMethods). DNAmoccurs primarily at CpGdinucleotides, which cluster into CG repeats called

CpG Islands (CGI) that span 300–3000 bp.49 Illumina denotes shores as the region of DNAwithin 0-2kb of a CGI, shelves as the region of DNA

within 2-4kb of a CGI, and denotes the remaining CpG sites that are greater than 4kb from a CGI as open sea regions. The terms north and

south denote whether a shore or shelf comes before the 50 end of a CGI, or after the 30 end of a CGI. CGIs are a part of roughly 40% of gene

promoters, and the position of individual CpG sites relative to these islands is thought to be related to their impact on transcription.50 For

example, high DNAm in CpG shores and shelves is associated with higher nearby gene expression.51

Table 1. Counts of CpG sites with at least one mQTL in each mQTL set and their corresponding gene

mQTL Set No. CpG Sites No. Corresponding Genes

Cross-sex 49,252 12,746

Sex-dependent 2,489 976

Male-specific 351 201

Female-specific 255 153

Male-stratified 31,384 9,507

Female-stratified 25,180 8,264

Corresponding genes were identified using Illumina’s HumanMethylation450k array annotation. CpG sites are not necessarily exclusive to each set (see Figure 1).
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Weobserved a similar distribution of DNAm levels per CGI region across our four mQTL sets of interest. Themajority of highly methylated

(beta >0.8) CpG sites were in open sea regions (51% of cross-sex, 52% of sex-dependent, 57% of male-specific and 52% of female-specific),

followed by regions within shores or shelves (36% of cross-sex, 36% of sex-dependent, 35% of male-specific, and 38% of female-specific), and

the remaining CpG sites within CGIs themselves (13% of cross-sex, 12% of sex-dependent, 10% of male-specific, and 10% of female-specific)

(Figure 3D). Relative to gene regions, we also observed similar patterns of DNAm levels across all four mQTL sets. Highly methylated CpG

sites were primarily located in gene bodies (51% of cross-sex, 51% of sex-dependent, 56% of male-specific, and 53% of female-specific), which

typically indicates active transcription of those genes. Intermediately methylated CpG sites were evenly split between gene bodies and inter-

genic regions (37% and 33% for both cross-sexmQTL and sex-dependent mQTL, 37% and 30% for male-specificmQTL, and 38% and 30% for

female-specific mQTL respectively). Finally, lowly methylated CpG sites were primarily within 1500bp of the TSS of genes (39% in cross-sex,

39% in sex-dependent, 41% of male-specific, and 43% of female-specific), indicating active transcription (Figure 3E).

Sex-dependent and cross-sex methylation quantitative trait loci show similar patterns of tissue specificity

To assess the tissue specificity of the placental mQTL we identified, we first calculated the replication (p1) of placental mQTL across mQTL in

two other prenatal tissues, umbilical cord blood and fetal brain, identified in independent datasets (Figure 4A; STAR Methods).32,34 The um-

bilical cord is biologically inert and primarily functions in nutrient transport. The umbilical cord and placenta bear no developmental or func-

tional relationship with each other, and we include the umbilical cord blood here as a negative control.52,53 In contrast, we compare mQTL in

the placenta and fetal brain to assess the developmental relevance of the placenta. While we would have liked to compare placental mQTL

against mQTL from other fetal tissues too, no other datasets existed. We observed a relatively large proportion of placental mQTL overlap-

ping cord blood mQTL (p1 = 0.76) and an even larger proportion of placental mQTL overlapping fetal brain mQTL (p1 = 0.84). Effect sizes of

placental mQTL correlated poorly with those in cord blood (Spearman’s r =�0.31) but largely shared the same direction of effect in the fetal

brain (Spearman’s r = 0.65), which suggests a higher degree of similarity between mQTL in placenta vs. in the fetal brain.

To assess the specificity of the overlap between placental and fetal brain mQTL, we next quantified the enrichment of our mQTL sets in

DNAse1 hypersensitivity (DHS) sites in fetal tissues, as well as in adult tissues and cell lines studied in the ENCODE Project Consortium and

the NIH Roadmap Epigenomics Consortium,39–42 using GARFIELD. Enrichment was highest in the fetal membrane for both cross-sex mQTL

(OR= 2.82) and sex-dependentmQTL (OR= 1.58), followed by the fetal placenta (Figure 4B,OR= 2.74 andOR= 1.43 in cross-sex vs. sex-depen-

dent mQTL respectively). Of note, our placental mQTL were nomore enriched in fetal brain DHS sites compared to other fetal tissue DHS sites.

For adult tissues and cell lines (Figure 4C), cross-sexmQTL were most enriched inmyometrium, which is tissue from the uterine wall (OR = 2.71),

followed by bone (OR = 2.68), liver (OR = 2.64), and colon (OR = 2.64). Slight differences were found in sex-dependent mQTL, with enrichment

being highest in bone (OR=1.56), blastula (an early stageof embryonicdevelopment,OR=1.51), colon (OR=1.49), and liver (OR=1.47).Overall,

these results suggest that cross-sex and sex-dependent mQTL are enriched in regions that are active in the same sets of tissues.

Male- and female-specific placental methylation quantitative trait loci are more enriched for the heritability of immune-

related and growth-related traits than are cross-sex placental methylation quantitative trait loci

In this study, we were particularly interested in how placental mQTL, including those specific to males or females, contributed to the genetic

risk of childhood traits and conditions.We includedGWASof 18 childhood traits (Table S5; Figure 5A),54,55 as well as a GWASofmaternal pre-

eclampsia (the fetal genetic effect on maternal pre-eclampsia risk),56 which is a placentally mediated condition. We then used S-LDSC to es-

timate the proportion of SNP-heritability (h2SNP) of these 19 complex traits that was explained by our placental mQTL sets and report the

enrichment of each set: the proportion of h2SNP explained divided by the fraction of all SNPs present in the mQTL set (Table S6; STAR

Methods). Enrichments larger than one mean that on average, an SNP from an mQTL set explains a larger proportion of h2SNP of a trait

than expectedby chance. In this way, we can compare the relative importance of SNPs in eachmQTL set, despite each set containing different

fractions of all SNPs included in the analysis. Lastly, in order to summarize enrichment across related traits, we also meta-analyzed across

Figure 2. mQTL detected across chromosomes

(A) The difference in mean effect size in male- vs. female-specific mQTL across all chromosomes and (B) separately by chromosome, with Wilcoxon rank-sum test

p values after Bonferroni-Holm correction. .: p % 0.1; *: p % 0.05; **: p % 0.01; ***: p % 0.001.
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neuropsychiatric (N = 7), immune-related (N = 3), and growth-related (N = 8) traits. These meta-analyzed enrichment estimates can be

thought of as the average enrichment of mQTL sets across traits in each category (STAR Methods).

We found that placental mQTL were not enriched for h2SNP of any neuropsychiatric traits, either individually, or across all tratits in meta-

analysis (see Table S6 for trait-level S-LDSC results; Table S4 for meta-analyzed results). Conversely, we found an enrichment (cross-trait FDR

<0.05) of cross-sex placental mQTL in type 1 diabetes, birth weight, and pubertal growth start (Figure 5B). We also observed an enrichment

for h2SNP of child onset asthma, birth length, and late pubertal growth at a within-trait FDR <0.05.

Male- and female-specificmQTLwere enriched for h2SNP of birth weight and pubertal growth start (FDR <0.05), as well as of childhood BMI

(within-trait FDR <0.05). In meta-analysis, female-specific mQTL were more enriched than cross-sex mQTL for h2SNP of immune-related traits

(1.75, SE = 0.249, for female-specific mQTL vs. 1.29, SE = 0.06 for cross-sex mQTL) (Figure 5C). Additionally, both male- and female-specific

Figure 3. Functional role of placental mQTL

Enrichment of mQTL sets in chromatin states (A) averaged across human stem cell lines and (B) in histone modifications averaged across tissues in ENCODE.

(C) Density distribution of weighted mean DNAm, stratified by mQTL set. Proportion of CpG sites by weighted mean DNAm values, stratified by mQTL set, and

visualized according to (D) position relative to CpG island and (E) gene region.

ll
OPEN ACCESS

6 iScience 27, 109047, February 16, 2024

iScience
Article



mQTL were more enriched than cross-sex mQTL for h2SNP of growth-related traits (1.66, SE = 0.167 for male-specific mQTL, 1.78, SE = 0.137

for female-specific mQTL, and 1.20, SE = 0.08 for cross-sex mQTL).

We also examined sex-stratified h2SNP estimates and the proportion of sex-stratified h2SNP explained by ourmQTL sets. Since the sex-strat-

ified GWAS sample sizes were smaller, fewer traits passed our quality control checks (STAR Methods): four neuropsychiatric traits (two with

both sexes), one immune-related trait (with both sexes), and three growth-related traits (two with both sexes) (Figure S2A). Male- and female-

specific mQTL were enriched for the sex-stratified h2SNP of pubertal growth start at an FDR <0.05 (Figure S2B, for meta-analyzed enrichment

estimates see Figure S2C).

Overall, these results show that placental mQTL show larger enrichments for h2SNP of immune- and growth-related traits, with notably high

enrichment in anthropometric traits such as birth weight.Moreover,male- and female-specificmQTL showed a larger enrichment for immune-

and growth-related traits than either cross-sex, male- or female-stratified mQTL, which highlights the importance of considering sex-depen-

dent mQTL in measuring the enrichment of h2SNP for these traits.

Placental methylation quantitative trait loci colocalize primarily with growth and immune-related traits, with additional

CpG sites colocalizing with male- and female-specific placental methylation quantitative trait loci

We subsequently applied colocalization analyses using coloc (STAR Methods)57 to assess whether any of the mQTL we identified were also

likely to be associated with the GWAS loci of 18 childhood traits and maternal pre-eclampsia. We conducted this analysis for cross-sex and

male- and female-stratifiedmQTL p values, for GWAS loci within a 150kbwindow centered on each CpG site. As in theGARFIELD analysis, we

did not compute colocalization with male- and female-specific mQTL, since coloc uses only a single p value for each SNP and therefore could

not handle both the main and interaction term p values that define the male- and female-specific analyses. Moreover, none of the GWAS we

included report SNP*sex interaction term p values for use in coloc.

We found a considerable numberof colocalizedCpGsites in several of the childhood traitswithmoderateenrichment in S-LDSC, such as child

onsetasthma, type1diabetes, andbirthweight (Figure6A;TableS7).Wealsoobservedahighnumberof colocalizedsites for schizophrenia (SCZ),

which notably has a large numberofGWAS loci.58 Loci fromeachof these four traits showedcolocalizationwithmale- and female-stratifiedmQTL

that was not detected with cross-sexmQTL, andwe label thesemale- and female-specific colocalizedmQTL (see Figures 6C–6H for examples of

these distinctions). The top GWAS locus per each region assessed did not necessarily correspond to the top mQTL in this region, despite high

confidence that the region contained an SNP responsible for both changes in DNAm and trait risk (STAR Methods).

In Figure 6B, we show the correlation between Z-scores for the SNP effect on DNAm and the SNP effect on the trait, for all colocalized

mQTL/trait pairs and for each mQTL set. Larger correlations were observed for female-specific colocalized mQTL across traits, which could

reflect sex biases in the heritability of the underlying GWAS traits, or the larger placental mQTL effect estimates we identified in females vs.

males. Overall though, we observe little correlation between the Z-scores, suggesting that both increases and decreases in genetically medi-

ated DNAm associate with complex trait risk.

Focusing on child-onset asthma, we assessed the biological relevance of the genes containing CpG sites that colocalized with cross-sex vs.

male-specific vs. female-specific mQTL. Males have a higher prevalence of asthma up to age 13, and females have a higher prevalence of

asthma in adulthood, often with greater severity of symptoms.59 Genetic variants in the human leukocyte antigen (HLA) region are frequently

Figure 4. Enrichment of placental mQTL across tissues

(A) Overlap in CpG sites with at least one mQTL across prenatal tissues: umbilical cord blood from the ARIES study and whole fetal brain tissue from the HDBR

study. Enrichment of placental mQTL in DNAse1 hypersensitivity sites in (B) fetal tissues from the NIH Roadmap Epigenomics Consortium and (C) adult tissues

from the ENCODE Project Consortium and theNIH Roadmap Epigenomics Consortium. Estimates are averaged over samples from the same tissue and stem cell

lines.
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associated with both child- and adult-onset asthma, although in recent GWAS only 16 of 123 child-onset asthma loci (13%), and 10 of 56 adult-

onset asthma loci (18%), were within the HLA region on chromosome 6.60,61 We focus on genetic variants outside of chromosome 6 and the

HLA region to avoid challenges in interpretation due to long-range LD.

A total of 192 CpG sites with placental mQTL colocalized with child onset asthma loci, of which 128 were cross-sex, 19 were male-specific,

and 45 were female-specific. Of the 128 colocalizing cross-sex mQTL, 83 (65%) were associated with DNAm on CpG sites outside of chromo-

some 6.Wemapped these to genes and then usedEnrichr62–64 to identify pathways enriched for these genes at an adjusted p value<0.05, at a

minimum overlap of three genes across the three main genome ontology annotations. We found an enrichment for the regulation of type I

interferon gamma production, a physiological response that contributes to inflammation and to asthma (adjusted p < 2.7e-4, GO:0032479,

overlapping TRAF3, IRF1, STAT6, POLR3H, andNFKB1).65 In comparison, of the 19 colocalizedmale-specific CpG sites, 11 (58%) were outside

of chromosome 6, and of 45 colocalized female-specific CpG sites, 4 (9%) were outside of chromosome 6. The number of genes for which

these CpG sites were annotated was too small for meaningful pathway enrichment analysis.

DISCUSSION

In this study, we conducted a meta-analysis of mQTL across two term placental studies (NICHD and RICHS) and a comprehensive sex-depen-

dent mQTL analysis. We demonstrated that sex-dependent mQTL are located at partially distinct CpG sites from cross-sexmQTL. In contrast

to blood mQTL, which are associated with mainly lowly or highly methylated CpG sites,9 placental mQTL tended to be associated with inter-

mediately methylated CpG sites.47 Likewise, compared to previously reported mQTL in blood, placental mQTL were more enriched at the

Figure 5. Placental mQTL enrichment in 19 complex traits

(A) SNP heritability (h2SNP) for each trait estimated by LD score regression.

(B) Enrichment of placental mQTL sets for h2SNP of each trait, accounting for 97 standard baseline regulatory effects. Enrichments with a within-trait FDR <0.05 are

marked with #, whereas enrichments significant at an FDR <0.05, accounting for each mQTL annotation and GWAS assessed, are marked with an asterisk.

(C) Meta-analyzed enrichment estimates across traits in neuropsychiatric, immune-, and growth-related GWAS categories.

Error bars are the standard error of each estimate.
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TSS of genes and were more depleted in repressed regions, but otherwise showed similar enrichment to blood mQTL in chromatin states,

intergenic regions, and regions with known histone modifications.9,66

Additionally, we showed that cross-sex mQTL were enriched for h2SNP of immune- and growth-related traits and that male- and female-

specific mQTL weremore enriched than cross-sexmQTL across traits in these GWAS categories. Perhapsmost importantly, we found several

CpG sites with only male- or female-specific colocalization with GWAS loci. Thus, sex-specific mQTL appear to capture some underlying

aspect of heritable trait risk that is not being captured by cross-sex placental mQTL alone.

Figure 6. Colocalization of placental mQTL with GWAS loci of complex traits

(A) The number of CpG sites with an mQTL that colocalized with at least one GWAS locus at a posterior probability (H4) > 0.9.

(B) The correlation between Z-scores for colocalized cross-sex, male- and female-specific mQTL and GWAS SNPs, with Spearman’s r displayed for r > 0.01 and

r < �0.01 and p values denoted as follows: *: p % 0.05; **: p % 0.01; ***: p % 0.001.

(C–H) LocusZoomplots for different colocalization scenarios that occurredwhen testing for the colocalization ofmale- or female-stratified vs. cross-sexmQTL and

loci from a GWAS of child onset asthma. We show colocalization in: (C) cross-sex mQTL only (cg16796354, within IDLR1); (D) cross-sex and male-stratified mQTL

(cg24032190, within SMAD3); (E) male-stratified mQTL only (cg16689962, within AGPAT1); (F) cross-sex and female-stratified mQTL (cg19063856, within

RAPGEFL1); (G) cross-sex, male- and female-stratified mQTL (cg02698622, within D2HGDH); (H) female-stratified mQTL only (cg01717973, within OAZ3).
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Motivated by the enrichment of placental mQTL for the h2SNP of immune-related traits, we homed in on asthma and mapped the colo-

calized asthmaGWASandmQTL to genes andpathways. Epidemiological studies have associated abnormal placentalmorphology, low birth

length, and low birth weight to asthma risk.67 Our study suggests that genetic risk for child onset asthma ismeaningfully enriched for cross-sex

and male- and female-specific mQTL, and we provide these associations as a resource for potentially understanding the biological conse-

quences of child onset asthma loci.

Past eQTL13,16,17 and integrative molQTL analyses in the placenta,15,68 have identified genetically regulated placental gene expression

that associates with several traits, including child BMI, birth weight,17,68 asthma, and type 2 diabetes.15 All of these traits have evidence of

genetic sexual dimorphism, either having a male-female rg lower than 1, or a difference in male vs. female effect size at risk loci.59,69,70

Likewise, the prevalence and manifestation of these traits differ between males and females throughout the life course.59,71,72 The placenta

is a sexually dimorphic tissue. We and others have found as many as 2,745 CpG sites (annotated to 582 genes) associated with placental

sex, which annotated to genes that are primarily related to immune function and growth factor signaling.20,21 Given these molecular sex

differences and their potential role in mediating complex traits, sex-dependent effects should remain a focus of future studies of the

placenta.

Overall, this study demonstrates that the genetic regulation of placental DNAm is partially sex-dependent. Sex-dependent placental

mQTL can occur in distinct functional genomic regions from cross-sex placentalmQTL, suggesting they have a unique role in gene regulation.

Placental mQTL explain a significant proportion of the h2SNP across conditions related to immune function and growth, and both male- and

female-specific mQTL are more enriched than cross-sex mQTL across these conditions, despite being far fewer in number. Trends we

observed in the enrichment of placental mQTL translated to higher instances of colocalization betweenmQTL andGWAS loci from childhood

onset traits and conditions, and using male- and female-specific colocalization allowed us to detect 216 CpG sites (annotated to 98 genes)

that otherwise did not show sufficient evidence of colocalization with cross-sex mQTL. Taken together, our findings demonstrate that the

careful consideration of sex in mQTL analyses has the potential to provide additional information about the basis of complex traits, partic-

ularly when the tissue, molecular features, and traits queried are sexually dimorphic.

Limitations of the study

There are several limitations to this study. First, our understanding of the tissue-specificity of placental mQTL effects is limited, as efforts are

still underway to characterize mQTL across tissues.73 However, based on existing datasets, we showed that cross-sex placental mQTL are

quite similar tomQTL in other prenatal tissues (p1 = 0.76 in umbilical cord blood andp1 = 0.84 fetal brain, see Results). By thismetric, placental

mQTL are more similar to prenatal tissue mQTL than placental eQTL are to eQTL in 44 adult tissues from GTEx (ranging from p1 = 0.32 in

cerebral hemisphere to p1 = 0.69 in fibroblasts; previously computed using NICHD placental eQTL, N = 80).13

Second, given that this analysis was conducted in bulk-tissue samples of placenta, we were not able to fully address the role of cell type in

our results beyond the use of principal components to account for interindividual differences in estimated cell type proportions (STAR

Methods, Figures S3A‒S3D). However, this only addresses the possibility that mQTL are due to systematic differences in cell-type proportion

between samples, and would not correct for mQTL being biased to individual cell types. This exact scenario was observed in one cell-type

specific eQTL analysis in immune cells, which found that 37% of genes with an eQTL were only detected in a single cell type.74 Thus, molQTL

derived from bulk tissuemay be biased to certain cell types highly present in a given study, and should not necessarily be considered as ubiq-

uitous throughout their respective tissue.

Third, sex-dependent mQTL are less numerous than cross-sex mQTL due to the increased power required to detect interaction effects.75

As a result, in all of our experiments comparing sex-dependent mQTL (and by extension, male- and female-specific mQTL) to cross-sex

mQTL, sex-dependent mQTL had larger standard errors, which hampered statistical inference and ultimately hampered our ability to discuss

small differences in heritability captured by different mQTL sets. In particular, this made it difficult to draw conclusions from the t* metric,

which can be more sensitive than the enrichment metric to small differences in mQTL annotations in single traits.24 We computed t* here

to make it easier for readers to detect large differences between S-LDSC enrichment of placenta mQTL vs. mQTL from other tissues. As

we accrue larger sample sizes in molecular studies of placenta and other tissues, we will be better equipped to identify robust differences

in the contribution of male- and female-specific mQTL to the h2SNP of complex traits. We were also limited in our ability to test male- and

female-specific mQTL for enrichment in sex-stratified GWAS corresponding to their respective sex. Although sex-stratified GWAS results

are increasingly being shared,76 these GWAS are underpowered. Only the GWAS of ADHD, ASD, SCZ, hayfever or eczema age of onset, pu-

bertal growth start, and total pubertal growth were sufficiently powered to meet our criteria for inclusion in the enrichment analyses in either

sex. For these traits, we found higher enrichments of male- and female-specific mQTL as compared to enrichments found for sex-pooled

GWAS, which emphasizes the need for large sex-stratified GWAS.

Fourth, althoughwe comparedmQTL across ancestries in NICHDbefore proceedingwith an ancestry-pooledmeta-analysis, andwe repli-

cated our mQTL results in an independent sample, residual population stratification might still have affected our results. Multiple strategies

exist to account for diverse genetic ancestry in molQTL mapping, and we used the same approach (sample-wide genotyping PCs) as used in

GTEx (15% of GTEx participants had significant non-European admixture).11 An alternative approach would have been controlling for local

ancestry using linear mixed-effect models, which in previously reported simulations provided a small but significant reduction in the false pos-

itive rate in instances where simulated eQTLwere ancestry-specific.77 Using this model to detect sex-specific effects would require newmeth-

odology, which was beyond the scope of our study. Another alternative approach would have been to first compute mQTL within each

ancestry group, and then compute all downstream analysis within each ancestry group separately.25 This ancestry-stratified approach might
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have resulted in more instances of colocalization, but given our sample size, stratifying along each ancestry would have greatly reduced our

power to detect sex-specific mQTL, which was our primary focus.

We also took care when integrating our ancestrally diverse placental mQTL with GWAS summary statistics, which were derived from sam-

ples of primarily European genetic ancestry. S-LDSC relies on, and has largely only been validated with, LD scores computed over 1000 Ge-

nomes European subjects.22,23 In practice, this means that for any functional annotation, even one generated in an ancestrally diverse sample,

we do not violate assumptions of S-LDSC as long as the LD scores for that annotation are computed with respect to a reference panel with an

ancestry that matches the ancestry of each GWAS considered.24 However, this does mean that our S-LDSC results do not take into account

disease risk present in non-European populations. Meanwhile, in the case of colocalization analysis, recent work with eQTL in GTEx suggests

that within populations with high non-European admixture, a handful of colocalizations are missed when not taking local, ancestry-specific

genetic variation into account.25 Although there is past evidence showing that mQTL are consistent across ancestry groups, and our work

in NICHD shows moderate overlap,78 this research bears repeating with larger datasets for investigating ancestry-specific genetic variation.

Lastly, our mQTL mapping strategy focused on single CpG sites. DNAm can be correlated across multiple neighboring CpG sites, as in

differentially methylated or co-methylated regions,79–83 and these correlated sites could be of interest in future mQTL studies.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Genotype data processing and quality control

B DNA methylation array processing and quality control

B Criteria for GWAS summary statistics

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Mapping ancestry-stratified mQTL in NICHD

B Mapping cross-sex, sex-dependent, male-stratified, and female-stratified mQTL

B Assessing overlap of placental mQTL with mQTL in other prenatal tissues

B Assessing enrichment of placental mQTL in regulatory regions across tissues using GARFIELD

B Linkage disequilibrium score regression analyses

B Colocalization of placental mQTL and GWAS loci

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.109047.

ACKNOWLEDGMENTS

This project was supportedby a British ColumbiaChildren’s Hospital Research InstituteCatalyst Grant. JKD is supported by aNARSADYoung

Investigator Grant from the Brain & Behavior Research Foundation, and is a Michael Smith Health Research BC Scholar.

phs001586: Rhode Island Child Health Study (RICHS): This work was supported by the National Institutes of Health [NIH-NIMH

R01MH094609, NIH-NIEHS R01ES022223, NIH-NIEHS PO1ES022832, NIH-NIEHS R24ES028507, NIH-NIEHS R21ES028226, and NIH-NIEHS

R01ES025145]. phs001717: This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute

of Child Health and Human Development, National Institutes of Health (Contract Numbers: HHSN275200800013C; HHSN27500006;

HHSN275200800003I; HHSN275200800014C; HHSN275200800012C; HHSN275200800028C; HHSN275201000009C). We also want to thank

the Genomics Shared Resource of Roswell Park Cancer Institute, supported by National Cancer Institute (NCI) grant P30CA016056.

This research was supported in part through computational resources and services provided by Advanced Research Computing at the

University of British Columbia (https://doi.org/10.14288/SOCKEYE).

AUTHOR CONTRIBUTIONS

Conceptualization, WC, JKD, and SM; methodology, WC, YPP, and JKD.; software, WC, AI, JD, and VY; validationWC, AI, JD, and VY; formal

analysis, WC; resources, JKD,WR, and SM; data curation,WC, CM, and FD; writing - original draft, WC; writing - review and editing, JKD,WR,

and AI; visualization, WC; supervision, JKD and SM.

ll
OPEN ACCESS

iScience 27, 109047, February 16, 2024 11

iScience
Article

https://doi.org/10.1016/j.isci.2024.109047
https://doi.org/10.14288/SOCKEYE


DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 9, 2022

Revised: June 19, 2023

Accepted: January 23, 2024

Published: January 26, 2024

REFERENCES
1. King, E.A., Davis, J.W., and Degner, J.F.

(2019). Are drug targets with genetic
support twice as likely to be approved?
Revised estimates of the impact of genetic
support for drug mechanisms on the
probability of drug approval. PLoS Genet.
15, e1008489. https://doi.org/10.1371/
journal.pgen.1008489.

2. Nelson, M.R., Tipney, H., Painter, J.L., Shen,
J., Nicoletti, P., Shen, Y., Floratos, A., Sham,
P.C., Li, M.J., Wang, J., et al. (2015). The
support of human genetic evidence for
approved drug indications. Nat. Genet. 47,
856–860. https://doi.org/10.1038/ng.3314.

3. Maurano, M.T., Humbert, R., Rynes, E.,
Thurman, R.E., Haugen, E., Wang, H.,
Reynolds, A.P., Sandstrom, R., Qu, H.,
Brody, J., et al. (2012). Systematic
Localization of Common Disease-
Associated Variation in Regulatory DNA.
Science 337, 1190–1195. https://doi.org/10.
1126/science.1222794.

4. Schork, A.J., Thompson, W.K., Pham, P.,
Torkamani, A., Roddey, J.C., Sullivan, P.F.,
Kelsoe, J.R., O’Donovan, M.C., Furberg, H.,
Tobacco and Genetics Consortium, et al..
(2013). All SNPs Are Not Created Equal:
Genome-Wide Association Studies Reveal a
Consistent Pattern of Enrichment among
Functionally Annotated SNPs. PLoS Genet.
9, e1003449. https://doi.org/10.1371/
journal.pgen.1003449.

5. GTEx Consortium (2020). The GTEx
Consortium atlas of genetic regulatory
effects across human tissues. Science 369,
1318–1330. https://doi.org/10.1126/
science.aaz1776.
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Lead contact

Further information and request for resources should be directed toandwill be fulfilled by the lead contact, Jessica K. Dennis (jessica.dennis@

bcchr.ca).

Materials availability

The study did not generate new unique reagents.

Data and code availability

� Placental mQTL summary data, along with annotations generated as part of statistical analyses, have been deposited to the Open Sci-

ence Framework. DOIs are listed in the key resources table. This paper analyzes existing, publicly available data, accession numbers for

the datasets are listed in the key resources table.
� All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We obtained placental genotype and DNAm data from two different studies, both of which sampled fetal side placental tissue from preg-

nancies lasting >=37 weeks. Discovery sample: The National Institute of Child Health and Human Development (NICHD) study13 included

303 subjects (151 male, 152 female) of diverse reported maternal race/ethnicity (Table S1), the vast majority of which (96%) had no reported

pre-eclampsia. Maternal subjects were selected to ensure a low-risk population, which at a minimum excluded subjects with cigarette con-

sumption within six months of delivery, consumption of at least one alcoholic drink per day, chronic hypertension, diabetes, HIV or AIDS, or a

history of gestational diabetes in past pregnancies. Additionally, subjects with suspected fetal congenital structural or chromosomal anom-

alies were excluded, and each pregnancy was screened via ultrasound at the first trimester to ensure accurate dating of gestational age. Birth

length was not publicly available for this study, and our discovery and replication samples could therefore not be compared to one another on

this measure. Placental samples were taken from a single 0.5 cm x 0.5 cm x 0.5 cm parenchymal biopsy and were frozen within one hour of
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Deposited data

mQTL associations and annotations https://doi.org/10.17605/OSF.IO/9R4WF https://osf.io/9r4wf/

Software and algorithms

GitHub (code supporting this work) https://doi.org/10.5281/zenodo.7262352 https://github.com/wilcas/sex_specific_mQTL

LDSC Bulik-Sulivan et al.,22,84

Finucane et al.,23 Gazal, S et al.85
https://github.com/bulik/ldsc

GARFIELD Iotchkova et al.86 https://www.ebi.ac.uk/birney-srv/GARFIELD/

CAVIAR Hormozdiari et al.87 http://genetics.cs.ucla.edu/caviar/

Enrichr Kuleshov et al.62 https://maayanlab.cloud/Enrichr/

coloc Giambartolomei et al.57 https://chr1swallace.github.io/coloc/

minfi Aryee et al.88 https://bioconductor.org/packages/

release/bioc/html/minfi.html

Other

Rhode Island Child Health Study (RICHS) phs001586.v1.p1; GSE75248 https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs001586.v1.p1 ;

https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE75248

Eunice Kennedy Shriver National Institute of Child

Health and Human Development (NICHD)
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delivery. All samples were genotyped using the Illumina HumanOmni2.5 Beadchip, and DNAm was measured using the Illumina

HumanMethylation450k array (dbGaP accession phs001717.v1.p1).

Replication sample: The Rhode Island Child Health Study (RICHS)16,18 included 149 subjects (74 male and 75 female) of primarily non-His-

panic White reported ethnicity. Eligible participants were those with no serious prenatal complications or congenital or chromosomal abnor-

malities, and large/small for gestational age samples (either > 90% or < 10% on the Fenton growth chart89) were matched to average for

gestational age samples based on sex, gestational age, and maternal age (Table S1).81 A total of 12 fetal side placental biopsies were taken

from each sample, three from each quadrant of the placenta, and frozen within two hours. Samples were homogenized before measurement

to ensure heterogeneous sampling across placental quadrants. Samples were genotyped on the Illumina ExpandedMulti-Ethnic Genotyping

Array (Mega-EX) (dbGaP accession phs001586.v1.p1). DNAm was measured on the IlluminaHumanMethylation450k array (GEO accession

GSE75248). DNAm and SNP genotype data were linked by a common ID file available upon request.

METHOD DETAILS

Genotype data processing and quality control

Genotyping data from NICHD and RICHS were processed separately, and were subject to the same processing and quality control (QC) pro-

tocol, which was based on the RICOPILI pipeline.90 Using plink 1.9,91 we removed SNPs that were strand ambiguous, had a call rate < 0.05, or

MAF < 0.01. We removed individuals with a mismatch between recorded and genotyped sex, SNP missingness > 0.02, and with excess het-

erozygosity (Fhet > 0.2). SNPs on the X chromosome were kept, using the default 0/2 encoding in plink for SNPs on the X chromosome in

males.

We used the GRAFpop algorithm30 on autosomal SNPs to assign individuals to one of 7 ancestry groups: EUR (European), AFR (African),

AFR_AM (African American), LAT_AM_1 (Latin American 1), LAT_AM_2 (Latin American 2), EAS (East Asian), PAC (Asian Pacific Islander), and

SAS (South Asian), which we used to help us decide the number of ancestry PCs to include in downstream analyses. Genetic ancestry assign-

ments agreed well with maternal self-reported race/ethnicity (Table S2), and samples were filtered to ensure identity by descent did not

exceed an |FST| > 0.2 between samples within each ancestry group.

To define ancestry PCs, we first pruned SNPs based on LD in a pairwisemanner using plink (running –indep-pairwise 200 100 0.2 twice), and

then removed SNPswith anMAF< 0.05, and SNPs in highly recombinant regions (the HLA region, chr6:28,477,797-33,448,354 inGRCh37, and

regions of long range LD).92 Ten ancestry PCs were computed from this set of SNPs using FastPCA.93 From these 10, we ultimately selected

the first five to include in all downstream analyses on the basis of their ability to separate distinct populations of subjects (defined by self-re-

ported race or GRAF-pop estimated ancestry) in each study (Figures S4A‒S4D). Individuals of the same GRAF-pop estimated ancestry clus-

tered together along the axes of PC1, PC2, PC3, and PC4. No further clustering by ancestry was observed along the axes of PC5 and above,

suggesting that the first five PCs would sufficiently account for population stratification in downstream analyses.

Before imputing SNP genotypes, we removed variants that were associated with genotype batch (Bonferroni corrected p < 0.05) and var-

iants with a Hardy-Weinberg equilibrium p < 1e-10. Variants were then aligned and imputed to the cosmopolitan 1000 genomes phase 3

reference panel29 using the Michigan imputation server.94 Variants were filtered to have an imputation quality R2 > 0.3 and an ancestry-spe-

cific MAF within 0.1 of their corresponding 1000 genomes phase 3 group. Last, any remaining imputed SNPs associated with genotype batch

were removed. The NICHD study had 275 samples with 14,110,641 SNPs remaining for analysis, whereas RICHS had 136 samples with

6,139,984 SNPs remaining for analysis. This between-study difference in the total number of imputed SNPs is likely due to differences in sam-

ple size, array, and ancestral diversity.95 However, stratification in these groups was not apparent in genotyping PCs greater than five

(Figures S4B and S4D), and we adjust for these five PCs in each mQTL set.

DNA methylation array processing and quality control

For NICHD and RICHS samples, we used publicly available DNAm data measured by the Illumina HumanMethylation450k array. The data

available fromNICHDwere already partially processed, having already undergone both background correction using internal control probes,

and quantile normalization in GenomeStudio (v2011.1) software available from Illumina.13 As such, internal control probes were unavailable in

NICHD for use in functional normalization, which can outperform other normalization approaches.96 Thus, to ensure comparability across

samples, we repeated background correction in both NICHD and RICHS using using the single sample normal-exponential via the out-of-

band (noob)method, which does not require internal control probes (preprocessNoob,minfi88,97,98), and re-computed quantile normalization

in each sample after applying the following quality control measures as implemented in minfi:88

First the pattern of methylation across all probes was checked to confirm that it followed a hemi-methylated pattern characteristic of the

placenta.48 Next, we removed individuals with sex mismatches, i.e., individuals with sex chromosome DNAm values that did not cluster with

samples in their reported sex (two samples total, neither of which were flagged as contaminated during genotyping QC). We then removed

probes with a detection p > 0.01, and probes that either failed or were missing in > 20% of samples. Next, we removed probes containing a

SNP (MAF> 0.01 across all 1000Genomes subjects) in their single base extension site (annotated by Illumina and identified by others),99 which

affects hybridization of these sequences to the array. We then removed Y chromosome probes, and non-specific cross-hybridizing probes.100

Lastly, we ensured that the data were normalized across remaining samples, using preprocessQuantile from the R packageminfi, which nor-

malizes values across samples for each probe while accounting for biases inherent to 450K array data.88,101 After implementing these QC

steps, the NICHD and RICHS studies had 447,232 and 446,976 probes remaining for analysis.
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Criteria for GWAS summary statistics

We define childhood onset traits and conditions as those which have amedian age of onset < 25,54 which is roughly considered to be the end

of brainmaturation and adolescence.55 Summary statistics were formatted for all LD score analyses using themunge_sumstats.py scriptmade

available by the LDSC developers. This includes the following quality control measures: only biallelic SNPs are kept, strand ambiguous SNPs

are excluded, duplicate SNPs are excluded, SNPs have an imputation INFO score > 0.9, a MAF > 0.01, 0 < p % 1, SNPs with a number of

samples < 90th quantile divided by 1.5 are excluded, and the median Z score of all SNPs are within 0.1 of its expected null value (0 for signed

statistics, 1 for an odds ratio). This largely matches what has been done in previous publications dealing with sex-stratified summary statistics,

with the exception of differences MAF threshold used across different studies.70,76

Genome-wide summary statistics for all traits were downloaded in April 2021 and are publicly available (Table S5). Sex-stratified GWAS

from the Psychiatric Genomics Consortium (PGC) were obtained from Martin et al., 2021.76 Summary statistics for preeclampsia were re-

quested separately via an InterPreGen access request. In S-LDSC analyses, we imposed a filter of a GWAS h2SNP z-score
22,23 > 1.644854, cor-

responding to a h2SNP estimate that was significant at a nominal p < 0.05.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mapping ancestry-stratified mQTL in NICHD

In order to investigate the degree to which mQTL computed in NICHD, which is an ancestrally diverse cohort (Tables S1 and S2) were reflec-

tive of a given ancestry, we elected to compute mQTL in the three GRAF-pop ancestry groups with the largest number of samples : AFR_AM

(N=82), EUR (N=72), and LAT_AM (N=76). We combined samples from the LAT_AM_1 (N=30) and LAT_AM_2 (N=46) groups into the

LAT_AM group to reach a similar sample size to EUR and AFR_AM samples. We used predicted ancestries here as only reported maternal

ethnicity was present, and discrepancies between predicted ancestry and self-reported maternal ethnicity could be due to paternal genetic

background. As in our main mQTL analyses, we used linear regression, as implemented in matrixEQTL,102 for associating imputed genotype

dosages to normalizedDNAmbeta values.101 In line with ourmainQTL analysis, each SNPwithin 75 kb upstreamor downstreamof each CpG

site was regressed onto DNAm, accounting for gestational age, sex, methylation array batch, 5 genetic ancestry PCs, and 9 DNAm PCs. We

chose to include genetic ancestry PCs in this analysis to account for any remaining relatedness between samples.103

Mapping cross-sex, sex-dependent, male-stratified, and female-stratified mQTL

We conducted four mQTL analyses to detect four different cis-mQTL effects: a cross-sex analysis, an interaction analysis (in which the effect of

SNP on DNAm differed by sex, as captured by a genotype by sex interaction term), an analysis of males only, and an analysis of females only

(Figure 1). Each analysis was conducted separately in NICHD and RICHS.

We used linear regression, as implemented in matrixEQTL,102 for associating imputed genotype dosages to quantile normalized DNAm

beta values.101 Each SNP within 75 kb upstream or downstream of each CpG site was regressed onto DNAm, accounting for gestational age,

sex,methylation array batch, 5 genetic ancestry PCs, and 9DNAmPCs. As interaction effects (i.e., sex-dependent effects) are harder to detect,

and require a mQTL effect, we elected to exclude trans-mQTL, or SNPs > 75kb from an associated CpG site, from this analysis.75,104,105 We

chose a 75 kb window as a compromise between the observation that as much as 47% of cis-mQTL can be detected within 2 kb of a CpG site,

and 1 Mb, which is the upper range of what is considered to be ‘‘cis’’ in QTL analysis.11,13,32,106–109 The number of DNAm PCs to include was

determined based on the number of mQTL declared on chromosome 21 at a Bonferroni corrected p < 0.05, varying the number of PCs

included while keeping other covariates fixed and selecting the number of PCs for which the number of mQTL declared did not improve

(Figures S4E and S4F).108,110,111

Since sex-dependentmolQTL detection can be biased by sex differences in cell type proportions,19 we ensured that the top 10DNAmPCs

were correlated with placental cell type proportions (Figures S3A and S3B). Placental cell type proportions were estimated using the data

available on cell-type specific methylation in placenta in the R package PlaNET,112 and the Houseman algorithm implemented inminfi.88 Ul-

timately, we elected to use DNAm PCs in place of estimated cell type proportion as covariates in mQTL mapping, as the PCs captured vari-

ation attributable to both known (i.e., cell type proportions) and unknown sources of confounding.We also checked if there was a difference in

estimated cell-type proportion between males and females in each study (Figures S4C and S4D). We observed a sex difference in average

estimated stromal cell proportion in the NICHD study, which is accounted for by DNAm PCs.

Additionally, we assessed whether DNAm correlated with any phenotypic or maternal characteristics recorded for NICHD (e.g., gesta-

tional age, fetal sex, birth weight, mode of delivery, mode of labor, andmaternal ethnicity; Figure S3A) and RICHS (e.g., gestational age, fetal

sex, birth weight, fenton growth curve group, maternal BMI, and maternal ethnicity; Figure S3B). DNAm PC1 in NICHD and DNAm PC2 in

RICHS showed high correlationwith fetal sex, which is unsurprising given our inclusion of the X chromosome. Additionally, DNAmPCs beyond

PC5 showed correlation with self-reported maternal ethnicity of Black and White, and comparatively lower correlation with remaining vari-

ables. We chose not to account for the effect of these covariates when computing PCs since accounting for additional covariates when

computing hidden covariates, such as DNAm PCs, does not consistently perform better than accounting for both PCs and fixed covariates

separately.111

Beforemeta-analyzing results from theNICHD and RICHS samples, we tested cross-sex and sex-dependentmQTL identified in NICHD for

replication in RICHS using thep1 statistic,
27 which is a better measure of comparability than the raw proportion of overlapping sites because it

accounts for between-study differences in the number of tested SNP-CpG pairs, which can artificially inflate or deflate estimates of overlap.
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For the p1 analysis, we relied on cross-sex and sex-dependent mQTL called in each study at an FDR < 0.05 because calling mQTL at a Bon-

ferroni corrected p < 0.05 resulted in unstable estimates ofp1. WithinmatrixEQTL,102 we identified cross-sexmQTLwith linearmodels testing

for association between genotype and DNAm. Sex-dependent mQTL were those with a statistically significant genotype by sex interaction

term. In theNICHD study, we found 275,806 CpGswith at least onemQTL and 60,537 CpGswith at least onemQTL that interacted with sex. In

RICHS, we found 129,361 CpGs with at least one mQTL and 19,530 CpGs with at least one mQTL that differed by sex. The p1 estimate for the

cross-sex mQTL was 0.74, which is the proportion of mQTL in the NICHD study that have similar effects in the RICHS study (computed over

2,691,024 SNP-CpGpairs available in both studies). Sex-dependentmQTL showedmodest replication (p1 = 0.28, computed over 80,363 SNP-

CpG pairs available in both studies).

We thenmeta-analyzed across theNICHD and RICHS samples for each of the four analyses usingMeCS software,31 which was designed to

account for the highly correlated nature of molecular cis-QTL effects between independent studies. Prior to calling significance and defining

mQTL sets, we ensured that the distribution of uniform (expected) -log10 p-values vs. computed (observed) -log10 p-values for each of the

mQTL analysis showed no systematic inflation at low p-values (Figures S1J‒S1M). As a point of reference, deviation from a uniform distribu-

tion is typically observed at -log10 p-values of 2 in cis-mQTL analysis in blood, and in past mQTL analysis in placenta.13,36

Within each analysis, we retained significantmQTL, ormQTLwith a significant genotype by sex interaction effect in the interaction analysis,

where significancewas declared at a Bonferroni corrected p< 0.05. From these four analyses, we defined six sets ofmQTL: (i) cross-sex; (ii) sex-

dependent; (iii) male-stratified; (iv) female-stratified; (v) male-specific; and (vi) female-specific. The (v) male- and (vi) female-specific mQTL

were those with significant stratified and interaction effects (i.e., the intersection of sex-dependent and male- or female-stratified mQTL).

The reported effect size for eachmale- and female–specificmQTLwas taken frommale- and female-stratifiedmQTL. In countingmQTL, asso-

ciated CpG sites, and the genes to which CpG sites were annotated, SNPs with a MAF < 0.05 were excluded in order to ensure mQTL were

less likely to be a result of outliers in DNAm.

Assessing overlap of placental mQTL with mQTL in other prenatal tissues

As a main focus of this study is outlining the developmental origins of complex traits, we compared placental mQTL to mQTL from other

tissues collected before and after birth using p1 statistics. This assesses the proportion of placental mQTL effects that are similar to mQTL

computed in other tissues.27,28 Here we detail how mQTL were computed in these other tissues in comparison to our own mQTL protocol.

We accessed summary statistics for umbilical cord blood mQTL from the accessible resource for integrative epigenomic studies (ARIES;

N=711; available via http://www.mqtldb.org/), originally from the Avon longitudinal study of parents and children,32 and fetal brain mQTL

summary statistics from the human developmental biology resource113 (HDBR; N=173; available via https://epigenetics.essex.ac.uk/

mQTL/). The ARIES study consisted of 51% male samples, and in mQTL mapping authors accounted for sex, 10 ancestry PCs, batch, and

cell-type proportion estimates for white blood cell counts. mQTL in the ARIES study were called at a p < 1 * 10-14 for all pairwise associations

between 8,074,398 imputed SNPs at anMAF > 0.05 and 395,625 CpG sites passing their QC (i.e., cis- and trans-mQTL effects were identified).

This threshold is more stringent than our Bonferroni corrected alpha < 0.05 computed for associations in cis, which corresponds to a threshold

of p < 3.77 * 10-10. Meanwhile, the HDBR study in homogenized fetal brain tissue consisted of 54% male samples ranging from 8-24.1 weeks

post conception. When mapping mQTL, they accounted for sex, age, and 2 genotyping PCs. Additionally, they had a more stringent methyl-

ation QC and included only directly genotyped SNPs at MAF > 0.05, resulting in 430,304 SNPs and 314,554 CpG sites tested for all pairwise

associations (i.e., cis- and trans-mQTL effects). mQTL were called at a Bonferroni-corrected threshold of p < 3.69 * 10-13. Notably, the HDBR

study excluded the sex chromosomes from their mQTL analysis.

Assessing enrichment of placental mQTL in regulatory regions across tissues using GARFIELD

We used GARFIELD38 to quantify the enrichment of mQTL in different genomic regions across tissues, accounting for linkage disequilibrium

(LD) and redundant annotations (i.e., annotations with similar enrichment to one another across mQTL). We used the genomic regions from

the ENCODE andNIH Roadmap Epigenomics projects, which were provided as defaults by the software developers, and which excluded the

HLA region.39–42 As our mQTL are derived from subjects of diverse ancestry, we computed LD tag SNPs using all 1000 Genomes subjects,

which include representatives of all ancestries predicted for both NICHD and RICHS subjects.29,38,86 GARFIELD was run for cross-sex, sex-

dependent, male-stratified, and female-stratified mQTL sets by mapping each mQTL to its minimum p value regardless of the probe with

which it was associated. Asmale- and female-specificmQTLwere defined on two sets of p values, we elected to exclude them for this analysis.

We then ranGARFIELD considering onlymQTL that were significant at a threshold of 1 * 10-9 (accounting for the roughly 100million SNP-CpG

pairs tested in cross-sex, sex-dependent, male-stratified, or female-stratifiedmQTL analysis). To simplify our results, rather than reporting the

enrichment result from each regulatory mark measured for each individual cell line, we chose to report the mean odds ratio of a regulatory

mark across all cell lines taken from a single tissue.

Linkage disequilibrium score regression analyses

We estimated GWAS trait h2SNP using linkage disequilibrium score regression (LDSC) software22,23,84,85 (https://github.com/bulik/ldsc). We

then partitioned h2SNP by placental mQTL sets using stratified LDSC (S-LDSC). S-LDSC is most powerful when the annotation (in this case,

mQTL sets) cover at least 1% of the genome. Calling mQTL at Bonferroni-corrected p < 0.05 resulted in too few mQTL to meet this criterion,

so we expanded our mQTL set using a previously developedmethod.24 Briefly, for each CpG site with at least onemQTL at an FDR < 0.05, we

fine-mappedmeta-analyzed mQTL associations with a nominal p < 0.05 using CAVIAR.87 The output fromCAVIAR is a set of SNPs with a 95%
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likelihood of containing the SNP causal to changes in DNAm (i.e., 95% credible set). As fine-mapping for interaction effects is difficult to inter-

pret, we did not consider sex-dependent mQTL as its own category for this analysis. Instead, for CpG sites with at least one male-stratified or

male-specific mQTL, as well as female-stratified or female-specific mQTL, we ran fine-mapping with male- and female-stratified mQTL p

values respectively. We chose not to use the maximum causal posterior probability (max CPP) measure for each SNP as the weighted sum

of our male- and female-specific annotations was small, less than 50,000 compared to the over 1 million per annotation that we achieved

when using the 95% credible set (i.e., assigning 95% credible set SNPs a weight of 1, Figures S3E and S3F). As the mQTL used in this anno-

tation are ultimately called at a less stringent criteria (FDR < 0.05, followed by fine-mapping) than the significant mQTL called at a Bonferroni-

corrected p < 0.05, we elected not to analyze these mQTL beyond their use in S-LDSC. Nonetheless, all annotations are publicly available for

download (key resources table).

Once we had defined the mQTL sets for use in S-LDSC, the stratified LD scores for our annotations (i.e., mQTL sets) were built using all

subjects available in the 1000 Genomes Phase 3 EUR population, the publicly available baseline v2.2 LD scores (consisting of 97 annotations)

provided by the software developers, and excluding SNPs within theMHC region of the human genome.22,23 The EUR population was chosen

as opposed to a transancestral population as all GWAS available for our traits of interest were conducted in European populations (see Avail-

ability and criteria for GWAS summary statistics, below), and a core assumption of LDSC is that LD patterns are similar across the GWAS pop-

ulation and population in which scores are computed.22–24,85

We report enrichment as the proportion of h2SNP explained by the SNPs in each mQTL set, divided by the proportion of SNPs included in

the mQTL set. We also quantify enrichment using t* (Table S5), which is defined previously as:85

t� =
ts:d:ðcÞ
h2
SNP

.
M

Where h2SNP is the SNP heritability of the trait, s.d.(c) is the standard deviation of the annotation, t is the coefficient of that annotation, and

M is the number of variants used to compute h2SNP. Thus, tau can be interpreted as the standardized average contribution of SNPs in an anno-

tation to the total h2SNP of a trait. An advantage of t* over enrichment is that it quantifies effects that are specific to that annotation, i.e., after

taking into account the overlap between the annotation of interest, and other annotations in the model. An elevated tau value suggests that

enrichment is not explained by overlap with other annotations in the model. Negative t* values indicate that the annotation on its own re-

duces h2SNP, on average.

S-LDSCwas run separately for cross-sex, male- and female-specific, and male- and female-stratifiedmQTL, accounting for the 97 baseline

annotations. Following S-LDSC analysis in single traits, we meta-analyzed enrichment and t* estimates across trait groups using the rmeta

package.114 Estimates from trait categories with sex-stratified GWAS summary statistics available were analyzed with mQTL annotations

matching the sex of their component GWAS (GWAS labeled _female or _male in Table S4). t* and its standard error from meta-analysis

were used to generate a normally distributed Z score for computing meta-analyzed p values. No such procedure is currently defined for

computing significance from meta-analyzed S-LDSC enrichment values, so significance is not computed.

Colocalization of placental mQTL and GWAS loci

We performed a colocalization analysis to characterize the extent to which the proportion of h2SNP attributed to placental mQTL corre-

sponded to shared genetic variants between mQTL and GWAS loci. We focused on all sets of SNPs within 75kb of CpG sites with a

mQTL associated at a p < 5e-8, that were also associated with a GWAS trait at p < 5e-8, and we computed colocalization using the coloc

R package.57 Notably, unlike our protocol in S-LDSC, we included the HLA region in colocalization analysis given that this analysis is not

dependent on genome-wide patterns of LD, and the HLA region is of particular interest to the immune-related traits analyzed. All genes

considered to be within the HLA region were selected from chr6:28,477,797-33,448,354 in genome build hg19, and were gathered from their

corresponding table on the UCSC genome browser at http://genome.ucsc.edu.115 Colocalization was computed with cross-sex GWAS sum-

mary statistics. We defined colocalization having an overall P(H4) > 0.9 per CpG site, which corresponds to the likelihood of both the level of

DNAm and the trait sharing a single causal genetic variant in that region. Coloc assumes a single causal variant per colocalized site. A recent

modification to coloc, called Sum of Single Effects (SuSiE), allows for multiple causal variants.116 Since we were primarily interested in whether

there was anymatch in GWAS-associated SNPs and mQTL across many candidate loci, we opted to only use coloc. While this approach may

have missed some colocalized SNPs, it does not result in any additional false positives.116 However, if a particular variant in cis to a given CpG

site is of interest, we suggest applying SuSiE to our set of mQTL in order to capture all possible colocalized SNPs.

In plotting these results (Figure 6A), we wanted to highlight the colocalizations that were found only through sex-stratified analyses. There-

fore, all colocalizations identified in the cross-sex analysis were labeled as such, even if they were also identified in themale- and female-strat-

ified analyses. A small number of colocalizations (N=30 CpG sites) were identified in both male- and female-stratified analyses (annotated to

N=4 genes unique to this set), but not in cross-sex analyses. We label these ‘‘Male- and Female-specific’’ colocalizations. Finally, we plot co-

localizations that were found in the male- and female-stratified analyses only, which we refer to as male-specific and female-specific coloc-

alizations respectively.

ll
OPEN ACCESS

20 iScience 27, 109047, February 16, 2024

iScience
Article

http://genome.ucsc.edu

	ISCI109047_proof_v27i2.pdf
	Sex-dependent placental methylation quantitative trait loci provide insight into the prenatal origins of childhood onset tr ...
	Introduction
	Results
	Placental methylation quantitative trait loci replicate across studies despite differences in genetic ancestry
	Sex-dependent placental methylation quantitative trait loci are distinct from cross-sex placental methylation quantitative  ...
	Placental methylation quantitative trait loci are enriched in regions controlling gene expression and primarily occur at Cp ...
	Sex-dependent and cross-sex methylation quantitative trait loci show similar patterns of tissue specificity
	Male- and female-specific placental methylation quantitative trait loci are more enriched for the heritability of immune-re ...
	Placental methylation quantitative trait loci colocalize primarily with growth and immune-related traits, with additional C ...

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Method details
	Genotype data processing and quality control
	DNA methylation array processing and quality control
	Criteria for GWAS summary statistics

	Quantification and statistical analysis
	Mapping ancestry-stratified mQTL in NICHD
	Mapping cross-sex, sex-dependent, male-stratified, and female-stratified mQTL
	Assessing overlap of placental mQTL with mQTL in other prenatal tissues
	Assessing enrichment of placental mQTL in regulatory regions across tissues using GARFIELD
	Linkage disequilibrium score regression analyses
	Colocalization of placental mQTL and GWAS loci





