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Abstract

Female runners have a two-fold risk of sustaining certain running-related injuries as compared to their male counterparts.
Thus, a comprehensive understanding of the sex-related differences in running kinematics is necessary. However, previous
studies have either used discrete time point variables and inferential statistics and/or relatively small subject numbers.
Therefore, the first purpose of this study was to use a principal component analysis (PCA) method along with a support
vector machine (SVM) classifier to examine the differences in running gait kinematics between female and male runners
across a large sample of the running population as well as between two age-specific sub-groups. Bilateral 3-dimensional
lower extremity gait kinematic data were collected during treadmill running. Data were analysed on the complete sample
(n = 483: female 263, male 220), a younger subject group (n = 56), and an older subject group (n = 51). The PC scores were
first sorted by the percentage of variance explained and we also employed a novel approach wherein PCs were sorted
based on between-gender statistical effect sizes. An SVM was used to determine if the sex and age conditions were
separable and classifiable based on the PCA. Forty PCs explained 84.74% of the variance in the data and an SVM
classification accuracy of 86.34% was found between female and male runners. Classification accuracies between genders
for younger subjects were higher than a subgroup of older runners. The observed interactions between age and gender
suggest these factors must be considered together when trying to create homogenous sub-groups for research purposes.

Citation: Phinyomark A, Hettinga BA, Osis ST, Ferber R (2014) Gender and Age-Related Differences in Bilateral Lower Extremity Mechanics during Treadmill
Running. PLoS ONE 9(8): e105246. doi:10.1371/journal.pone.0105246

Editor: Amir A. Zadpoor, Delft University of Technology (TUDelft), Netherlands

Received March 12, 2014; Accepted July 23, 2014; Published August 19, 2014

Copyright: � 2014 Phinyomark et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All PCA data are available from the Running
Injury Clinic and University of Calgary Institutional Data Access / Ethics Committee (CHREB) by contacting the corresponding author and Dr. Stacey A. Page, chair
of CHREB at omb@ucalgary.ca.

Funding: This work was supported in part by research grants from the Alberta Innovates: Health Solutions (funded by the Alberta Heritage Foundation for
Medical Research endowment fund), a charitable donation from SOLE, Inc., and the University of Calgary Eyes High Postdoctoral Research Award program. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: There is no commercial relationship which may lead to a conflict of interest or that could inappropriately influence (bias) this work. There
is no financial affiliation (including research funding) or involvement with any commercial organization that has a direct financial interest in any matter included in
this manuscript. While the authors’ lab does receive funding from a commercial source (SOLE, Inc.), this relationship does not alter or influence the authors’
adherence to PLOS ONE policies on sharing data and materials, and there are no competing interests. Specifically, the donation from SOLE, Inc. is for the
opportunity to conduct research on foot-orthotic devices and has nothing to do with the current work.

* Email: rferber@ucalgary.ca

Introduction

Female runners have a two-fold risk of sustaining certain

running-related injuries such as patellofemoral pain syndrome,

iliotibial band syndrome, and tibial stress fractures as compared to

their male counterparts [1]. Furthermore, it has been reported that

female runners exhibit different running kinematic waveform

patterns and greater discrete joint angles, which have been

postulated to contribute towards greater injury risk [2–8].

Traditionally, male and female running patterns have been

analysed using discrete time point variables, such as peak angles

and angles at touchdown and toe-off, together with inferential

statistics, such as the t-test and analysis of variance (ANOVA) [2–

4]. More recently, pattern recognition methods have been applied

in this area, and have achieved good classification performance

[5,6], particularly in combination with a principal component

analysis (PCA) approach and a support vector machine (SVM)

classifier [7–9]. Nigg et al. [7], for example, reported a

classification rate of 86.6% between male and female runners

using the first 20 principal components (PCs) and an SVM with a

linear kernel. However, these previous studies have limitations in

terms of the relatively narrow range of age groups sampled (e.g.

24.562.5 years for males and 24.661.0 years for females [3]),

small sample sizes used for classification (e.g. 10 [10], 20 [3], [8],

34 [4], and 40 [2] subjects in total), and many have only measured

single-limb lower extremity gait mechanics. Therefore, a compre-

hensive understanding of the differences in running kinematics

between male and female runners may help explain differences in

injury patterns between the two populations. To the best of our

knowledge, an investigation of bilateral gait measures from a large

sample (i.e. several hundred runners) of recreational and

competitive runners from both sexes and across a wide distribution

of ages has never been completed.

Age-related changes in running kinematic patterns have also

been widely reported between younger and older runners [11–13].

Specifically, Bus [11] and Fukuchi and Duarte [12] reported

significant differences in knee flexion/extension range of motion

angle and angle at touchdown between younger and older male
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runners while no significant differences in peak knee internal

rotation and peak rearfoot eversion between the groups were

found. On the other hand, Lilley et al. [13] reported significantly

increased peak knee internal rotation and peak ankle eversion for

an older female group compared to a younger group. One reason

for the discrepancy between the results of Bus [11] and Fukuchi

and Duarte [12] and that of Lilley et al. [13] may be due to the

fact that the gender-specific differences in younger and older

runners were not investigated. Thus, a better understanding of

whether interactions exist between gender and age, that may affect

running kinematics in population sub-groups, is warranted.

Therefore, the first purpose of this study was to examine the

differences in running gait kinematics between female and male

runners across a large sample of the running population. The

second purpose of this study was to examine gender-based

differences in kinematics for younger and older age-specific

subgroups. Based on results from previous studies, it was

hypothesized that: 1) gender-specific kinematic patterns for the

whole sample are classifiable with at least 80% accuracy using a

PCA approach with an SVM classifier; and 2) different, yet

similarly classifiable gender-specific patterns exist for age-specific

subgroups.

Materials and Methods

Subjects
Four hundred eighty-three recreational and competitive runners

participated in this study (Table 1). All were patients who

participated in either clinical or research activities at the Running

Injury Clinic and all gave informed consent. There were no

exclusion criteria based on pain or injury and some participants

were pain-free at the time of testing (n = 120) while others were

experiencing a lower extremity running-related injury (n = 363) at

the time of testing. However, these injured participants did not

experience any pain during treadmill running or the testing

procedure and the variables of interest were normally distributed

and met the criterion for normal and symmetrical skewness and

kurtosis regardless of injury-status. The University of Calgary’s

Conjoint Health Research Ethics Board (CHREB) approved the

collection of the data (Ethics IDs: E–21705, E–22194, E–24339).

CHREB approved the consent procedure and written informed

consent document. Prior to collecting the data, all participants

provide their written informed consent to participate. The storage

of the data in the research database and the subsequent approval

to analyze the data within the database was also approved by

CHREB (Ethics ID E–24519) and all data were identified by a

number only and only data related to date of birth, gender, injury

status, and athletic history were stored along with all biomechan-

ical data. No personal data, nor any information that could lead to

identifying the participant were stored. After the each participant

provided their written informed consent, a copy of the informed

consent was provided to each participant and also stored in a

locked file cabinet.

Data collection
Eight high-speed digital video cameras (MX3/Nexus, Vicon,

Oxford, UK) were used to film treadmill-running at either 120 Hz

or 200 Hz. To perform a 3-dimensional (3D) kinematic analysis of

running gait, an anatomical model of each subject was constructed

based on anatomical marker data collected during a static trial.

Spherical retro-reflective markers (9 mm diameter, Mocap Solu-

tions, Huntington Beach, USA) were placed over anatomical

landmarks located by palpation and in the same manner described

by Pohl et al. [14]. Anatomical markers were placed on the

following landmarks: 1st and 5th metatarsal heads; medial and

lateral malleoli; medial and lateral femoral condyles; greater

trochanter (bilateral); anterior superior iliac spine (ASIS) (bilateral);

iliac crest (bilateral). For tracking motion trials, technical marker

clusters were placed on the pelvis, and bilateral thigh and shank. A

rigid shell with three markers was placed over the sacrum with the

two superior markers at the level of the posterior superior iliac

spines (PSIS), and rigid shells with four markers were attached to

shank and thigh. Technical markers for the foot were placed on

the posterior aspect of the shoe: two markers were vertically

aligned on the posterior heel counter with a third marker placed

laterally. Each participant wore the same shoes (Pegasus, Nike,

Beaverton, USA) in order to standardize the footwear condition.

Following placement of all the anatomical and segment

markers, the subject was asked to stand on a motorized treadmill

instrumented with strain gauges (Bertec Corporation, Columbus,

OH, USA) for a static trial. Standing position was controlled using

a graphic template placed on the treadmill with their feet

positioned 0.3 m apart and pointing straight ahead. Once the

feet were placed in the standardized position, the subject was asked

to cross their arms over the chest and stand still while one-second

of marker location data were recorded. Upon completion of the

static trial, the markers on the anatomical landmarks were

removed. These markers were not required for a movement trial,

and were removed to allow the subject to move less encumbered.

The subjects were instructed to warm-up on the treadmill before

data were collected for 2–3 minutes and then they ran on the

treadmill at a comfortable self-selected pace, between 2.23–

3.35 m/s, for 20 seconds in which approximately 30–40 consec-

utive running strides were collected for processing and analysis.

Data processing
Kinematic joint angles were calculated using 3D GAIT custom

software (Gait Analysis Systems Inc., Calgary, Alberta, Canada)

and were analyzed for the stance phase of gait and normalized to

Table 1. Demographic characteristics of study population (mean and (SD)) for general group and two specific subgroups.

Gender Group Number of subjects Age (years) Height (cm) Mass (kg)

Male General subjects (18–72 years) 220 42.1 (11.2) 178.3 (6.9) 79.0 (10.4)

Young subjects (18–26 years) 16 23.1 (2.6) 181.0 (8.2) 74.1 (9.9)

Elderly subjects (55–72 years) 34 59.6 (3.7) 178.3 (6.8) 80.5 (10.8)

Female General subjects (18–72 years) 263 39.3 (11.9) 166.6 (8.3) 64.3 (10.3)

Young subjects (18–26 years) 40 22.0 (2.9) 166.7 (6.7) 61.2 (6.9)

Elderly subjects (55–72 years) 17 58.0 (2.1) 162.0 (5.6) 63.6 (8.9)

doi:10.1371/journal.pone.0105246.t001
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101 data points. Stance and swing phases were defined as initial

ground contact to toe-off with initial contact identified as the point

in time when the superior calcaneal marker moved from a positive

to a negative velocity in the vertical direction, and toe-off was

defined when the peak knee extension occurs [15]. For all three

planes of motion, and for each of the 6 lower extremity joints, 4

discrete variables of interest were selected based on previous

studies [2,4,12] consisting of angle at touchdown, peak maximum,

Figure 1. Classification rates and effect sizes for gender difference in general subject group. (a) Classification rates for gender difference
computed from a support vector machine classifier with a ten-fold cross validation method on PCs sorted by variance explained and effect size for
general subject group. (b) Effect sizes of all PCs computed from general subject group for gender difference.
doi:10.1371/journal.pone.0105246.g001
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peak minimum, and angle at toe-off which resulted in 72 discrete

variables of interest used in the PCA. Additionally, these four

discrete time points approximated the shape of the kinematic

waveform.

Data analysis
After data analysis for each subject was complete, the discrete

variables and demographic data were stored in a relational

database using custom MATLAB (The Mathworks, Natick, MA,

USA) and MySQL (Oracle, Redwood, CA, USA) code. At a later

time point, bulk data were then extracted from the database via

MATLAB/MySQL query, and further processing of the data for

the purpose of classification was performed in MATLAB on

selected variables of interest.

Data were analysed in three groups: a complete sample group

(n = 483), a younger subject group (n = 56) aged 18–26 years and

an older subject group (n = 51) aged 55–72 years. It should be

noted that age range of both groups was defined based on previous

literature which reported the significant differences in running

kinematics between younger and older groups, for instance,

younger-aged (20–35 years) runners and older-aged (55-65 years)

runners in the study of Bus [11]. Additionally, Nigg et al. [16] and

Lilley et al. [13] reported that changes in gait kinematics begin

around 40 years of age.

For each of the subgroups, an original feature vector was

created and used as an input for the PCA [17,18], using an

unsupervised learning method. The 72 discrete variables com-

prised the columns and the 483, 56, and 51 subjects comprised the

rows of the matrix for the general subject group, younger, and

older subject subgroups (X483672, X56672, X51672), respectively.

PCA uses an orthogonal transformation to convert a set of possibly

correlated variables into a set of linearly uncorrelated variables

and tries to account for as much of the variability in the original

data as possible in the first components. The first step in the PCA

was to standardize the original feature vector, then transform into

PCs using an eigenvector decomposition method on the input’s

covariance matrix. The eigenvectors (V72672, V72655, V72650) and

eigenvalues (L1672, L1655, L1650) were produced and used to

compute the PC scores (Z483672, Z56655, Z51650), by multiplying

the standardized feature matrix by the eigenvector matrix. The PC

scores were first sorted by the percentage of variance explained by

each. However, sample variance detected by PCA does not

necessarily reflect variation between genders, and therefore, may

not be indicative of the differences between male and female

runners. Consequently, PCs were also sorted based on between-

gender effect sizes, which were calculated using Hedges’s g [19].

Finally, an SVM supervised learning method was used to

determine if the sex and age conditions were separable and

classifiable based on the PCs [20]. The binary SVM classifier

constructed a set of the optimal hyperplanes in high-dimensional

space, which represents the largest margin, or distance between

the support vectors, or the nearest training data points of the two

classes. In the case that all training points cannot be separated by

the hyperplane, a soft margin method was used to construct a

hyperplane that separates the training data points [21]. A soft

margin parameter c was set at 1 based on the methods reported by

Fukuchi et al. [22]. A ten-fold cross validation method was applied

to obtain classification rates from the SVM classifier. All PC data

were randomly partitioned into 10 equally sized sub-datasets and a

single sub-dataset was retained as testing data while the remaining

9 sub-datasets were used as training data for the classification

model. The cross-validation process was then repeated 10 times,

and a single classification rate was computed by averaging from 10

results. Two-sample t-tests were used to test for statistically

significant differences (p,0.05). The resulting p-values were

adjusted using a Holm-Bonferroni method to maintain a family-

wise alpha of 0.05 for tests on all PCs and discrete variables.

Results

Gender difference in general population
The first 62 PCs explained 99.94% of the variance in the data

and the SVM classification accuracy of 83.64% was found

between male and female runners. When feature vectors were

Table 2. Comparisons of the discrete biomechanical variables (mean and (SD)) between male and female runners for general
group.

Joint Plane of motion Variable of interest Left lower limb Right lower limb

Male Female Male Female

Hip Frontal Maximum peak a,b 9.50 (4.30) 11.45 (4.03) 8.00 (3.62) 10.63 (3.74)

Minimum peak a 20.15 (3.49) 1.20 (3.79) 20.91 (3.70) 20.14 (3.89)

At toe-off a, b 3.06 (3.35) 5.97 (3.06) 4.05 (3.14) 6.72 (3.36)

Transverse At touchdown a, b 8.87 (12.03) 12.87 (6.90) 11.75 (6.57) 14.85 (6.43)

Maximum peak a, b 10.34 (11.99) 14.15 (6.86) 13.32 (6.31) 16.49 (6.26)

Knee Frontal At touchdown a, b 25.59 (3.72) 28.01 (3.41) 26.31 (3.53) 28.59 (3.49)

Maximum peak a, b 28.55 (5.18) 210.75 (4.35) 29.94 (4.79) 211.95 (4.50)

Minimum peak a, b 22.99 (4.67) 25.46 (3.89) 24.33 (4.05) 26.61 (3.78)

At toe-off a, b 25.31 (3.95) 27.70 (3.37) 26.11 (3.59) 28.67 (3.39)

Sagittal Minimum peak a 14.88 (5.43) 12.66 (5.45) 13.26 (4.78) 12.02 (5.02)

At toe-off a, b 17.28 (6.31) 14.25 (6.37) 15.60 (5.69) 13.49 (5.76)

Ankle Frontal Minimum peak a, b 27.30 (3.18) 25.54 (3.13) 27.13 (3.07) 25.64 (3.16)

Sagittal Minimum peak b 223.37 (2.72) 222.50 (2.73) 222.92 (2.81) 221.99 (2.93)

aSignificant gender difference for left lower limb (adjusted p-value ,0.01).
bSignificant gender difference for right lower limb (adjusted p-value ,0.01).
doi:10.1371/journal.pone.0105246.t002
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created based on PC scores sorted by effect size, as opposed to

percent variance explained, a classification accuracy of 86.34%

was found using 40 PCs, which explained 84.74% of the variance

in the data. The remaining PCs, which were not used in an

optimized feature vector, had effect sizes less than 0.09. Mean

classification accuracies for gender for all PCs are presented in

Fig. 1(a) and the effect size for each of the 72 PC scores is shown in

Fig. 1(b). Only PC 7 showed a large effect size (0.80) while PC 2

Figure 2. Classification rates and effect sizes for gender difference in younger and older subject subgroups. (a) Classification rates for
gender difference computed from a support vector machine classifier with a ten-fold cross validation method on PCs sorted by effect size for younger
and older subject subgroups. (b) Effect sizes of all PCs computed from younger and older subject subgroups for gender difference.
doi:10.1371/journal.pone.0105246.g002
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and 4 showed a medium effect size (0.56 and 0.49) for the

projection difference between the 220 male and 263 female

subjects. PC 7, 2, and 4 explained 26.40% of the variance in the

data.

Forty-seven of the 72 discrete biomechanical variables corre-

lated with PC 7 at a significance level of p,0.01, and 34 variables

were significant at p,0.0001. In addition, 52 (p,0.01) and 36 (p,

0.001) variables were significantly correlated with PC 2, and 55

(p,0.01) and 43 (p,0.001) variables were significantly correlated

with PC 4. Statistical analysis of original discrete variables

(Table 2) showed that, in the frontal plane, female runners

demonstrated greater maximum and minimum peak hip adduc-

tion and knee abduction, greater hip adduction at touchdown, and

greater hip adduction and knee abduction at toe-off compared to

males (p,0.01). Also in the transverse plane, female runners

exhibited greater external rotation of the femur at touchdown and

maximum peak (p,0.01). Conversely, in the frontal plane, female

runners exhibited reduced peak ankle eversion compared to males.

In the sagittal plane, female runners exhibited reduced minimum

peak knee flexion, peak ankle dorsiflexion, and knee flexion at toe-

off compared to males (p,0.01). Frontal plane hip angles were

moderately related to PC 7, 2, and 4 while frontal plane knee

angles for both legs were strongly related to PC 2. It is also

interesting to note that no correlations and/or significant

differences in sagittal plane knee and hip kinematic variables

were observed between male and female runners using a PCA

approach. All correlation coefficients between PC 7, 2, and 4 and

the significant discrete biomechanical variables are shown in

Table 3.

Age effects on the gender difference
Classification accuracies between genders in a subgroup of 56

younger subjects were significantly higher than a subgroup of 51

older subjects (p,0.01), as can be seen in Fig. 2(a). Specifically,

classification accuracies of 92.86% and 78.43% were found using

the first 8 and 20 PCs, which explained 78.52% and 95.66% of the

Table 4. Comparisons of the discrete biomechanical variables (mean and (SD)) between male and female runners for younger
group.

Joint Plane of motion Variable of interest Left lower limb Right lower limb

Male Female Male Female

Hip Frontal At toe-off a, b 0.69 (2.70) 5.25 (2.47) 2.80 (3.13) 6.46 (2.90)

Transverse At touchdown a 7.10 (7.56) 14.86 (5.95) 12.82 (7.41) 14.89 (6.59)

Maximum peak a 8.32 (7.98) 16.32 (6.17) 14.08 (7.35) 17.28 (6.36)

Minimum peak a 28.26 (6.05) 21.29 (5.94) 21.89 (5.90) 20.03 (7.81)

At toe-off a 27.94 (5.93) 21.27 (5.95) 21.51 (5.87) 20.02 (7.81)

Knee Sagittal At touchdown b 18.19 (2.99) 14.86 (4.97) 17.24 (3.46) 12.96 (5.13)

Maximum peak a 48.19 (5.61) 42.50 (6.20) 46.45 (5.05) 41.27 (6.27)

Minimum peak b 15.65 (4.09) 11.91 (5.22) 14.83 (4.03) 10.58 (4.48)

At toe-off b 17.81 (5.54) 13.21 (6.27) 17.11 (4.75) 12.06 (4.79)

Ankle Sagittal Minimum peak a, b 224.65 (2.55) 222.25 (2.42) 224.00 (1.98) 221.24 (2.82)

aSignificant gender difference for left lower limb (adjusted p-value ,0.05).
bSignificant gender difference for right lower limb (adjusted p-value ,0.05).
doi:10.1371/journal.pone.0105246.t004

Table 5. Correlation coefficients between three significant PCs: 8, 1, and 3, and the significant original discrete variables for
younger group.

Joint Plane of motion Variable of interest Left lower limb Right lower limb

PC 8 PC 1 PC 3 PC 8 PC 1 PC 3

Hip Frontal At toe-off 0.45 0.36 0.54 0.48 0.10 0.48

Transverse At touchdown 0.16 0.62 0.45 0.08 0.32 0.61

Maximum peak 0.16 0.62 0.44 0.08 0.21 0.63

Minimum peak 0.19 0.54 0.57 0.11 0.43 0.61

At toe-off 0.18 0.53 0.56 0.10 0.19 0.62

Knee Sagittal At touchdown 0.20 0.67 0.22 0.30 0.63 0.12

Maximum peak 0.23 0.68 0.04 0.25 0.69 0.10

Minimum peak 0.18 0.74 0.29 0.33 0.71 0.26

At toe-off 0.12 0.75 0.26 0.31 0.72 0.24

Ankle Sagittal Minimum peak 0.07 0.52 0.03 0.11 0.59 0.01

Italic number shows a moderate correlation (r$0.36) and bold number shows a strong correlation (r.0.67).
doi:10.1371/journal.pone.0105246.t005
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variance in the data for the younger and older subject subgroups,

respectively. When PC score vectors were created based on effect

size, males and females could be separated with 100% classifica-

tion accuracy using a linear SVM ten-fold cross-validation method

with the 15 and 34 PCs explaining 64.80% and 82.91% of the

variance in the data for the younger and older subject subgroups,

respectively. The classification rate decreased when PC scores with

effect sizes less than or equal to 0.07 were added into feature

vectors for both subgroups. PC 8 and 1 showed a large effect size

(1.22 and 0.89) and PC 3 and 6 showed a medium effect size (0.74

and 0.63) for the projection difference between male and female

younger subjects, while PC 4 and 6 showed a large effect size (0.90

and 0.83) and PC 7, 16, and 13 showed a medium effect size (0.63,

0.56, and 0.51) for the older subjects. The effect sizes for all the 55

PC scores for younger group and the 50 PC scores for older group

are shown in Fig. 2(b).

Tables 4–7 present a summary of the significant discrete

biomechanical variables between male and female runners, and

the correlation coefficients between the PCs and the discrete

biomechanical variables for younger and older subgroups,

respectively. Both younger and older female runners demonstrated

greater hip adduction at toe-off (p,0.05) and this angle was also

related to the PCs that provided the most separability. Younger

female runners demonstrated reduced peak ankle dorsiflexion,

reduced knee flexion and internal rotation of the femur, and

greater external rotation of the femur at all time points throughout

stance phase compared to younger male runners (p,0.05).

Transverse plane hip angles were moderately related to PC 1

and 3 while sagittal plane knee angles were strongly related to PC

1 for the younger subject subgroup. In addition, greater knee

abduction at all time points and a lower peak ankle eversion were

observed for older female runners compared to older males (p,

0.05).

Discussion

Classification accuracy
The primary purpose of this study was to examine the effects of

gender on running kinematics in a large sample of the running

population. Previous investigations that have utilised a PCA and

SVM approach have reported sex-specific classification accuracies

between 80%–95% [5,7,8]. In support of our hypotheses, and

consistent with previous literature, the results of the current study

show that a classification accuracy of 86.34% was found across a

wide range of female and male runners regardless of other subject-

specific differences, injury status, and test conditions including age.

Our results also indicate that higher classification accuracy can

be achieved using age-specific subgroups since the amount of

between-group variance can be explained using a fewer number of

PCs and the effect size of the associated PC scores will

subsequently increase. A strength of the current study as compared

to previous investigations of sex- and age-specific differences in

running gait mechanics, is that prior works have used a relatively

narrow sample of the general population, with groups of 5 to 56

subjects for male and female runners [2–8], [10]. Moreover, Nigg

et al. [7] also presented PC classification data on age-specific sub-

groups of male and female runners but only had sample sizes of 10

to 13 subjects per group. The current study improves upon prior

literature by increasing the sample size by 4–44 times, and by

drawing from a wide range of running participants. The results of

this investigation also demonstrate there are interactions between

age and gender which affect running kinematics and, consequent-

ly, it is strongly recommended that sex and age be considered

together when trying to create homogenous sub-groups for

research purposes. This approach has the added advantage of

classifying gait pattern differences without the need for matched

training subject data that would be impractical for automatic

recognition systems.

Selection of components in PCA
Typically, the choice of PCs used in a feature vector is based on

the process of plotting eigenvalues according to their size (scree

plot), keeping only the PCs whose eigenvalue is larger than the

average (.1.0), or keeping the first PCs that explain at least 95%

of cumulative variance in the data [7,8,24–26]. In the current

study, a novel method was used, which sorted PCs based on effect

size. This method was chosen based on the work of Ferré [27] who

suggested that there is no one solution that is suitable for all

problems and most rules fail to determine the optimal number of

PCs. Since effect size is directly related to the discrimination being

considered, it therefore constitutes a context-specific rule that can

be applied to the research question in order to obtain PCs that are

most appropriate to the specific research purpose [28].

Comparing both methods, maximum accuracy was found when

the PCs were sorted by the effect size as opposed to percentage of

variance. Although the first three PCs were common to both

sorting methods, in order to achieve the maximum classification

rate for gender, intermediate- and higher-order PCs were needed

to maximize performance of the SVM classifier. For example, it is

interesting to note that the highest PC selected and included in an

optimized feature vector was PC 69. This result supports the work

of Maurer et al. [8], who demonstrated that PCs which best

Table 6. Comparisons of the discrete biomechanical variables (mean and (SD)) between male and female runners for older group.

Joint Plane of motion Variable of interest Left lower limb Right lower limb

Male Female Male Female

Hip Frontal At toe-off a, b 4.77 (3.48) 8.40 (2.88) 4.80 (2.98) 7.55 (3.08)

Knee Frontal At touchdown a, b 25.51 (3.27) 29.12 (3.59) 26.46 (3.61) 29.40 (2.79)

Maximum peak a 27.68 (4.36) 211.82 (5.02) 29.17 (4.52) 211.81 (4.74)

Minimum peak a 22.78 (4.92) 27.10 (4.36) 24.28 (4.63) 26.81 (4.48)

At toe-off a 25.99 (3.81) 29.30 (4.01) 26.43 (4.29) 28.73 (3.23)

Ankle Frontal Minimum peak a 27.30 (2.62) 24.99 (2.75) 27.14 (3.52) 24.74 (3.32)

aSignificant gender difference for left lower limb (adjusted p-value ,0.05).
bSignificant gender difference for right lower limb (adjusted p-value ,0.05).
doi:10.1371/journal.pone.0105246.t006
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explained differences between male and female runners were

within both the lower-order, or basic movement PCs, as well as the

higher-order, or subtle movement PCs (PC 10–PC 41). In other

words, it can be postulated that the lower PCs have a low effect

size for determining gender differences in running kinematics, and

could be considered noise in the context of gender discrimination.

This supposition could also explain why the maximum classifica-

tion accuracy was not achieved when the PCs were sorted by more

traditional methods such as percent of the variance explained in

the data. Future research is needed in this area to better

understand the relationship between lower- and higher-order

PCs and their usefulness in explaining between-group differences.

Discrete kinematic variables
The results of the current study suggest that several biome-

chanical variables had a moderate (r$0.36) and statistically

significant (p,0.0001) correlation with the discriminatory PCs

when determining differences in running gait kinematics across the

general population. When assessing differences between female

and male runners across the general population, female runners

generally demonstrated greater frontal plane hip and knee peak

angles and differences in frontal plane hip and knee angles at

touchdown and toe-off as compared to their male counterparts.

Female runners also exhibited a greater transverse plane hip peak

angle and differences in transverse plane hip angles at touchdown

as compared to males. Conversely, female runners exhibited a

reduced sagittal plane knee peak angle and differences in sagittal

plane knee angles at toe-off as compared to males. These results

are consistent with previous literature suggesting female runners

generally demonstrate greater frontal and transverse plane angles

[2–4,7,8] and reduced sagittal plane knee angles [3] as compared

to male runners. However, these results also suggest that the

discrimination of running kinematics between male and female

runners is a complex classification problem, reflecting relationships

amongst many kinematic variables [29]. Therefore, simplistic

approaches, such as analyzing several discrete kinematic and/or

kinetic variables, and the use inferential statistics are not

recommended.

When female and male runners were sub-grouped according to

specific age categories, significant differences in sagittal plane knee

kinematic variables were observed between male and female

younger runners using a PCA approach. Our results are similar to

previous studies [7] including Fukuchi et al. [22] who used an

SVM classifier and a forward feature selection approach, and

reported that the feature containing the most discriminative

information was the greater knee flexion excursion angle exhibited

by the younger runners as compared to an older cohort.

Therefore, it appears that older adult runners, regardless of sex,

exhibit reduced sagittal plane joint kinematics as compared to

their younger counterparts. These results are similar to previous

studies that have suggested age-related biomechanical alterations

during gait are a consequence of reduced muscle strength and

flexibility; the combined result of sarcopenia and biological aging

[30,31].

Older female runners also exhibited greater knee abduction, at

all selected time points, and reduced peak ankle eversion as

compared to older male runners. These results suggest that sex-

specific frontal plane differences are present regardless of

biological ageing. On the other hand, no differences in

transverse-plane ankle kinematics and no differences in frontal

and sagittal plane hip kinematics were observed between young

and elderly runners, findings that are consistent with previous

studies [7,11–13,22]. These results also support the premise that

age- and sex-specific kinematic patterns are present and must be
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accounted for in future research investigations. Therefore, the

findings from the present investigation may shed light onto the

conflicting results from various gender-based investigations, which

all involved different subject sub-groups [2–4,7,8].

Limitations
Limitations to the current research study are acknowledged.

First, we did not collect ground reaction force and thus kinetic or

joint moment information was not included in the analysis. Nigg et

al. [7] also used a similar PCA approach with an SVM classifier

and also limited their analysis to kinematic variables. Moreover,

these authors used a position matrix based on the marker position

data for the PCA analysis, and while similar classification accuracy

was found as compared to the current study, the clinical relevance

of marker position data is questionable. Thus, we chose to use joint

kinematic angles to improve the clinical relevance of the results

and hopefully shed some light on the disparity in running-related

injuries between males and females. Regardless, future studies

should also incorporate joint kinetic and ground reaction force

data to gain a greater understanding of sex- and age-related

differences in running gait biomechanics. Second, we only

reported on data derived from the stance phase of running gait.

It is possible that useful and discriminative information may also

be found during the full stride cycle and we chose to only focus our

attention on the stance phase of gait based on previous

investigations [7,8]. Future research should consider analysis of

both the swing and stance phases of running gait. Finally, the

current study used a large cohort of both non-injured and injured

participants. While the injured participants did not experience any

pain during treadmill running or the testing procedure, they could

have experienced altered gait kinematics as a function of the injury

itself. However, the variables of interest were normally distributed

for both the injured and the non-injured runners. Thus, the data

being analysed were representative of running gait based on the

large number and wide range of running participants involved in

the current study.

Conclusions

In conclusion, using a principal component analysis approach,

combined with a support vector machine classifier, the present

study accurately classified large cohorts of competitive and

recreational male and female runners across a wide spectrum of

age. To our knowledge the current study improves upon prior

literature by increasing the sample size by 4–44 times, and by

drawing from a wide range of running participants. When the

study population was divided into two age-specific sub-groups,

interactions between age and gender were observed suggesting

that sex and age must be considered together when trying to create

homogenous sub-groups for research purposes.
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