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Human-ignited fires result in more extreme fire
behavior and ecosystem impacts
Stijn Hantson 1,2✉, Niels Andela 3,4, Michael L. Goulden5 & James T. Randerson 5

California has experienced a rapid increase in burned area over the past several decades.

Although fire behavior is known to be closely tied to ecosystem impacts, most analysis of

changing fire regimes has focused solely on area burned. Here we present a standardized

database of wildfire behavior, including daily fire rate-of-spread and fire radiative power for

large, multiday wildfires in California during 2012–2018 using remotely-sensed active fire

observations. We observe that human-ignited fires start at locations with lower tree cover

and during periods with more extreme fire weather. These characteristics contribute to more

explosive growth in the first few days following ignition for human-caused fires as compared

to lightning-caused fires. The faster fire spread, in turn, yields a larger ecosystem impact, with

tree mortality more than three times higher for fast-moving fires (>1 km day−1) than for slow

moving fires (<0.5 km day−1). Our analysis shows how human-caused fires can amplify

ecosystem impacts and highlights the importance of limiting human-caused fires during

period of extreme fire weather for meeting forest conservation targets under scenarios of

future change.
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C limate and socio-economical drivers have modified global
fire regimes considerably over the past several decades and
are expected to intensify in the near future1,2. Ensuing

changes in wildfire activity, including increases in megafires
within temperate ecoregions, have far-reaching consequences for
vegetation dynamics, biodiversity, and carbon stocks, influencing
livelihood of people by means of fire effects on multiple ecosys-
tem services3. California, like many other areas worldwide, has
experienced an increase in devastating fires over the past several
decades4–7. While wildland fire is a natural part of many eco-
systems in California8, recent fire events have far surpassed his-
torical norms in terms of fire extent, intensity and severity. Mean
annual burned area by Californian fires has more than doubled
over the last decade, increasing from 1721 km2 yr−1 during
1980–2010 to 3309 km2 yr−1 during 2010–20189. Considerable
research has been conducted regarding the drivers of this recent
increase in burned area. Most of this research has focused on the
impact of historical fire suppression and climate change as pos-
sible causes of this recent increase4,5,10–12. During the early and
middle part of the 20th century firefighting contributed to a
reduction of area burned, which has led to a buildup in fuels in
many areas13. The increase in fuel density may be driving some of
the observed increase in burned area11,12. However, other analysis
indicates that the increases in fuels alone cannot explain the
observed increase in burned area. Temperatures have increased
across California in recent decades14, contributing to an increase
in vapor pressure deficit4. As vapor pressure deficit (VPD) is a
key factor determining dead fine fuel moisture content and cor-
relates well with annual burned area in many drought prone
ecosystems, climate change is also likely contributing to the
increase in burned area in forested ecosystems4. A warming cli-
mate has also lengthened the fire season in spring and fall10.
Further, increases in population and areas in the wildland urban
interface (WUI) has increased fire occurrence and expanded the
climate niche under which fires can occur15. Interpretation of the
impacts these rapid changes in wildfire drivers also requires
consideration of processes evolving on much longer timescales,
over a period of centuries to millennia. Fires occurred frequently
in California before Euro-American settlers arrived, ignited by
lightning and indigenous people for ecosystem management8.
Although burned area over the past decade was higher than
during any other decade in the historical record maintained by
the California Department of Forestry and Fire Protection (Cal-
FIRE), present day burned area is still likely below levels that
occurred during middle and late stages of the Holocene for many
Californian ecosystems16. However, historical fire incidence was
characterized by low severity fires, with high severity fires being
rare across most of California ecosystems17. This contrasts with
the contemporary fire regime, in which high intensity and high
severity fires cause firefighter and civilian fatalities and contribute
to damages to both infrastructure and ecosystems18.

Many studies have tried to disentangle the drivers of the recent
increase in burned area across California; less work has examined
the factors changing fire behavior patterns and impact. Overall,
the impact a fire has on the environment depends on how living
organisms cope with the energy released by combustion of fuel19.
Fire intensity can be estimated by fuel type, fuel amount con-
sumed, and the spread rate of the fire20. As such, fire behavior
determines the impact fire has on the environment21, and studies
solely focusing on burned area give an incomplete picture of the
recent changes in fire activity. The current focus on burned area is
largely driven by the high-quality burned area datasets, which are
readily available, while only limited information regarding other
fire characteristics exist22. Furthermore, little quantitative infor-
mation is available over large areas on how fire behavior impacts
fire severity and tree mortality.

The improved 375m spatial resolution and 12-h global cov-
erage of the active fire detections from the VIIRS instrument
onboard the Suomi National Polar-orbiting Partnership (Suomi-
NPP) satellite allow for precise mapping of large wildfire peri-
meter locations starting in 201223. Here, we use these observa-
tions to develop a novel dataset of daily fire spread for all large,
multiday fires in California during 2012–2018 (see methods;
Supplementary Fig. 1). The dataset includes daily rate-of-spread
for 214 individual fires including 2939 fire days (sum of the days
with active fire detections for each fire) and covering 21,558 km2

of burned area. As a function of ecoregion, the dataset covers
13,699 km2 in Northern California and 7,859 km2 in Mediterra-
nean California. Fire sizes represented in the dataset range from 4
to 1660 km2 (Supplementary Fig. 2). The dataset captures a wide
range of daily rate-of-spread values, which vary from 0 to
22.6 km day−1. The fires represented here are only fires that were
not contained after the first day of fire spread, and hence only
include a small fraction of the total number of reported fires
(8.3%). Nevertheless, this set of large fires represent 88% of the
total area burned in California during this period9. The ignition
source for each fire was extracted from the California Fire
Resource Assessment Program (FRAP) fire perimeter database9.
Lightning ignitions are the cause of 42.1% of the fires and 44.4%
of the burned area in our rate-of-spread database, while human-
caused fires represent 39.3% of fires and 33.7% of burned area
(Supplementary Fig. 3). We note there is a residual set of fires that
contribute to total fire number (18.6%) and burned area (21.9%)
for which the cause is unknown; this set of fires was excluded
from any analysis for which we compared the impact of the
ignition source.

We use this fire rate-of-spread dataset here to address a grand
challenge in fire science: to link meteorology and ecosystem status
at the time of ignition with fire behavior, and concurrently, fire
behavior with fire severity and post-fire ecosystem impacts. While
in past work there has been exploration of the processes struc-
turing relationships among individual linkages, much less work
has been done to explore dynamics along the full length of the
causal chain. Moreover, it is unclear how human and lightning-
caused fires lead to different outcomes as a consequence of
diverging interactions through this chain. It is often assumed that
large wildfires caused by human activity are more devastating
than lightning-caused fires, and here we hypothesize that this
may occur because of an increased probability of human ignition
during periods of extreme fire weather. To address this hypoth-
esis, we ask the following four questions. First, do human-caused
fires occur under different environmental conditions than
lightning-caused fires? Second, do such differences in environ-
mental conditions contribute to differences in fire behavior
between human and lightning-caused fires? Third, does fire rate-
of-spread influence fire severity? Fourth, do human-caused fires
have a different impact on Californian ecosystems than lightning-
caused fires? Our results support the hypothesis, indicating that
human ignitions indeed tend to coincide more with extreme
weather conditions. As a result, human-caused fires spread faster
during the first few days after ignition. These faster, more intense
fires, in turn, contribute to more severe ecosystem impacts.

Results
Fire expansion. We observe significant differences in daily fire
size between human-caused and lightning-caused fires during the
first several days after ignition. Human fires are on average
6.5 times larger at the end of the first day compared to lighting
caused fires (18.8 vs. 2.9 km2; Welch Two-Sample t-test, t= 6.51,
df= 169, p= 8.27e–10; Fig. 1 and Supplementary Fig. 4). On
subsequent days, human-caused fires increase in size faster than
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lightning-caused fires, with human-caused fires reaching on
average a size that is more than 3-fold larger than lightning-
caused fires after 5 days (115.1 vs. 37.5 km2, Welch Two-Sample
t-test, t= 4.93, df= 104, p= 3.09e–6). As human-caused fires are
more frequent in Mediterranean California (Supplementary
Fig. 2) this could reflect geographic differences in climate and fire
behavior. However, the observed differences in fire size on day 1
between human-caused and lightning-caused fires is robust when
we separately assess the relationship for either Northern Cali-
fornia or Mediterranean California ecoregions, or for summer
and fall periods (Supplementary Fig. 5). Even when considering
only high forest biomass areas (>150Mg ha−1) within the
Northern ecoregion we observe a significant difference in fire size
between human and lightning-caused fires for the first 5 days
following ignition (Supplementary Fig. 6).

The differences in initial fire sizes originate from differences in
fire spread rates between human and lightning-caused fires.
We estimate daily fire rate-of-spread as the 95th percentile of
the distance between each active fire detection along the active fire

line and the previous day’s fire line (Supplementary Fig. 1). Daily
rate-of-spread follows a skewed distribution, characterized by a
high frequency of fire days with low spread rates (<0.5 km day−1)
and infrequent fire days with fast spread rates (>5 km day−1; Fig. 2
and Supplementary Fig. 7). The distributions of rate-of-
spread are significantly different between human and lightning-
caused fires (Two-sample Kolmogorov–Smirnov test, D= 0.35036,
p= 2.2e−16), where, on average, human-caused fires are faster
(1.83 km day−1) than lightning-caused fires (0.84 km day−1). Days
where fires move slowly contribute relatively little to the overall
burned area, so that the mean fire spread rate normalized by
burned area is higher (see methods), with a mean of 5.6 km day−1

for human-caused fires and 3.5 km day−1 for lightning-caused fires
(Fig. 2). As a function of burned area, the frequency distributions of
the two fire types are also significantly different (two-sample
Kolmogorov–Smirnov test, D= 0.19921, p= 2.2e−16). Faster
spreading human-caused fires would mean that, in the absence
of suppression or fire management, human-caused fires
have the potential to become orders of magnitude larger than
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Fig. 1 Initial fire size during the first 5 days after ignition. Boxplots of the fire size at the end of day 1 through day 5 after ignition for fires caused by
humans (a) or lightning (b) in California. The y-axis is cutoff at 200 km2 to enable visualization of median differences; the full figure is shown as
Supplementary Fig. 4. Differences between the two fire types are significant for each day (Welch Two-Sample t-test, day 1: t= 6.51, p= 8.27e−10; day 2:
t= 6.98, p= 1.20e−10; day 3: t= 5.37, p= 3.29e−7; day 4: t= 4.62, p= 9.47e−6; day 5: t= 4.93, p= 3.089e−06). The sample size n= 82, 79, 67, 58, 44
from day 1-5 in panel a and n= 90, 82, 77, 67, 64 from day 1–5 in panel b. The Boxplot represent the first quartile, the median, and the third quartile as a
box, with the whiskers denote the minimum and maximum if within the range of the first quartile −1.5× the interquartile range and the third quartile +1.5×
the interquartile range, while outliers are represented as points.

Fig. 2 Frequency distribution of daily fire rate-of-spread. Percentage of fire days with a given fire spread rate (a) and percentage of burned area with a
given fire spread rate (b), as a function of fire type. A fire day is a day on which active fire detections were present for a given fire. Fire spread rate is
defined as the 95th percentile of the spread rate over all active fire detections on the fire line. The mean daily rate-of-spread is 1.83 km day−1 for the
human-caused fires and 0.84 km day−1 for lightning-caused fires shown in panel a. Similarly, mean rate-of-spread normalized by burned area (shown in
panel b) is 5.6 km day−1 for the human-caused fires and 3.5 km day–1 for lightning-caused fires. The frequency distributions of daily rate-of-spread between
human and lightning-caused fires as a function of fire day or burned area are significantly different.
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lightning-caused fires over the full duration of a fire’s lifetime.
However, this is not what we observe, with the final size of human-
caused fires only being somewhat larger than lightning-caused fires
(113 km2 vs. 84 km2). This is because human-caused fires tend to
spread for a shorter period of time (Supplementary Fig. 8), with
50% of the human-caused fires taking 3 days or less to reach 75% of
the final fire size, compared to 10 days for lightning-caused fires.

Drivers of fire growth. The observed differences between
human- and lightning-caused fires are shaped by different
environmental conditions at the time of ignition and during
initial phases of fire expansion. Human-caused fires occur under
significantly more extreme fire weather than lightning-caused
fires. For example, human-caused fires are ignited during periods
with higher potential evapotranspiration and on windier days
(Table 1). These conditions are likely to reduce dead fuel moisture
and accelerate fire spread rates24, allowing human-caused fires to
grow faster than lightning-caused fires. Furthermore, human-
caused fires are ignited in areas with lower tree cover and hence
lower live biomass, with fires spreading faster through dry grass
and shrub fuels than denser and moister forest fuels. These
findings are robust when taking ecosystem and seasonal patterns
into account (Supplementary Tables 1 and 2).

Fire impact. Human modification of fire occurrence in time and
space has important consequences for how wildfire affects eco-
system function. Fire fronts that move faster release energy at a
faster rate20. Greater energy release is likely to raise temperatures
near the surface to higher levels, inflicting more damage to the
cambium of trees with thin or damaged bark25. Hotter fires are
also more likely to generate fires with higher flame heights that
jump into the overstory, becoming a crown fire and killing trees
by means of damages to the canopy overstory25. As a con-
sequence, faster moving fires may have a larger impact on
ecosystems22. Here we indeed observe a statistically significant
relationship between fire rate-of-spread and tree mortality
(Fig. 3). Slow moving fires (mean daily fire spread <0.5 km day−1)
result in low tree mortality rates (mean 15.3 ± 18.0%). In contrast,
fast spreading fires (>2 km day−1) result in a threefold increase in
tree mortality rates (mean 48.3 ± 19.7%). This relationship is
similar for both human and lightning-caused fires (Fig. 3). The
relation between fire rate-of-spread and fire severity is not only
robust for tree mortality but is observed for other remotely sensed
fire severity indicators, including difference normalized burn ratio
(Supplementary Fig. 9). As human-caused fires show on average a
higher rate-of-spread, we observe that human-caused fires con-
tribute to significantly higher tree mortality than lightning-caused
fires (Table 2).

Extreme fires. Extreme fires influence fire statistics in a dis-
proportional way. The top 10% of days with the fastest fires result
in 55% of burned area (Fig. 2). Since the fastest moving fires
induce higher levels of tree mortality (Fig. 3), a relatively small
reduction of fire activity during extreme weather conditions could
lead to a significant reduction in fire-induced tree mortality
across California.

Discussion
Humans have modified the fire regime across California in a
myriad of ways. One of the most notable, besides fire exclusion, is
the increase in ignition frequency, either directly by human
agents or indirectly from damages to infrastructure such as a
downed powerline during a windstorm. Previous work has
shown that this increase in ignition incidence has widened the
environmental niche under which fires can occur15,26, and this
finding is consistent with the monthly distributions of large fires
for California shown in Supplementary Fig. 10. Our fire rate-of-

Table 1 Mean environmental conditions on the ignition day
for human- and lightning-caused fires in FRAP across
California (2012–2018).

Human Lightning p

Energy release component (-) 67.6 64.4 1.3e−4

Potential evapotranspiration
(mm day−1)

8.6 7.6 3.7e−16

Windspeed (m/s) 3.3 2.6 <2.2e−16

Forest biomass (Mg/ha) 39 131 <2.2e−16

Forest cover (%) 25 63 <2.2e−16

Significant differences for human- and lightning-caused fires were assessed using the Welch
Two-Sample t-test. Data for all variables assessed and for spatial and temporal subsets are
presented in Supplementary Tables 1 & 2. The comparisons here are for the complete FRAP
dataset, representing a larger set of fires than in the fire rate-of-spread dataset.
Bold values indicate the values with the highest fire risk for each meteorological variable with a
significant difference between the two fire types (p < 0.01).

Fig. 3 The cascade from fire behavior to fire intensity and tree mortality. a Relationship between daily fire radiative power (FRP; mean along fire line) as a
function of daily fire rate-of-spread (F-test, F-statistic= 504.6, N= 1722, R2= 0.23, p < 2.2e−16). b Relationship between mean FRP and tree mortality (%
reduction in basal area) (F-test, F-statistic= 511.3, N= 1556, R2= 0.25, p < 2.2e−16). c Relationship between tree mortality (% reduction in basal area) and
daily fire rate-of-spread (F-test, F-statistic= 563.5, N= 1556, R2= 0.27, p < 2.2e−16). The running means in panel c are plotted for all fires (black line) and
separately for human-caused fires (orange line) and lightning-caused fires (gray line). Plots for other fire severity indicators are presented in
Supplementary Fig. 9. Panels b and c include data across Californian forests for each fire day where the fire expanded more than 1 ha. Linear regression was
used to estimate R2 and p-values. Fire rate-of-spread is calculated as the 95th percentile spread rates along the full active fire perimeter fire on that day.
The apparent difference at low rate-of-spreads between human-caused and lightning-caused fires in panel c is likely statistically insignificant given the low
density and high scatter of available data under these conditions.
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spread dataset allowed us to explore other aspects of the fire
regime humans have altered, including interactions between
meteorology, wildfire behavior, and ecosystem impacts. We find
that the large number of human ignitions throughout the year
significantly increases the likelihood of ignitions during periods of
extreme weather (Table 1 and Fig. 4)27. Human-caused fires
under less extreme fire weather conditions spread slowly and can
often be rapidly extinguished, and as such, barely contribute to
the overall burned area. However, fires that start during extreme
fire weather conditions are more challenging to contain28. These

rapid starts can result in very large active fire lines, driving further
expansion on subsequent days (Fig. 1). While lightning-ignition
can occur under similar extreme fire weather conditions, light-
ning storms usually are not associated with such weather patterns;
instead, these coincide frequently with higher levels of atmo-
spheric humidity and localized rainfall events that limit fire
spread (Table 1 and Supplementary Tables 1 and 2). As such,
lightning-caused fires generally expand at a slow speed during
their initial growth phase (Figs. 1 and 2). Containment of these
fires is limited partially by accessibility, as these ignitions are often
far from any infrastructure. As a result, these fires can potentially
grow into larger fires, with limits posed by natural discontinuities
in fuel structured by topography. More importantly, the current
“let burn” policy allows lightning-ignited fires to burn under
certain conditions29. On the contrary, most human-caused fires
are vigorously suppressed and anthropogenic landscape frag-
mentation further limits fire, resulting in shorter fire duration for
human-caused fires than for lightning-caused fires (Supplemen-
tary Fig. 8). An important next step should be to determine the
degree to which fire suppression resource allocation differs for
human and lightning-caused fires and how this propagates to fire
growth and fire damage.

The fire weather on the day of ignition is an important driver
of rate-of-spread (Table 1 and Supplementary Tables 1 and 2),
with fire events occurring during extremes in fire weather more
likely to escape early containment. This finding is in line with
previous literature on meteorological drivers of fire spread30, but
limited field observations exist that show how these relationships
structure day-to-day variations in spread rate. Surprisingly, we
found that spread rates are strongly skewed, with most days
showing slow spread rates and rare instances of very fast spread
rates (Fig. 2). A similar distribution in spread rates has been
observed over the boreal region31. This is in contrast to the
representation of fire in some models, which tend to overestimate
spread rate under average fire weather conditions likely from an
incomplete representation of the non-linear and additive rela-
tionships between fire weather and fire spread31. The high
variability in fire spread rate likely originates from complex non-
linear interactions between fire weather, fuels, and topography,
which are often not fully captured in modeling approaches25.

Fuel type was also an important driver of initial fire spread.
Human-caused fires occurred more frequently in ecosystems with
lower forest cover and aboveground biomass, compared to the
much higher biomass densities in the mid-elevation forests where
most lightning ignitions occur. As fine fuels from grass and
shrubs rapidly dry out during dry summer conditions and have a
high surface area to volume ratio, these fuels can support very
fast-moving fires. Forests, in contrast, often contain a large
amount of live fuels that have a higher moisture content, thus
limiting rates of fire spread. As fuel type at the start of ignition

Table 2 Differences in fire severity between human-caused and lightning-caused fires.

Ecoregion dNBR rdNBR Tree mortality (%)

Human Lightning Human Lightning Human Lightning

Maximum Northern 738* 665* 750** 666** 92.7* 85.6*
Mediterranean 541** 444** 536* 461* 94a 95a

Mean Northern 332** 271** 344** 272** 44.4* 35.2*
Mediterranean 270 252 265 269 63* 78*

Maximum impact is estimated as the 95th percentile of each fire severity metric considering the distribution of each metric across the area burned for each fire type. Statistics are presented separately
for Northern and Mediterranean California ecoregions (Fig. S3). Severity was assessed using the difference normalized burn ratio (dNBR), the relative difference normalized burn ratio (rdNBR), and tree
mortality (percentage reduction in tree basal area). Significance is measured by the Welch Two-Sample t-test.
*p < 0.05, **p < 0.01.
aToo few data to assess significance.

Fig. 4 Conceptual scheme linking ignition type to fire behavior and post-
fire impact. Ignition source influences the probability of ignitions coinciding
with extreme fire weather, and how this propagates through to fire
behavior, intensity, and resulting ecosystem impacts. Human-caused
ignitions occur throughout the year but are often extinguished quickly due
to their proximity to people and infrastructure. Hence, human-caused fires
can normally only grow large under more extreme fire weather conditions,
which allows for high initial rate-of-spread that increases the likelihood fires
can escape initial suppression. In contrast, lightning-caused fires generally
coincide with more moderate fire weather but are often far from any
infrastructure or human presence, which limits the effectiveness of initial
suppression. As a consequence, human-caused fires tend to be faster and
of higher intensity, which leads to higher fire severity and tree mortality
when compared to lightning-caused fires.
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seems to be an important factor determining initial fire spread,
fuel treatment around areas with high ignition probability may
offer an opportunity for mitigation of future damage and risk of
extreme fire events.

Management options critically depend on the local ecosystem
characteristics and social context. While our findings are robust
when separately considering either northern or Mediterranean
California ecosystems, these ecosystems have important structural
and functional differences. For example, the importance of shrub
vegetation in driving fire behavior in Mediterranean California
leads to faster fire spread rates than in northern ecosystems.
Furthermore, Mediterranean California has a low frequency of
lightning-caused fires and is more densely populated. Hence,
management strategies will necessarily need to take such differ-
ences into account.

Fires can exert a broad array of ecosystem effects, with the
magnitude of the impact depending on fire behavior and inten-
sity. Tree mortality, for example, is often estimated in models as a
function of crown scorch fraction and stem char height, which, in
turn, are based on fire line intensity, the residence time of fire
exposure, and flame height25. However, the drivers of fire-
induced tree mortality are not well understood. One problem is
that neither fire behavior nor ecosystem impact can be easily
measured in the field at large spatial and temporal scales. New
remote sensing-based wildfire tracking capability from VIIRS23

allowed us to empirically quantify how fire behavior is related to
fire severity, and to identify that fire severity and tree mortality is
higher for faster moving fires. Increases in FRP observed for the
fastest moving fires suggest that the underlying mechanism is tied
to greater energy release rates in fast-moving fires that increase
plant exposure to higher surface temperatures. While it has been
shown previously that fire weather and fuels drive fire severity32,
our results show that these environmental drivers impact fire
severity through their impact on fire spread rate and fire intensity.
Indeed, fire rate-of-spread is required as an input to calculate one
of the most widely used fire intensity indices (Byram’s fireline
intensity20). Hence our observations may provide the basis for
improving our understanding of the physical drivers of fire
severity and fire-induced tree mortality and the representation of
fire processes in ecosystem models33,34.

Our results suggest that the current “let burn” policy of natural
occurring lightning-caused fires might result in lower burn severity
and tree mortality compared to human-caused fires and hence may
be an effective way to restore fire as an essential aspect of many
Californian ecosystems. On the contrary, we observe an emerging
human-ignited fire syndrome, where ignitions coincide with
extreme fire weather. These fires spread fast and cause a significant
enhancement of ecosystem impacts and tree mortality compared to
levels expected from a lightning-driven fire regime. This anthro-
pogenic change in fire regime has consequences for programs
intended to increase carbon storage in natural ecosystems, air
quality, and ecosystem services like freshwater supply. As days with
extreme fire weather conditions will become more frequent35,
reducing ignitions during most extreme weather conditions will
therefore be a key mitigation strategy under scenarios of future
change.

Methods
Fire rate-of-spread dataset. We estimated fire rate-of-spread (km day−1) for
California fires represented in the FRAP database9 between 2012 and 2018 with a
size larger than 300 ha and a duration of 2 or more days. The FRAP database is
maintained by the State of California and updated annually. The effort, led by
CalFIRE, integrates information on fire perimeters from the US Forest Service, the
Bureau of Land Management, and the National Park Service. Additional fire
perimeters are entrained from other US federal agencies when available (e.g., the
Dept. of Defense and Bureau of Indian Affairs)9. The fire perimeters are digitized
from multiple information sources including ground or aircraft global positioning

system (GPS) coordinates, infrared imagery, photo interpretation, and mixed data
sources. Key attributes associated with each fire include the start date, containment
date, and the cause of ignition. Here we used the FRAP dataset to identify the outer
final perimeter of all large wildfires greater than 300 ha and to identify the cause of
ignition. Our thresholds for building a multiday fire spread dataset (greater than
300 ha and 2 or more days of burning) were set by accuracy requirements from our
use of the alpha-hull algorithm with the VIIRS active fire observations (described
below) and far exceeded the minimum fire size requirements for the FRAP data-
base. We used the ignition source for each fire in FRAP to separate between
human, lightning, and unknown ignition causes. Data from fires with unknown
ignition source were excluded from all analysis where we separated the results
based on ignition source.

For each fire, we extracted the 375 m I-band active fire observations from the
Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard the Suomi-
National Polar-orbiting Partnership (S-NPP) satellite23. All active fires within a
750 m buffer around the FRAP perimeter were extracted within the period
between fire ignition and containment from the FRAP database, with a 1-day
temporal buffer. If the ignition or containment date was missing from the FRAP
polygon, a 3-month time window for active fire extraction was applied. Fire
growth was estimated each day by grouping all active fire detections occurring
from the daytime overpass (approximately 1:30 p.m.) and following nighttime
overpasses (approximately 1.30 a.m. on the next day). In the case of overlapping
swaths, we used the last overpass as the time of fire detection. Based on these
active fire data we perform a best estimate of the fire perimeter at the end of the
day, using the center of each active fire pixel as best guess of where the fire was
located. The fire perimeter is delimitated using the alpha-hull approach, a
generalization of the convex hull36, where a convex hull is the simplest shape
that embeds all data points. The alpha-hull extends upon the convex hull,
allowing for more complex shapes which embed all points, where the complexity
is determined by the parameter alpha37. In our case, we attempted to capture as
accurately as possible the complex shapes of fire lines without breaking the fire
up into multiple parts. To accomplish this, we chose an alpha value of 0.05 units,
as lower values led to discontinuous perimeters. In cases where a single
continuous perimeter could not be obtained with this parameter setting, the
alpha value was increased by 0.05 units. We use the R package “alphahull”38 to
generate the polygon around the active fire detections. We consecutively
estimated a new fire perimeter for each timestep for which active fire data were
available. Fires caused by lightning often have multiple ignitions. Groups of
active fire data were considered separate fires when the minimum distance
between a point and any other points within the active fire groups was larger
than 1500 m, and individual polygons were drawn for each group of active fire
detections. When a fire merges the two groups of active fires detections are
considered as one and a polygon is drawn around all of them together from that
timestep onwards. A schematic outlining how the fire spread data was
constructed is provided in Supplementary Fig. 1. A comparison with daily fire
growth for 14 fires is presented in Supplementary Methods 1; Supplementary
Fig. 11 & Supplementary Table 3).

For each day, we extracted the active fire data points that form the active fire
line, including those that fall slightly behind the estimated perimeter (100 m). For
each point, we estimated the minimum distance to the fire perimeter of the
previous timestep and the time period between the time steps to calculate rate-of-
spread (Supplementary Fig. 1). Rate-of-spread could not be estimated for the first
day of fire occurrence as the exact time and location of the ignition point was
normally not known. Rate-of-spread values of zero occurred when an active fire
was detected, but the active fire line did not advance between timesteps.

Analysis. We used the daily fire rate-of-spread database generated here from
2012–2018 to assess differences in fire spread rate between human-caused and
lightning-caused fires. Differences in the mean and distribution of the fire spread
rate (Fig. 2) were assessed both with and without normalization by burned area. To
normalize by burned area, we applied the following equation:

∑n
i BAi � RoSi
∑n

i BAi
ð1Þ

where BAi is the burned area on day i, RoSi is the fire spread rate at day i, and n is
the total fire days considered.

The differences in mean fire number, size and rate-of-spread between human and
lightning-caused fires were assessed using the Welch Two-Sample t-test. As many of
the fire behavior or size variables had heavy-tailed distributions, these were log-
transformed before assessing the significance of differences between the two different
fire types. We tested whether the distributions in daily fire rate-of-spread are
significantly different between human and lightning-caused fires using the
Kolmogorov–Smirnov test. Variance in rate-of-spread is given by the interquartile
range (IQR).

We analyzed the difference in climate and environmental factors at the day of
ignition between human-caused and lightning-caused fires based on all fires
represented in the FRAP database, using the fire cause as indicated in the FRAP
database, considering that all fire causes related to human activity are human-
ignited fires. Variables used to assess the environmental and fire weather
conditions at time of ignition between human and lightning-caused fires were
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the vegetation biomass dataset from Oregon State University Landscape Ecology,
Modeling, Mapping & Analysis (LEMMA) for the year 2010 at 30 m spatial
resolution39 and the daily climate data as provided by gridMET at 4 km spatial
resolution40.

To assess the relationship between rate-of-spread and fire severity, we used
remotely sensed fire severity indexes, including differenced normalized burn ratio
(dNBR) and relative differenced normalized burn ratio (rdNBR) as generated by
the Monitoring Trends in Burn Severity (MTBS) project using Landsat data41. To
have a fire severity indicator more directly related to ecosystem structure, we also
use the tree mortality product, quantified as the percent reduction in tree basal area
after fire, generated by the Forest Service42, available at: https://www.fs.usda.gov/
detail/r5/landmanagement/gis/?cid=STELPRDB5327833 (last accessed 13/02/
2020). For every fire, we sampled the fire severity for the area the fire expanded into
each day. Fires or subsets of fires not represented in the MTBS or tree mortality
datasets were excluded from the analysis. For each day, we calculated the mean and
95th percentile of fire severity indicators based on the 30 m pixels. We also
summarized fire severity indicators for each fire to assess whether there are
differences between human and lightning-caused fires. We summarized rate-of-
spread by taking the 95th percentile of the spread rate over all active fire detections
on the fire line as a conservative estimate of maximum rate-of-spread for that day.
We also calculated the mean rate-of-spread across the entire fire front to show the
robustness of the results and found that the mean and maximum fire spread rates
are highly correlated (Supplementary Fig. 12).

As California ecosystems are highly diverse, we performed our analysis
separately for two large ecosystem groups with extensive fire occurrence in
California, namely the level 2 ecoregion Mediterranean California and Northern
California, which incorporates the level 2 ecoregions Western Cordillera and
Marine west coast forest (Supplementary Fig. 2). To analyze the fire ecosystem
impact and tree mortality, we separated forest and non-forest areas using the
CALVEG vegetation map for the year 201143.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The California fire growth dataset generated in this study has been deposited under
accession code https://doi.org/10.5281/zenodo.4248662 and will be updated regularly.
The FRAP fire perimeters are available at https://frap.fire.ca.gov/frap-projects/fire-
perimeters/. The GridMET climate dataset is available from http://www.climatologylab.
org/gridmet.html. The tree mortality product generated by the Forest Service42 is
available at: https://www.fs.usda.gov/detail/r5/landmanagement/gis/?cid=
STELPRDB5327833. The vegetation biomass dataset from Oregon State University
Landscape Ecology, Modeling, Mapping & Analysis (LEMMA) is available at: https://
lemmadownload.forestry.oregonstate.edu. The MTBS fire severity data is available at:
https://www.mtbs.gov.

Code availability
The statistical analyses were all performed in R 4.0.3. The code to generate the fire
growth dataset can be found here: https://doi.org/10.5281/zenodo.6362832
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