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SUMMARY
TheMediator complex has recently been shown to be a key player in the maintenance of embryonic and induced pluripotent stem cells.

However, the in vivo consequences of loss of many Mediator subunits are unknown. We identifiedmed14 as the gene affected in the ze-

brafish logelei (log) mutant, which displayed a morphological arrest by 2 days of development. Surprisingly, microarray analysis showed

that transcription was not broadly affected in log mutants. Indeed, log cells transplanted into a wild-type environment were able to sur-

vive into adulthood. In planarians, RNAi knockdown demonstrated a requirement for med14 and many other Mediator components in

adult stem cell maintenance and regeneration.Multiple stem/progenitor cell populations were observed to be reduced or absent in zebra-

fishmed14mutant embryos. Taken together, our results show a critical, evolutionarily conserved, in vivo function for Med14 (andMedi-

ator) in stem cell maintenance, distinct from a general role in transcription.
INTRODUCTION

First identified in yeast (Kelleher et al., 1990; Thompson

et al., 1993), the core Mediator complex consists of three

distinct modules (Head, Middle, and Tail), with a fourth

Kinase module present in some cases. Mediator physically

links enhancer bound regulatory factors to RNA polymer-

ase II (Pol II) through context-specific interactions with its

Tail and Head subunits, respectively (Hengartner et al.,

1995; Kim et al., 1994; Thompson et al., 1993). Work in

yeast suggesting that Mediator is present at the promoters

of nearly all protein coding genes and is required for

both basal and activator-mediated transcription (Holstege

et al., 1998; Thompson and Young, 1995) has led to the

view that Mediator is part of the general transcription

machinery; however, analysis of several Mediator mutants

in plants and animals has not supported this model.

Specific subunits have been shown to control only a sub-

set of target genes that in turn affect specific develop-

mental or organ-specific processes (reviewed in Hentges,

2011). The multitude of interactions documented for

the 31 subunits of the Mediator complex delineate its

vast functional versatility and has led to the more recent

view of Mediator as an integrative hub of transcriptional

regulation.

Development at a cellular level involves progression

along a continuum from complete plasticity to terminal

differentiation. For most cells, cell fate becomes ‘‘locked

in’’ as development proceeds (Ho and Kimmel, 1993; Para-

meswaran and Tam, 1995). Stem and progenitor cells are

capable of halting their progression along this develop-
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mental path and act as reserves for tissue homeostasis

and regeneration. Much of what is known on how cells

maintain their ‘‘stemness’’ has come from studying

cultured embryonic stem cells (ESCs), which has revealed

a complex network of transcription factors that act in

concert to maintain pluripotency (Nichols et al., 1998; Ta-

kahashi and Yamanaka, 2006). Intriguingly, an RNAi

screen for key regulators of pluripotency maintenance in

mouse ESCs (Kagey et al., 2010) uncovered 12 subunits

of Mediator, with the strongest effect resulting from

knockdown of Med14. Med12 has additionally been

shown to act together with Nanog to regulate a stem

cell gene signature in mouse ESCs (Tutter et al., 2009).

Whether the role of Mediator function in ESC mainte-

nance extends generally to in vivo stem cell populations

remains largely unknown.

In this study, we found that while zebrafish med14

mutant embryos were largely arrested in development,

there was a surprisingly limited effect on overall transcrip-

tion. Transplantation experiments demonstrated that

Med14 function is largely dispensable for cell survival

into adulthood. Loss of med14, as well as several other

Mediator components, in the planarian Schmidtea mediter-

ranea resulted in severe stem cell and regeneration defects,

with transcription in other tissues apparently unaffected.

Examination of med14 mutant zebrafish embryos also sug-

gested a function in stem cell maintenance and regenera-

tion. Taken together, our results show that Med14 has a

conserved function in themaintenance of both embryonic

and adult stem cell populations and suggest a broader

in vivo role for Mediator in stem cell maintenance.
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Figure 1. Characterization of the log
Mutant Phenotype
(A–I) Expression of cardiac markers in (WT)
and log mutant (MUT) embryos. While at
1.0 dpf the linear heart tube (black arrow-
head) was apparent in all embryos (‘‘WT/
MUT’’), at 2.25 dpf log mutant hearts were
unlooped, with the ventricle directly above
the atrium (yellow and red arrowheads,
respectively).
(J–M) At 4.0 dpf, semicircular canals in the
otic vesicles (black arrow heads in J and K)
and elongation of the pectoral fins (black
arrowheads in L and M) were absent in
mutant embryos.
(N) Change in head/trunk angle over time
in WT and mutant embryos (10 WT and
20 mutants measured per time point).
See also Figure S1.
RESULTS

Zebrafish logelei Mutants Have a Pleiotropic

Phenotype Suggestive of Developmental Arrest

A novel (s231) allele of the logelei (log) mutant was previ-

ously isolated in a screen for mutations affecting cardiovas-
Stem
cular development (Jin et al., 2007). At 1-day post-fertiliza-

tion (dpf), log mutant hearts appeared completely normal

(Figure 1A). Cardiac defects first became apparent in log

mutants by 2 dpf, with a failure of heart looping (Figures

1B and 1C). By RNA in situ hybridization (ISH), expression

of the chamber-specific markers myh6/amhc (atrium) and
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Figure 2. Logelei Results from a Mutation
in med14
(A) Recombination frequency mapping re-
sults. Screening of 1,800 map-cross mutant
embryos with markers Z45039 and Z9112
revealed 16 and 39 flanking recombinant
embryos, respectively. The zero-recombi-
nant region (light green, contained in two
bacterial artificial chromosomes [BACs])
was refined with additional markers. Seq-
uencing of med14 revealed a base pair
substitution (arrow) leading to a premature
stop codon (*) in each of the three log
alleles.
(B–E00 0) Lateral and dorsal views of the otic
vesicle and pectoral fin of 3.5 dpf WT
(B–B0 0 0), log mutant (C–C0 0 0), med14 mor-
pholino-injected (D–D0 00), and log mutant
injected with med14 RNA (E–E0 0 0) embryos.
vmhc (ventricle) was normal in logmutants (Figures 1D–1I).

The first observable log phenotype, a defect in brain

ventricle inflation (Schier et al., 1996), was apparent by

36-hr post-fertilization (hpf). Following this, a develop-

mental delay became apparent in log mutants from

48–96 hpf, including absence of pectoral fin elongation

and semi-circular canals of the otic vesicle (Figures

1J–1M, arrowheads). Head-trunk angle, a measure

of developmental progression (Kimmel et al., 1995), was

largely fixed in log mutants by 48 hpf (Figure 1N). Despite

this arrest in development, there was not an apparent in-

crease in apoptosis or overt proliferative defect (Figure S1).

logelei Is due to Mutation of med14

We next sought to determine the causal log mutation,

which we had previously localized to linkage group 9
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(Jin et al., 2007). Further mapping defined a zero

recombination region of approximately 100 kb contain-

ing four genes. RT-PCR and sequencing from mutant

(s231 and the previously isolated m628 and m673

alleles) and wild-type (WT) cDNA pools identified

distinct premature stop codons in med14 in all three

alleles (Figure 2A). Injection of med14 morpholino reca-

pitulated otic vesicle, pectoral fin and cardiac pheno-

types, while injection of 300 pg of RNA encoding a

WT form of Med14 partially rescued these defects

in log mutants (Figures 2B–2E0 0 0). Further, injection

of RNA encoding the s231, m628, and m673 forms

of med14 failed to affect appreciable rescue of log mu-

tants (results not shown). Taken together, this

established that the log phenotype is due to mutation

of med14.
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Figure 3. Expression and Timing
Requirement of med14 for Development
(A) Worsening of the log mutant phenotype
by injection of morpholino (MO) targeting
med14 (red arrowhead denotes somite
defect).
(A0 and A0 0) Somite structure of 3.5 dpf
rhodamine phalloidin (RhPh) stained WT
and MO-injected mutant embryos. Defects
in muscle fiber patterns of mutant embryos
injected with MO are shown (yellow arrow-
heads).
(B–D) RNA ISH analysis shows that med14
is broadly expressed at the one- and two-
cell stage and at 12 hpf (‘‘WT/MUT’’ denotes
unknown genotype). At 24 hpf, broad
med14 expression is undetectable in zy-
gotic med14 mutants.
(E–K) Temporal rescue of the log mutant
phenotype using Tg(hsp70:med14, a-crys-
tallin:EGFP), with initial heat shock per-
formed at the specified time, and then every
12 hr following until 5 dpf. Scale bars,
0.5 mm.
Maternal Expression of med14 Affects Timing of

Phenotypic Onset

As we expected that loss of Med14 would have global ef-

fects on transcription, we next examined whether med14

had a maternal function. Injection of med14 morpholino

(which would affect maternal med14 transcript, but not

protein) worsened the log mutant phenotype (Figure 3A),

notably inducing defects in skeletal muscle fibers (Figures

3A0 and 3A0 0). med14 transcript was maternally deposited

(Figure 3B) and expressed broadly later in development

(Figure 3C; data not shown). ISH analysis in m628 allele

mutants revealed a loss of med14 expression by 24hpf,

suggesting nonsense-mediated decay of mutant transcript

and degradation of maternally deposited WT transcript

by this time point (Figure 3D). Efforts to deplete WT

maternal med14 transcript by making maternal zygotic

mutants through a germline replacement strategy (Ciruna

et al., 2002) were not successful (results not shown). To

determine whether the log mutant phenotype could be

alleviated by prolonged expression of med14, we gener-

ated a transgenic line expressing WT med14 RNA under

control of the inducible hsp70 promoter, which had no

apparent effects on WT development (Figure 3E). In log

mutants, overexpression of med14 every 12 hr beginning

at 12 hpf until 120 hpf resulted in maximal rescue (Fig-

ure 3F). Further analysis revealed that initiation of

med14 overexpression at 24 hpf or later in log mutants

resulted in progressively more severe phenotypes, with

initiation after 48 hpf resulting in no discernable rescue

(Figures 3G–3K). These results suggest that maternal
Stem
Med14 function alleviates the severity of early pheno-

types in log mutants.

Transcription Is Not Broadly Affected in log Mutants

To examine effects on Pol II transcription in log mutants,

we first assayed expression of opsin1sw1, which is initiated

in the eye at 2.5 dpf, after developmental defects are readily

apparent (Figures 4A and 4B). Although delayed in log mu-

tants (data not shown), opsin1sw1 expression reached a

level comparable to WT by 4.0 dpf (Figures 4C and 4D).

To test whether transcription could be induced in log mu-

tants, we heat shocked log mutant hsp70:EGFP embryos

at 3.5 dpf, after which a robust EGFP fluorescence was

observable at 4.0 dpf (Figure 4E). To examine whether

cellular transcription and function could continue in the

prolonged absence of Med14 function, we carried out

transplantation experiments to place transgenic (constitu-

tive b-actin:EGFP) log mutant cells in WT host embryos,

thus circumventing the issue of embryonic lethality. b-acti-

n:EGFP expression in logmutant cells was evident at 15 dpf

(Figure 4F, mutant cells seen in 100% of 50 transplants).

Interestingly, cells were found to contribute to structures

not present inmutant embryos, such as the semicircular ca-

nals. In fish aged up to 2 years, EGFP-+’ve log mutant cells

persisted, as was evident in many nonpigmented tissues

(Figures 4G–4H0). This clearly demonstrated that Med14

was not (at least cell autonomously) required for constitu-

tive transcription or cell survival.

To address in a quantitative manner the extent tran-

scription may be globally affected in log mutants, we
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Figure 4. Transcription Is Not Largely
Affected in log (med14) Mutants
(A–D) Expression of opn1sw1, initiated by
2.5 dpf in WT embryos, reaches WT levels in
log mutant embryos by 4.0 dpf.
(E) Tg(hsp70:EGFP) log mutant embryos
heat shocked at 3.5 dpf show robust GFP
signal.
(F–H0) log mutant cells transplanted into
WT hosts (traced using a b-actin:EGFP
transgene) are evident in 15 dpf hosts
(including in the semicircular canals,
yellow arrowhead in F) and survive until
2 ypf (years post-fertilization, yellow ar-
rowheads).
(I) Summary of results of microarray anal-
ysis on cDNA from 2.25 dpf WT versus log
mutant embryos.
(J) Quantification of mRNA per 0.1mg total
RNA at 3.25 dpf from WT and log mutant
embryos.
(K) Normalized qPCR values for med14
expression in mutant relative to WT control
embryos (*p < 0.05 using the one-tailed
unpaired Student’s t test).
(L) Mean normalized expression (MNE)
of b-actin in WT and MUT embryos at
2.25 dpf calculated using a universal refer-
ence approach. No significant difference
(p = 0.63) was observed between WT
(0.107 ± 0.00380) and log MUT (0.123 ±
0.0297) samples (n = 3) by one-tailed
unpaired Student’s t test. For (J)–(L),
three biological replicates of 450 (J) or 10
(K and L) embryos were used.
undertook a microarray approach to analyze genome-

wide transcript levels at 2.25 dpf (when the log mutant

phenotype is apparent). Surprisingly, in log mutants,

only �2% of genes assayed were differentially expressed

(764 of 34,858 with R2-fold difference), with a roughly
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equal number of genes being upregulated or downregu-

lated (Figure 4I). To dismiss the possibility that transcrip-

tion levels were reduced globally in log mutants (Lovén

et al., 2012), we assayed mRNA (poly A) levels from an

equivalent amounts of total RNA; however, no difference
rs



Figure 5. Smed-med14 Is Required for
Tissue Homeostasis and Regeneration in
Planarians
(A–F)med14(RNAi) animals show defects in
homeostasis, with head regression (yellow
arrowheads) and ventral curling apparent in
100% of cases by 3fd10.
(G and H) By 3fd12–15, head and tail
regression (yellow and red arrowheads) and
the beginnings of lysis are apparent in
100% of med14(RNAi) animals, similar to
what is observed following irradiation-
mediated depletion of the stem cell pool.
(I–L) In trunk fragments that are re-
generating a head (yellow arrowhead) and a
tail (red arrowhead), no regeneration is
observed by 7 dpa in med14(RNAi) animals.
Scale bars, 100 mm.
was evident even at 3.25 dpf (Figure 4J). RNA and DNA

spike-ins and genomic PCR to normalize data to total

genomic content (cell number) (Bower et al., 2007) was

further used to stringently assay mean levels of gene

expression. However, global changes in Pol II gene

expression were not evident in med14 mutants (Fig-

ure 4L). qRT-PCR analysis validated that from 1.5-

3.25 dpf med14 transcript levels were significantly down-

regulated in log mutants, in line with our RNA ISH

analysis (Figure 4L).

med14 Is Necessary for Stem Cell Maintenance in

Planarians

To further decipher Med14 function, we pursued med14

knockdown in the freshwater planarian S. mediterranea.

A BLAST search of S. mediterranea genome and transcrip-

tomes (Labbé et al., 2012) with both human and zebrafish

Med14 sequences revealed a single planarian ortholog,

Smed-med14 (med14 in this manuscript). When intact pla-

narians were subjected to med14 RNAi, 100% of animals

displayed a ventral curling phenotype by 10 days after

the third feeding (3fd10) (Figures 5A–5D). By 3fd15,

head and tail regression phenotypes became pronounced
Stem
in med14(RNAi) animals (Figures 5E and 5F), with lysis of

the epidermis following (Figure 5G), similar to what is

observed following irradiation (Figure 5H). As ventral curl-

ing and lysis are hallmarks of a stem cell defect (Reddien

et al., 2005), we next examined whether med14(RNAi) an-

imals retained regenerative ability, which depends on

stem cell function. Following amputation into thirds at

3fd3, regeneration was severely diminished at both 3

and 7 days post-amputation (dpa) in med14(RNAi) ani-

mals (Figures 5I–5L). As seen in zebrafish embryos,

med14 appeared to be ubiquitously expressed in planar-

ians (Figure 6A). However, dilution of probe and reduc-

tion of staining time resulted in a stem cell-like expression

pattern (Figure 6A0), in agreement with transcriptome

data showing med14 to be 6.7-fold enriched in stem cells

over differentiated tissues (Labbé et al., 2012). Confirma-

tion of med14 expression in (but not limited to) stem cells

was obtained by confocal imaging of the head and tail re-

gions following med14 fluorescent RNA ISH and PIWI

(a marker of stem cells) antibody staining (Figures 6A0 0

and 6A0 00).
To further examine the med14(RNAi) phenotype, RNA

ISH was carried out for markers of the stem, progeny,
Cell Reports j Vol. 4 j 670–684 j April 14, 2015 j ª2015 The Authors 675



Figure 6. Smed-med14 Is Necessary for the Maintenance of Adult Stem Cells
(A) ISH for med14 in wild-type intact animals showing ubiquitous staining.
(A0) A stem cell like expression pattern is evident with reduced staining.
(A0 0 and A0 0 0) Confocal image at 253magnification ofmed14 fluorescent RNA ISH (red) and PIWI antibody staining (green) in the planarian
head (white dashed box in A0) and tail (black dashed box in A0) respectively. The boxed area in each is enlarged for clarification. med14 is
expression in, but not limited to, the stem cell population.
(B–C00 0) ISH analysis using a stem cell specific riboprobe (piwi-1) during a time course ofmed14(RNAi). By 3fd12, the stem cell population
is largely absent in med14(RNAi) animals. The remaining piwi-1+ cells at 3fd12 (C0 0 0) may represent primordial germ cells (red arrowheads
in M).
(D–E0) Loss of proliferative phosphorylated histone H3 (H3P) +’ve cells in med14(RNAi) animals by 3fd9 (E0).
(F–I) Expression of S-phase markers h2b and pcna in WT and med14 RNAi animals at 3fd12.
(J–K0) By 3fd3, the progenitor cell population in med14(RNAi) animals (marked by prog-1 expression) is reduced compared with controls
and completely absent by 3fd12.
(L–M0) Increased cell death by 3fd9 as observed by whole-mount TUNEL analysis in med14(RNAi) animals.

(legend continued on next page)
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and somatic compartments of the animal. Analysis

of the stem cell marker piwi-1 (Reddien et al., 2005) re-

vealed a reduction in piwi-1-expressing cells in

med14(RNAi) worms by 3fd6 and a complete absence

by 3fd12 (Figures 6B–6C0 0 0). However, expression of

piwi-1 could still be detected in two dorsal-lateral re-

gions that may represent primordial germ cells (Wang

et al., 2010) (Figure 6C0 0 0, red arrowheads), suggesting

that Med14 is not required directly for piwi-1 expres-

sion. As the stem cell compartment in planaria is the

only one that undergoes proliferation (Reddien and

Sánchez Alvarado, 2004), expression of markers of

mitosis (phosphorylated histone H3-H3P) and S-phase

(h2b and pcna) was assayed. As expected for a complete

stem cell loss, proliferation was not evident in med14(R-

NAi) animals by 3fd9/12 (Figures 6D–6I). The loss of

piwi-1-expressing cells following med14 RNAi may

have been as a consequence of differentiation of the

stem cell compartment. To examine this, we analyzed

the expression of prog-1, which marks the immediate

daughters of stem cells (Eisenhoffer et al., 2008), in

control and med14(RNAi) worms (Figures 6J–6K0). A

reduction to complete absence in the prog-1-positive

progenitor cell population that mirrored observations

of the piwi-1 stem cell population was found, suggest-

ing that the stem and progenitor cell pools were rapidly

depleted following loss of med14. In support of this

model, widespread apoptosis was evident in med14(R-

NAi) animals by 3fd9 (Figures 6L–6M0). In contrast,

knockdown of med14 function had no effect on differ-

entiated cells as exemplified by expression of CNS (pc2),

gut (porcn), muscle (collagen), pharynx (laminin), eye

(ovo), and protonephridia (cavii-1) markers at 3fd12,

with the general patterns of expression and organ

shapes being normal (Figures 6N–6Y). These results sug-

gest that loss of med14 has a specific effect on the stem

cell population and that transcription in general is not

compromised.

To investigate a more general requirement for Mediator

in stem cell maintenance, we performed an RNAi knock-

down screen of 11 additional Mediator subunits, allowing

analysis of 12 of the 25 conserved proteins (Figure S2 and

table within). A ventral curling phenotype was observed

for five subunits tested: med7, med12, med17, med19,

and med27 (Figures S2A–S2F and table within). In all

cases, depletion of the piwi-1-positive stem cell popula-

tion was evident by 3fd12 (Figures S2A–S3F0). No pheno-
(N–Y) Normal expression of markers of differentiated cell types in m
(porcn), muscle (collagen), pharynx (laminin), eyes (ovo), and protone
(black arrow heads in O and Q). Eye progenitors (red arrow head in V)
the eye spots (black arrow heads in V and W).
Scale bars, 100 mm. See also Figure S2.

Stem
types were observed following knockdown of the remain-

ing six subunits (data not shown). When considered

collectively, a stem cell phenotype was apparent fol-

lowing knockdown of a subunit from each Mediator

domain.

Med14 Is Required for Maintenance of Progenitor

Populations in Zebrafish

We next re-examined the zebrafish log mutant pheno-

type, with a focus on stem/progenitor cells and regenera-

tion. Using RNA ISH, we first assayed expression of the

retinal stem cell marker mz98 (Cerveny et al., 2010) and

found that while present at 2.25 dpf, expression was

lost by 3.25 dpf in log mutants (Figures 7A–7D). Analysis

of the hematopoietic stem cell marker cmyb (Bertrand

et al., 2008) in the ventral trunk/tail region of the embryo

revealed a loss of expression in log mutants by 3.25 dpf

(Figures 7E–7H). Similarly, the putative gut stem cell

marker lgr4 (Hirose et al., 2011) showed a severe reduc-

tion in expression in log mutants at 3.25 dpf (Figures 7I

and 7J). To assess a possible role for Med14 in vertebrate

regeneration, we employed amputation of the zebrafish

embryonic tailfin (Kawakami et al., 2004). Following

resection of the tailfin at 2 dpf, we observed no appre-

ciable regrowth of log mutant fins by 4 dpf (Figures 7K

and 7L).

We next assessed readouts of stem cell function. As

indicated by o-Dianisidine staining, the pronounced

expansion of the red blood cell population evident in

WT embryos from 48–96 hpf did not occur in med14 mu-

tants (Figures 7M–7R). We next examined growth of the

zebrafish ventricle from 24–48 hpf, which has recently

been shown to include addition of cells from second

heart field progenitors (Lazic and Scott, 2011). Cardio-

myocyte cell number was significantly reduced in 60

hpf med14 morphant hearts (Figures 7S–7U). To test

whether the expression of WT med14 in cardiomyocytes

could rescue the log heart defect, we generated a cardio-

myocyte-specific cmlc2:med14 transgenic line. Despite

forced expression of WT med14 RNA in mutant hearts

well before the onset of phenotypic defects, no rescue

was observed (Figure 7V). Consistent with these results,

expression of the second heart field progenitor marker

ltbp3 (Zhou et al., 2011) was greatly reduced in log

mutant embryos at 48 hpf (Figures 7W and 7X), suggest-

ing that med14 is required in heart progenitor cells (prior

to cmlc2 expression).
ed14(RNAi) animals as evident for the nervous system (pc2), gut
phridia (cavii-1). Head regression is evident in some treated worms
are not observed in med14(RNAi) animals despite ovo expression in
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Figure 7. A Conserved Requirement for
med14 in the Maintenance of Stem Cell
Populations
(A–D) Expression of retinal stem cell marker
mz98 (arrowhead) is present, but reduced
in log mutants at 2.25 dpf, and absent at
3.25 dpf.
(E–H) Expression of the hematopoietic stem
cell marker cmyb is initiated in 2.25 dpf log
mutant embryos (arrowhead), but largely
absent by 3.25 dpf.
(I and J) Expression of the putative gut
stem cell marker lgr4 is not observed in
3.25 dpf log mutant embryos (arrowhead,
note expression in WT).
(K and L) Robust tail fin regeneration in WT
as compared with log mutant embryos at
4 dpf following amputation (at area of
dotted line) at 2 dpf.
(M–R) o-Dianisidane staining of red blood
cells in trunks of WT and log mutant em-
bryos. Scale bars, 0.5 mm.
(S and T) Confocal projections of 2.5 dpf
Tg(cmcl2:nlsDsRedExpress) WT and log mor-
phant hearts.
(U) Quantification of myocardial cell num-
ber in WT and morphant hearts shows a
significant decrease in morphants (p =
0.0017, n = 6 for both conditions).
(V) Cardiac edema and heart defects remain
in 3.5 dpf Tg (cmlc2:med14, a-crystal-
lin:EGFP) log mutant embryos.
(W and X) Expression of the second heart
field marker ltbp3 in the arterial pole of the
heart (arrowhead) is reduced in logmutants
at 48 hpf.
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DISCUSSION

In this study, we have shown in two animal models

(including one adult one) that the Mediator complex plays

a key role in stem cell maintenance. To our knowledge, our

planarian work is the first broad in vivo survey of Mediator

function in stem cells. Further, our results represent a

whole-organism view that helps address controversies in

Mediator function in general transcription versus having

more specialized functions.

Our results, we believe, provide the first description of

the consequences of the complete loss of function of

med14 in metazoa. A zebrafish med14 mutant was re-

ported as having relatively minor defects in eye develop-

ment (Dürr et al., 2006). However, this mutant (hi2143)

resulted from an intronic retroviral insertion, and online

pictures available show roughly normal development

(http://web.mit.edu/hopkins/group6.html). As this is a

much weaker phenotype than seen in log mutants, the

insertion allele is likely hypomorphic. A mouse med14

mutant made from a gene trap ESC line reported no

overt phenotypes at day 10.5 (Cox et al., 2010). Howev-

er, our analysis of this gene trap line by RT-PCR revealed

that WT Med14 transcript was still present, indicating

that this allele was not a null (data not shown). In

contrast, RNAi-mediated knockdown of rgr1 (med14) in

C. elegans has been reported to mimic loss of Pol II,

which contrasts our findings in zebrafish and planarians

(Shim et al., 2002). Of course, it remains possible that

the med14 alleles used in our studies are not true nulls.

All three encode C-terminally truncated versions of

Med14, with the m673 and s231 alleles resembling the

original (viable) yeast rgr1 (med14) mutant. This trunca-

tion prevented association of Rgr1 with many Mediator

Tail components, resulting in a largely ‘‘Tail-less’’ Medi-

ator (Li et al., 1995; Sakai et al., 1990). In contrast, a

yeast rgr1 null (deletion) allele results in lethality (Sakai

et al., 1990). As the m628 allele creates a large trunca-

tion of Med14 and further results in pronounced loss

of transcript, we are confident that this results in a

full loss of function. Recent analysis of Mediator

structure has shown that Med14 is a key interface that

contacts all three Mediator modules (Tsai et al., 2014),

with Med14 being essential for activity of a biochemi-

cally reconstituted Mediator complex (Cevher et al.,

2014). As we were unable to examine the full (maternal

zygotic) zebrafish med14 mutant phenotype, the

observed onset of log phenotypes is likely due to when

depletion of maternal protein brings Med14 levels below

a threshold level in certain cell types. As discussed

below, this may be especially relevant to genes with

‘‘superenhancers,’’ which may require a higher level of

Mediator in a cell.
Stem
Our work suggests that stem and progenitor cells may be

especially sensitive to Mediator complex function and that

the log phenotype is due to loss of stem cells. This will

require more extensive study, including cell fate and line-

age tracing approaches. Interestingly, our transplantation

experiments clearly show that cells lacking Med14 can sur-

vive to adulthood and contribute to many tissues. Gene

expression analysis in log mutants did not reveal effects

on stem-cell specific genes; however, analysis of whole em-

bryo transcriptomes is not well suited to detect changes in

small populations of cells.While the nature of the stem cell

defect in zebrafishmed14mutants requires further clarifica-

tion, the effects of Med14 loss on planarian adult stem cell

function is more evident. This is associated with a loss of

proliferation and increased apoptosis in animals, but not

an increase in prog-1 expression. Our results therefore sug-

gest a model where piwi-1-positive stem cells are depleted

followingmed14 RNAi, perhaps via cell death. This requires

further investigation, as does the cellular autonomy (in

stem cells versus a niche) of Med14 function.

The role of Mediator in general versus specialized aspects

of Pol II-based transcription has been the subject of debate.

Work in yeast suggests that core components of Mediator

are required for most Pol II-mediated transcription and

that Mediator subunits are localized upstream of most pro-

moters (Andrau et al., 2006; Holstege et al., 1998). In

contrast, Mediator has also been shown to be localized to

a very limited fraction (perhaps 3%) of promoter elements

(Fan and Struhl, 2009), regulating expression of a low

percentage of genes (Young et al., 2009). Similar to our mi-

croarray results, expression of only a few hundred genes is

misregulated in yeast rgr1 (med14) CTD deletion mutants

(Young et al., 2009). However, it is also true that not all

Mediator subunits are equal: loss of ‘‘core’’ subunits such

as Med17 may have more severe effects than loss of other

subunits (Holstege et al., 1998).

In cultured ESCs and inducedpluripotent stemcells,mul-

tiple Mediator (and cohesin) complex subunits have been

shown to play essential roles in stem cell maintenance (Ka-

gey et al., 2010). In vivo, Med1, Med14, Med21, and Cdk8

have been shown to be required in hair follicle stem cells,

plantmeristem,mouse blastocysts, and tumor cells, respec-

tively (Adler et al., 2012; Autran et al., 2002; Nakajima et al.,

2013; Tudor et al., 1999).Our planarian results demonstrate

a requirement for Mediator subunits from all structural

components (Head, Middle, Tail, and Kinase) in adult

stem cells. Specific roles for other ‘‘core’’ components of

the transcriptional machinery in stem cells have been

described. Alterations in expression of the TBP-associated

factors (TAFs) have been associated with pluripotency and

skeletal muscle differentiation, and expression of many

Mediator subunits is decreased duringmyotube differentia-

tion (Deato et al., 2008; Maston et al., 2012).
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The global expression of Mediator subunit (and TAF)

genes in vivo has not been carefully examined to

date. It is possible that distinct Mediator complexes,

which contain different combinations of subunits, may

have differential function in stem cells versus other

contexts.

How may Mediator ultimately affect stem cell mainte-

nance? The ESC genome has been described as existing

in a poised state, with enhancers of many developmental

genes having a bivalent chromatin status (Bernstein et al.,

2006; Rada-Iglesias et al., 2011). This may be essential for

the coordinated maintenance and differentiation of stem

cells in response to the appropriate cues (Lagha et al.,

2013). It is interesting to note that a variant form of

the Pol II complex containing Gdown1 (Pol II(G)) re-

quires Mediator for activator-based Pol II transcription

(Hu et al., 2006; Jishage et al., 2012). Interestingly, Pol

II(G) is highly enriched at genes with poised Pol II. The

Polycomb/PRC2 complex has been shown to inhibit the

bivalent poised status of genes in ESCs (Jia et al., 2012).

PRC2 and cohesin complexes can physically interact

(Strübbe et al., 2011) and may competitively bind DNA

(Cunningham et al., 2012). A function of Mediator/

cohesin may be to prevent association of PRC2 activity

with pluripotency-associated genes. Finally, the recent

description of stem cell-enriched super-enhancers is of

special interest. These atypically large enhancer regions

are highly enriched for Mediator (Med1) occupancy,

with Mediator being essential for their organization

(Lovén et al., 2013; Whyte et al., 2013). Enrichment for

Mediator occupancy at Nanog enhancers that form com-

plex interactions with multiple sites in the genome is

similarly associated with pluripotency (Apostolou et al.,

2013). It is therefore tempting to speculate that Medi-

ator is intimately involved with establishing the epige-

netic landscape essential for pluripotency and stem cell

maintenance. In this context, super-enhancer-regulated

genes, which contain high levels of Mediator, may be

especially sensitive to Mediator levels and/or complex

organization.
EXPERIMENTAL PROCEDURES

Mutant and Transgenic Zebrafish Lines
Zebrafish were housed and handled as per Canadian Council on

Animal Care and Hospital for Sick Children Laboratory Animal

Services guidelines. The s231 allele of med14 (Jin et al., 2007),

hsp70:EGFP (Halloran et al., 2000), and Ola.Actb:Hsa.HRAS-

EGFPvu119 (Cooper et al., 2005) lines have been previously

described.m628 andm673 were acquired from the Zebrafish Inter-

national Resource Center (ZIRC). We generated hsp70:med14,

cryaa:EGFPhsc10, and myl7:med14, cryaa:EGFP transgenics using

standard Tol2 transgenesis (Kawakami, 2005). Full-length zebrafish
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med14 coding sequence was subcloned downstream of a hsp70

(Halloran et al., 2000) ormyl7/cmlc2 (Huang et al., 2003) promoter

between minimal Tol2 transposon arms (Urasaki et al., 2006) in

a pBluescript backbone vector carrying a cryaa:EGFP cassette (Kur-

ita et al., 2003). Heat shock was performed for 30 min in 37�C
media. Tg(myl7:nlsDsRedExpresshsc4) embryos were used to quan-

tify cardiomyocyte number as previously described (Takeuchi

et al., 2011).

Positional Cloning of log
Mutant embryos collected from incrosses of heterozygous

breeding pairs from a logs231/WIK mapcross were screened for

recombination at two flankingmarkers (Z45039 and Z9112). Addi-

tional simple sequence length polymorphism (SSLP) markers were

designed based on genomic dinucleotide repeats. Recombinant

mutant embryos were screened with these markers to further nar-

row the genomic region. Coding sequence of candidate genes

within the region were cloned by RT-PCR and sequenced to un-

cover mutations in s231, m628, and m673 alleles.

Morpholino and mRNA Microinjections,

Transplantation
For rescue/overexpression analysis, full-length WT or mutant

(s231, m628, m673) med14 coding sequence was subcloned into

pCS2+ vector for in vitro transcription using the mMESSAGE

mMACHINE kit (Applied Biosystems) and injected at 300 pg per

embryo. Amed14morpholino targeting the ATG translational start

site (50-CCGAACCGATCTGAACTGGAGCCAT-30) was purchased

from Gene Tools, with 6 ng injected per embryo. For transplanta-

tion experiments, donor embryos from a logm628+/�; Ola.Actb:

Hsa.HRAS-EGFPvu119 +/� cross were used, with cells transplanted

intomultiple regions ofWThost embryos at 4 hpf. Donor embryos

were kept paired with corresponding host embryos to identify log

mutant donors that were EGFP+’ve.

RNA ISH
RNA ISH using DIG-labeled antisense RNA probes was performed

as previously described (Pearson et al., 2009; Thisse and Thisse,

2008). Fluorescent ISH (FISH) in planarians using the alkaline

phosphatase (AP) substrate Fast Blue was performed as previously

described (Cowles et al., 2013). Probe fragments used are described

in Supplemental Information.

Microarray Analysis of Gene Expression
Two-color microarray experiments were performed by the

UHN Microarray Facility using the Zebrafish (v.3) 44 k Gene

Expression Microarray Platform (Agilent). cDNA was generated

from total RNA isolated from pools of 20 WT or m628 mutant

embryos at 54 hpf, with two biological replicates used. Micro-

array results were analyzed using Genespring v.11.0.1 (Agi-

lent), with data normalized using Agilent’s Spatial Detrending

and Lowess normalization. After normalization and averaging,

data were filtered such that only probes that were between the

20th and 100th percentile of the distribution of intensities in

both samples for either group were kept. Statistical significance

for differential expression between sample groups was set at

p < 0.05.
rs



Quantitative Real-Time PCR and RNA Quantification
Reverse transcription reactions were conducted on total RNA

extracted from 10 embryos using a SuperScript III Reverse Tran-

scriptase Kit (Invitrogen). Quantitative real-time PCR was per-

formed in triplicate using an Applied Biosystems Real-time PCR

system (Life Technologies) with Platinum SYBR Green PCR

Master Mix (Invitrogen). For relative quantification of med14 (SE:

CAGAGACTGTGTTCGCATCA, AS: TCAGACAGAACTGCACATT

CC), the comparative CT method was used (Schmittgen and Livak,

2008). Primer pairs for ubiquitously expressed b-actin were used as

a reference (Tang et al., 2007). Methods for analysis of mean

normalized expression (Bower et al., 2007) are described in the

Supplemental Information. For mRNA quantification, total RNA

was extracted from 3.25 dpf WT and log mutant embryos using

Trizol. Poly AmRNAwas then isolated from0.1mg of total RNAus-

ing a QIAGEN Oligotex mRNA mini kit (QIAGEN), followed by

quantification using a Nano-Drop spectrophotometer (Thermo

Scientific).

Apoptosis, Proliferation, and Cell Cycle Assays
Apoptotic cells were detected in zebrafish embryos using an In Situ

Cell Death Detection Kit-AP (Roche). For cell proliferation experi-

ments, embryos were incubated on ice for 10 min in 10-mM bro-

modeoxyuridine (BrdU) (Sigma) in 15% DMSO. Mouse anti-BrdU

(BD Biosciences) primary and Alexa Fluor 568 anti-mouse second-

ary (Invitrogen) antibodies were used. Whole-mount terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)

staining was carried out in planarians as previously described (Pel-

lettieri et al., 2010).

Flow Cytometry Analysis
Single-cell suspensions were fixed in ethanol and stained with pro-

pidium iodide (0.1 mg/ml in Hank’s balanced salt solution [HBSS]

with 0.6%NP40 and 2mg/ml RNase A) for 30min at room temper-

ature. A FACSLSRII flow cytometer (BD Biosciences) was used, with

data analyzed using FlowJo software (Tree Star). Three samples

were run for both conditions (wild-type and mutant) at each

time point (54 and 78 hpf).

Immunohistochemistry
A 1:100 dilution of rhodamine phalloidin (Life Technologies) was

used in zebrafish. Immunostaining with anti-phosphohistone H3

(H3ser10p, 1:500 dilution; Millipore) with a 1:200 dilution of a

goat anti-rabbit IgG HRP secondary antibody (Jackson ImmunoR-

esearch) to labelmitotic cells in planarians andmonoclonalmouse

anti-PIWI (1:1000, gift from JochenRink) with a 1:300 dilution of a

goat anti-mouse HRP secondary antibody (Jackson ImmunoRe-

search) to label stem cells was performed as previously reported

(Newmark and Sánchez Alvarado, 2000). For detection of the pres-

ence of hemoglobin, PFA-fixed zebrafish embryos were stained in

the dark for 10min in PBS containing o-Dianisidine dihydrochlor-

ide (0.6 mg/ml; Sigma), sodium acetate (0.01 M, pH 4.5), H2O2

(0.65%), and ethanol (40%).

Planarian RNAi andHomeostasis/Regeneration Assays
The asexual clonal line CIW4 of S. mediterranea was maintained

as previously described (Sanchez Alvarado and Newmark, 1998).
Stem
For production of dsRNA for RNAi experiments, a pRT4P vector

containing either full-length (med14) or partial (remaining

Mediator subunits) cDNA was expressed in a HT115 bacterial

strain as previously reported (Sánchez Alvarado and Newmark,

1999). RNAi food was made by mixing a pellet of dsRNA-ex-

pressing bacteria from 30 ml of culture (OD600 of 0.8) with

300 ml of 70% liver paste. For both homeostasis and regenera-

tion assays, RNAi food was fed to worms every 3 days for three

feedings. Animals were amputated into three equal pieces

3 days after the last feeding (3fd3). For zebrafish regeneration

assays, fin primordia of anesthetized embryos were cut immedi-

ately posterior to the notochord at 48 hpf using a number 17

(square ended) scalpel blade as previously described (Kawakami

et al., 2004).
ACCESSION NUMBERS

MIAME-compliant microarray data have been submitted to Gene

Expression Omnibus under accession number GSE58042.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and two figures and can be found with this article on-

line at http://dx.doi.org/10.1016/j.stemcr.2015.02.006.

AUTHOR CONTRIBUTIONS

J.T.A.B., B.J.P., and I.C.S. conceived and designed the experiments.

J.T.A.B. performed the experiments. J.T.A.B., B.J.P., and I.C.S. wrote

the paper.

ACKNOWLEDGMENTS

We thankmembers of the Scott, Pearson, and Ciruna labs for help-

ful suggestions and Angela Morley for zebrafish husbandry. Shu

Jun Zhu and David Brown provided expert help with planarian

experiments. BrianCiruna provided guidance for germline replace-

ment studies, and Xin Lou aided in cardiomyocyte counts. Carl Vi-

tanen (UHN Microarray Facility) aided in analysis of microarray

data, and Sherry Zhao (SickKids-UHN Flow Cytometry Facility)

helped with fluorescence-activated cell sorting. We thank Brian

Ciruna for providing Ola.Actb:Hsa.HRAS-EGFP zebrafish and the

ZIRC for providing m628 and m673 alleles. Anti-SMEDWI-1 anti-

body was a kind gift of Jochen Rink. This work was supported by

grant funding from the Ontario Institute for Cancer Research (to

B.J.P., number IA-026) and the Natural Sciences and Engineering

Research Council of Canada (to I.C.S., RGPIN 341545).

Received: May 30, 2014

Revised: February 10, 2015

Accepted: February 11, 2015

Published: March 12, 2015
REFERENCES

Adler, A.S., McCleland, M.L., Truong, T., Lau, S., Modrusan, Z.,

Soukup, T.M., Roose-Girma, M., Blackwood, E.M., and Firestein,
Cell Reports j Vol. 4 j 670–684 j April 14, 2015 j ª2015 The Authors 681

http://dx.doi.org/10.1016/j.stemcr.2015.02.006


R. (2012). CDK8 maintains tumor dedifferentiation and embry-

onic stem cell pluripotency. Cancer Res. 72, 2129–2139.

Andrau, J.C., van de Pasch, L., Lijnzaad, P., Bijma, T., Koerkamp,

M.G., van de Peppel, J., Werner, M., and Holstege, F.C. (2006).

Genome-wide location of the coactivator mediator: Binding

without activation and transient Cdk8 interaction on DNA. Mol.

Cell 22, 179–192.

Apostolou, E., Ferrari, F., Walsh, R.M., Bar-Nur, O., Stadtfeld, M.,

Cheloufi, S., Stuart, H.T., Polo, J.M., Ohsumi, T.K., Borowsky,

M.L., et al. (2013). Genome-wide chromatin interactions of the

Nanog locus in pluripotency, differentiation, and reprogramming.

Cell Stem Cell 12, 699–712.

Autran, D., Jonak, C., Belcram, K., Beemster, G.T., Kronenberger, J.,
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