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Spatial attention 
and representation of time 
intervals in childhood
Barbara Magnani1*, Alessandro Musetti2 & Francesca Frassinetti3,4

Spatial attention and spatial representation of time are strictly linked in the human brain. In young 
adults, a leftward shift of spatial attention by prismatic adaptation (PA), is associated with an 
underestimation whereas a rightward shift is associated with an overestimation of time both for visual 
and auditory stimuli. These results suggest a supra-modal representation of time left-to-right oriented 
that is modulated by a bilateral attentional shift. However, there is evidence of unilateral, instead of 
bilateral, effects of PA on time in elderly adults suggesting an influence of age on these effects. Here 
we studied the effects of spatial attention on time representation focusing on childhood. Fifty-four 
children aged from 5 to 11 years-old performed a temporal bisection task with visual and auditory 
stimuli before and after PA inducing a leftward or a rightward attentional shift. Results showed that 
children underestimated time after a leftward attentional shift either for visual or auditory stimuli, 
whereas a rightward attentional shift had null effect on time. Our results are discussed as a partial 
maturation of the link between spatial attention and time representation in childhood, due to 
immaturity of interhemispheric interactions or of executive functions necessary for the attentional 
complete influence on time representation.

The purpose of the present work is to study the functional link between spatial attention and the spatial rep-
resentation of time in children. The study of how the spatial representations are modulated by shifting spatial 
attention has allowed a finer and finer comprehension of the cognitive features of spatial representations. Regard 
the representation of magnitudes (as numbers or time) the literature converges that it is cognitively structured 
as a line ascending ordered from left to right and that a shift of spatial attention modifies such a representation 
according to the side of the attentional shift1.

One of the main techniques to obtain a lateralized shift of spatial attention is prismatic adaptation (PA)2. This 
technique is widely used because it induces an involuntary, endogenous and covert attentional shift toward a 
side of space by means of a visuo-motor adaptation procedure3–5. Even if the PA procedure is principally visuo-
motor, the effects of PA are widely demonstrated on high-order spatial representations6–9. In healthy adults, the 
effects of a leftward and a rightward shift by PA on both visual and auditory temporal intervals with a paradigm 
in which subjects verbally judged stimuli durations were investigated10. Authors found that a leftward attentional 
shift modifies time representations toward an underestimation and a rightward attentional shift toward an 
overestimation11,12 both for visual and auditory stimuli10. These results suggested that a shift of attention by PA, 
in both left and right direction, induces a modification of time spatial representation at a supra-modal level10.

An explanation of these effects is that the attentional shift provoked by the visuo-motor adaptation procedure 
enhances the cortical excitability of the hemisphere contralateral to the side of the shift. Such an enhance of 
hemispherical excitability, that in adulthood can be obtained specularly for both hemispheres, would induce a 
cognitive reorganization of the contralateral part of the spatial representation13,14.

However, these symmetrical effects of PA deviations were not found in elderly subjects. In participants with 
an average age of 65 years-old, a leftward attentional shift induced an underestimation of time while a rightward 
attentional shift was ineffective on time15. This asymmetry can be explained by a faster age-related decline of the 
right than the left hemisphere16 that can result in a hemispheric unbalanced excitability affecting spatial repre-
sentations. In support, spatial bias are frequently demonstrated in elderly17 in the visual attention orientation18, 
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in line bisection task19 and in mental time travel task that involves a spatial representation of time20. Since PA 
acts rebalancing asymmetric deficit of spatial attention (see PA effects on time in neglect patients13), in the case 
of unbalanced hemispheric excitability due to a right hemispheric decline, PA could enhance the excitability of 
the right less efficient hemisphere (by a leftward attentional shift).

Following data on PA effects on time in young and elderly adults, the aim of the present study is to investigate 
the effects of PA on time across childhood when attentional processes, spatial cognition and time processing are 
not yet completely developed in all their components21,22. Even if we have evidence that infants adapt to prisms23 
and that they represent time as a line ascending ordered from left to right24,25, the effects of a shift of spatial 
attention by PA on such representation are unknown in this population. The investigation of the functional link 
between spatial attentional shift and time representation in children can integrate data on attention and time in 
children and adults shedding light on maturational implications of such a link and, taken together with elderly 
persons data, of hemispherical lateralization for spatial representation of time in the lifespan.

To investigate PA effects on time in childhood, participants from 5 to 11 years old, attended a time bisection 
task with verbal response, on visual and auditory stimuli before and after a session of (PA) with a rightward and 
leftward deviation inducing, respectively, a leftward or a rightward shift of attention. First of all, accordingly with 
literature, performance in the temporal bisection task is expected to improve from youngest to oldest children26,27. 
Second, regarding PA effects on time, if the functional link between spatial attention and time representation 
is mature, an underestimation or overestimation after a leftward or rightward attentional shift respectively, for 
visual and auditory stimuli, is expected. By contrast, if the link between spatial attention and time representation 
is not complete, due to immature anatomical and functional mechanisms subtending these functions, differences 
in ages, spatial attentional shift and/or modalities are expected.

Results
Effect of prismatic adaption on time bisection task: point of subjective equality (PSE).  Left-
ward aftereffect.  The ANOVA on PSE with Age as between-groups variable and Modality and Condition as 
within-subject variables, revealed a significant effect of Condition [F(1,24) = 12.241, p < 0.01, ηp2 = 0.338] indicat-
ing an underestimation of time after-PA relative to before-PA (2131 ms vs 1978 ms, see Fig. 1A). The effect of Age 
(p = 0.89), its interaction with Condition (p = 0.56) or Modality (p = 0.49), the interaction Condition x Modality 
(p = 0.84) and the threefold interaction (p = 0.59) were not significant indicating a similar influence of the left-
ward aftereffect on time for all ages and modalities.

Rightward aftereffect.  The ANOVA revealed no significant effect of Condition (p = 0.62 see Fig. 1B for values), 
Age (p = 0.93) or interactions among variables (p > 0.21 for all comparisons) indicating that the rightward afteref-
fect does not induce any modulation of time in any group or modality.

When the leftward and rightward aftereffects were compared by an ANOVA with Aftereffect and Age as 
between-groups variables and Modality and Condition as within-subjects variables the main effect of Modality 
[F(1,48) = 6.412, p < 0.05, ηp2 = 0.118] was significant. Visual stimuli (2054 ms) were underestimated relative to 
auditory stimuli (1963 ms). Condition [F(1,48) = 4.792, p < 0.05, ηp2 = 0.091] and the interaction between Condi-
tion and Aftereffect [F(1,48) = 8.312, p < 0.01, ηp2 = 0.148] were also significant. Values confirmed an increase of 
PSE after the leftward (2131 ms) but not rightward (1954 ms) aftereffect relative to before PA (leftward: 1978 ms; 
rightward: 1974 ms). No other interactions were significant (p > 0.13 for all comparisons).

Effect of prismatic adaption on accuracy in time interval discrimination: Weber ratio 
(WR).  Leftward aftereffect.  The variable Age was significant [F(2,24) = 8.134, p < 0.01, ηp2 = 0.404], showing 
a better time discrimination with increasing age, since WR was lower in late-children (0.207) than in children 
(0.294) and in early-children (0.366, p < 0.001 for all comparisons). The effect of Modality was also significant 
[F(1,24) = 13.151, p < 0.01, ηp2 = 0.354]: time discrimination was better for auditory (0.247) than for visual stimuli 

Figure 1.   The graph represents the PSE mean values of Condition (Before PA; After PA) for the analysis on 
the leftward (A) and rightward (B) aftereffect. Error bars indicate standard errors of means. *Symbol indicates 
p < 0.05.
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(0.332). No significant effects of Condition (p = 0.27, Fig. 2A for values) and interactions among variables were 
found (p > 0.29 for all comparisons).

Rightward aftereffect.  Again, the variable Age was significant [F(2,24) = 12.597, p < 0.001, ηp2 = 0.512], showing 
a better time discrimination with increasing age, since WR was lower in late-children (0.176) than in children 
(0.327) and in early-children (0.489, p < 0.001 for all comparison). The effect of Modality was also significant 
[F(1,24) = 8.788, p < 0.01, ηp2 = 0.268]: time discrimination was better for auditory (0.260) than for visual stimuli 
(0.402). An interesting significant effect of Condition was found [F(1,24) = 6.748, p < 0.05, ηp2 = 0.219] since time 
interval discrimination was worst after PA than before PA (0.395 vs 0.266 see Fig. 2B).

When the leftward and rightward aftereffects were compared by an ANOVA with Aftereffect and Age as 
between-groups variables and Modality and Condition as within-subjects variables, no interactions among 
variables were significant (p > 0.08).

Prismatic adaptation: error reduction and aftereffect.  Error reduction.  The ANOVA on the right 
prismatic deviation, inducing a leftward aftereffect, revealed a significant effect of Condition [F(2,23) = 11.900, 
p < 0.001, ηp2 = 0.509] but not of Age or interaction between variables (p > 0.71 for all comparisons). The result 
indicates that, independent on the participants’ age, the pointing displacement in the first three trials of the ex-
posure condition (1.248°) is different from the pointing displacement in the pre-exposure condition (− 0.004°) 
and in the last three trials of the exposure condition (0.026° see Fig. 3A). Similarly, the ANOVA on the left 
prismatic deviation, inducing a rightward aftereffect, revealed a significant effect of Condition [F(2,23) = 15.776, 
p < 0.001, ηp2 = 0.578] but not of Age or interaction between variables (p > 0.30 for all comparisons). The result 
indicates that, independent on the participants’ age, the pointing displacement in the first three trials of the ex-
posure condition (− 1.585°) is different from the pointing displacement in the pre-exposure condition (0.007°) 
and in the last three trials of the exposure condition (− 0.015°, see Fig. 3B).

Aftereffect.  The ANOVA on the leftward aftereffect revealed a significant effect of Condition [F(1,24) = 136.500, 
p < 0.001, ηp2 = 0.850] but not of Age or interaction between variables (p > 0.48 for all comparisons). The result 

Figure 2.   The graph represents the Weber ratio mean values of Condition (Before PA; After PA) for the 
analysis on the leftward (A) and rightward (B) aftereffect. Error bars indicate standard errors of means. *Symbol 
indicates p < 0.05.

Figure 3.   Visible pointing. Error reduction. Displacement of the visible pointing, expressed in degrees of visual 
angle (°), for right (A) and left (B) prismatic deviation in the pre-exposure condition, in the first three and the 
last three trials of the exposure condition. Error bars represent standard errors of means. *Symbol indicates 
p < 0.05.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:14960  | https://doi.org/10.1038/s41598-020-71541-6

www.nature.com/scientificreports/

indicates that the pointing displacement in the post-exposure condition (− 3.582°) is different from the pointing 
displacement in the pre-exposure condition (− 0.311° see Fig. 4A).

Similarly, the ANOVA on the rightward aftereffect revealed a significant effect of Condition [F(1,24) = 152.810, 
p < 0.001, ηp2 = 0.864] but not of Age or interaction between variables (p > 0.09 for all comparisons). The result 
indicates that the pointing displacement in the post-exposure condition (2.119°) is different from the pointing 
displacement in the pre-exposure condition (− 0.330°, see Fig. 4B).

Discussion
Here we investigated whether the functional link between spatial attention and spatial representation of time is 
complete in childhood as in adulthood. Specifically, we investigated whether a shift of spatial attention obtained 
by a visuo-motor adaptation procedure (PA) affects a supra-modal left-to-right representation of time intervals. 
Children were submitted to a time bisection task with verbal response on visual and auditory stimuli before and 
after a session of PA shifting spatial attention to the left or to the right.

The first, novel and interesting result is that in children from 5 to 11 years-old only the leftward shift of spatial 
attention induced an underestimation of time whereas a rightward shift had no effect on time. Similarly, in a 
previous work on children of the same age, an underestimation of time for stimuli presented on the left, but not 
an overestimation of stimuli presented on the right was found24.

Such an asymmetrical lateralized effect is different from the bilateral effects of PA on time found in young 
adults10,11. Interestingly, this result parallels that found in healthy elderly persons, showing an underestimation 
of time after a leftward attentional shift and the null effect of a rightward attentional shift15. Taken together, 
data on population of different ages suggest that the effects of spatial attention on time representation follows 
a U slope, from childhood to seniority, with the minimum gradient of asymmetrical lateralized PA effects on 
time in adulthood. Two not in contrast explanations for this lateralization gradient of PA effects on time in the 
lifespan can be advanced.

It is possible that PA rebalances the asymmetry of interhemispheric excitability, enhancing the excitability 
of the right hemisphere13,14. This asymmetry could be due to low maturation in childhood, or high decline in 
seniority, of the right relative to the left hemisphere28–31. In this respect, it has been shown that the left hemisphere 
develops faster than the right one28. Interestingly, in the age range from 5 to 11 years old, it is demonstrated an 
increase of thickness, an indicator of maturation, in the frontal and temporo-parietal areas in the left hemisphere 
and a spread thinning, an indicator of low maturation, of the frontal and parieto-occipital areas in the right hemi-
sphere. This indicates a preference for the expansion of language networks in this age period instead of spatial 
attentional networks28. Moreover, interhemispheric excitation-inhibition fully functioning processes have been 
demonstrated in adults but not in children32 and aged persons33. A speculation could be that in young-adults 
the interhemispheric excitability is symmetric and an attentional shift affects spatial representations activating 
both the hemispheres. In children and elderly people, the interhemispheric excitability is asymmetric and an 
attentional shift modulates spatial representations when it activates mainly the right hemisphere. A result of the 
present work in favor of an effect of PA in the rebalancing of a pre-existent inter-hemispheric unbalance is that 
the rightward aftereffect induced a worsening of the accuracy in time discrimination (measured as Weber ratio 
values). Since leftward prismatic lenses inducing rightward aftereffect enhance the left hemisphere excitability14, 
this could result in an enhanced inter-hemispheric unbalance in children. We can speculate that this prismatic 
deviation, not only has a null effect on the spatial representation of time but also plays against basic time process-
ing making the raw representation of durations noisier34 than before PA.

The second explanation can integrate with the latter and refers to the developmental trajectory of executive 
functions necessary for the manipulation of spatial representations by means of the attentional shift. Children 
between 5 and 9 years-old and elderly from 59 years-old, present with a low efficiency of executive functions 
due to a not complete maturation or to a decline of these functions, respectively17. The low efficiency in execu-
tive functions can fail to contrast the effects on cognitive processes induced by the asymmetric hemispheric 

Figure 4.   Invisible pointing. Aftereffect. Displacement of the visible pointing, expressed in degrees of 
visual angle (°), for right and left prismatic deviation inducing a leftward (A) and a rightward (B) aftereffect 
respectively, in the pre-exposure and post-exposure condition. Error bars represent standard errors of means. 
*Symbol indicates p < 0.05.
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excitability. By contrast, in condition of maximum executive efficiency, as in young adults (from 19 to 32 years-
old17), these effects are reduced. In support, it was found that children, as elderly people, tend to put their 
attention preferably to the left of space35,36 and to bisect lines toward the left relative to the midpoint37. More 
interestingly, children and elderly people showed greater lateralized spatial bias on a number bisection task when 
the task required the inhibition of a distractor stimulus38.

Another worthy finding of the present study is a general tendency to underestimate visual time relative to 
auditory time. The underestimation of time for visual relative to auditory stimuli in adults as in children is well 
documented in time literature26,39–43. The most accredited interpretation is that the speed of the pacemaker-
accumulator module of time processing44 is faster for audition than for vision40. This means that this module 
accumulates more pulses in the time unite for auditory than for visual stimuli resulting in a longer estimation 
judgment of the to-be-timed interval. The accumulation of more pulses in the time unit makes the sensitivity 
for auditory time higher than for visual time at all ages43 as confirmed by our data. What is interesting here is 
that, despite differences in the rate of pulses accumulation and in the sensitivity for visual and auditory stimuli, 
a shift of spatial attention modulates time perception regardless of modality in children from 5 to 11 years-old. 
This favours the hypothesis that PA affects high and not low orders of time representation, that are supra-modal 
in nature12. Our new finding on children extends that found in adults10 pointing out the presence of a high-order 
cognitive spatial representation of time even at an early stage of cognitive development.

Finally, a result that is worthy to discuss is that children’s time interval discrimination accuracy improves 
with age as widely accepted in literature independent on modality43, on stimuli duration range or paradigms 
adopted24,34,45. However, the effects of PA is not different in the three age groups, suggesting that the specific 
pattern of lateralized effects of PA on time remains stable across all childhood. Although data on adolescents are 
missing in literature and we just know data on young adults (mean, 25 years-old)10,11 it is possible to speculate 
that, to obtain complete bilateral effects of spatial attention on time representation, the brain needs the complete 
maturation of executive strategies to contrast asymmetrical hemispheric excitability that would be reached with 
adolescence neuro-maturation.

Methods
Participants.  The sample consisted of 54 right-handed children with no diagnosis of neurological or psy-
chological diseases recruited from four infancy and primary schools situated in the northern Italy (Emilia 
Romagna). Sample size for the analysis (repeated measure ANOVA, within factors) was determined a priori 
by conducting a power analysis using G*Power 3.0.10. A small to medium effect size (ηp2 = 0.194) was speci-
fied. Within our chosen sample size and effect size, the power (1 − β) was approximately 0.80 and the criti-
cal F was 4.030 (see also46). The sample was composed by three groups of children with different ages: eight-
een 5-to-6 years-old children (early-children-group, 10 boys, age mean = 5.39 years, SD = 0.50 years); eighteen 
7-to-8  years-old children (children-group, 6 boys, age mean = 7.22  years, SD = 0.55  years, years of education 
mean = 1.94, SD = 0.23 years); eighteen 9-to-11 years-old children (late-children, 6 boys, age mean = 10.06 years, 
SD = 0.87 years, years of education mean = 4.61, SD = 0.61 years). All parents of the involved children signed 
informed consent and all children were naïve as to the purpose of the study. The study, inserted in a project titled 
“Time in the developmental age” was approved by the Ethics Committee of the Department of Psychology of 
Bologna and it is conform to the Declaration of Helsinki.

All participants of the three age groups (early-children, children and late-children) performed the time 
bisection task for both visual and auditory modality before and after a session of PA. The order of visual and 
auditory task was counterbalanced among subjects. Half participants were submitted to PA inducing a leftward 
aftereffect and the other half were submitted to PA inducing a rightward aftereffect. Children were randomly 
assigned to the “leftward aftereffect” group or to the “rightward aftereffect” group. Comparing the mean age of 
the leftward and the rightward aftereffect groups, by using 2-tailed independent samples t-test, no significant 
differences between the two groups emerged (early-children, Mage = 5.4 vs 5.3 years, p = 0.68; children, Mage = 7.2 
vs 7.2 years, p = 1.00; late-children, Mage = 10.0 vs 10.1 years, p = 0.78).

Procedure.  Time bisection task.  Subjects sat facing a Personal Computer, at a distance of 60 cm. Two mo-
dalities specific kinds of stimuli were presented. Visual stimuli were black circumferences (diameter = 4  cm) 
on a white background presented at the centre of the computer screen which got fully black for 5 variable time 
intervals (1400 ms, 1700 ms, 2000 ms, 2300 ms, 2600 ms). Auditory stimuli were FA tones (349 Hz) during one 
of 5 variable time intervals (1400 ms, 1700 ms, 2000 ms, 2300 ms, 2600 ms).

In the training phase, subjects were initially presented with the “short” interval (1400 ms) and the “long” 
interval (2600 ms) for one of two modalities (visual or auditory). After the first presentation, they were trained 
to classify stimuli as “short” or “long” with verbal responses. The training phase concluded when the percentage 
of correct responses on 20 trials (10 for “short” and 10 for “long” interval) was at least 80%.

In the test phase, subjects were presented with all 5 probe-intervals (1400 ms, 1700 ms, 2000 ms, 2300 ms, 
2600 ms). In this phase, 50 trials (10 for each time interval) were presented in a random order. Subjects were 
required to classify stimuli as “short” or “long” with verbal responses.

Prismatic adaptation.  Subjects were seated at a table in front of a box (height = 30 cm, depth = 34 cm at the cen-
tre and 18 cm at the periphery, width = 72 cm) that was open on the side facing the subjects and on the opposite 
side, facing the experimenter. The experimenter placed a visual target (a pen) at the distal edge of the top surface 
of the box, in one of three possible positions (randomly determined on each trial): a central position (0°), 21° to 
the left of centre, and 21° to the right of centre. For each target placement, subjects performed the pointing task. 
It consisted in keeping their right hand at the level of the sternum and then pointing toward the pen using the 
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index finger of the same hand; the experimenter recorded the end position of the subject’s pointing direction. 
In the invisible pointing trials, the arm was totally covered by a black sheet and the subjects did not see any part 
of the trajectory of the arm. In the visible pointing trials, the arm was covered only in the proximal part and the 
subjects could see the last third of the trajectory of the pointing movement.

The three conditions of the pointing task (as analysed in the Results section) were structured as follow. Pre-
exposure condition: 60 trials, 30 in visible pointing and 30 in invisible pointing. Exposure condition: 90 trials in 
visible pointing; subjects wore prismatic lenses that induced a 10° shift of the visual field to the right or to the 
left. Post-exposure condition: 30 trials in invisible pointing; immediately after removal of the prisms.

Statistical analysis.  Time bisection task.  To verify the effects of PA on time bisection, for each prismatic 
deviation (inducing a leftward or a rightward aftereffect) an ANOVA, on PSE and WR values, was conducted 
with Age (early-children; children; late-children) as between-groups variable and Modality (visual, auditory) 
and Condition (before-PA, after-PA) as within-subjects variables. Then, to explore a possible interaction be-
tween the condition and aftereffect deviation we also conducted an ANOVA on PSE and WR values with After-
effect (leftward vs rightward) and Age (early-children; children; late-children) as between-groups variables and 
Modality (visual, auditory) and Condition (before-PA, after-PA) as within-subjects variables. For all ANOVAs, 
post-hoc analysis was conducted where necessary with the Duncan test and the effect size was reported as partial 
eta square.

To calculate PSE, the percentage of “long” responses for all probe-durations (1400 ms, 1700 ms, 2000 ms, 
2300 ms, 2600 ms) was considered for each subject in the visual and auditory temporal bisection task. Then, we 
plotted the percentage of “long” responses as a function of stimulus durations and, by means of a syntax built on 
SPSS 25 version, we computed the logistic regression47 using the following formula: y = a/(1 + exp(− k*(x − xc)). 
This allows us to calculate the PSE as the “difference limen”, that is half the difference of the duration classified 
as "long" on 75% of trials and that classified as "long" on 25% of trials). In more simple words, PSE is a measure 
of the signal duration at which “short” or “long” responses occur with equal frequency (percentage of “long” 
responses = 50%). In our paradigm, the objective stimulus duration representing the medium point between the 
short and long reference duration was 2000 ms. A PSE value below 2000 ms reflects duration overestimation 
(i.e., durations are perceived longer than they actually are) since the PSE decreases when the percentage of long 
responses increases. Whereas, a PSE value above 2000 ms reflects duration underestimation (i.e., durations are 
perceived shorter than they actually are) since the PSE increases when the percentage of long responses decreases 
(see Fig. 5 for a graphical representation).

To calculate the WR values, for each test phase of each subject in the visual and auditory temporal bisec-
tion task we plotted the same percentage of “long” responses as a function of stimulus durations as for the PSE 
calculation. Then, we computed the “different limen” divided by the correspondent PSE. The WR represents a 
measure of the subjects’ accuracy in the discrimination between two stimuli. Here, it is an index of individual’s 
sensitivity to time that is the ability to discriminate time intervals with little difference between each other. High 
and low WR indicates low and high temporal sensitivity, respectively47.

Prismatic adaptation.  To ensure that pre-PA/post-PA differences in time bisection task were due to the PA 
procedure we assessed the presence of both error reduction and aftereffect.

Figure 5.   Graphical representation of distributions of percentage (%) of long responses in the five experimental 
intervals (1400, 1700, 2000, 2300, 2600 ms) expressed in milliseconds (ms). The graph shows that for a 
distribution of high percentage of “long” responses (overestimation) the point of subjective equality (PSE), 
indicated as PSE 1, is lower than for a distribution of low percentage of “long” responses (underestimation—PSE 
2).
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To verify that participants showed error reduction, we conducted an ANOVA, for each prismatic deviation, on 
the mean displacement (expressed as degrees of visual angle) of participants’ visible pointing, with Age (early-
children, children and late-children) as a between-group variable and Condition (pre-exposure condition, first 
three trials of the exposure condition, last three trials of the exposure condition) as a within-subjects variable 
(more details on this procedure3).

To verify the presence of an aftereffect, we compared participants’ displacement during invisible pointing in 
the pre-exposure and post-exposure conditions. An ANOVA, for each aftereffect direction, was conducted on 
the mean displacement of invisible pointing responses with Age (early-children, children and late-children) as 
a between-group variable and Condition (pre-exposure vs post-exposure) as a within-subjects variable.

Post-hoc comparisons, if necessary, were conducted using the Duncan test. Effect size is reported as partial 
eta square.
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