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The number of travel-acquired dengue infections has been on a constant rise in the United States and Europe over the past
decade. An increased volume of international passenger air traffic originating from regions with endemic dengue contributes to the
increasing number of dengue cases. This paper reports results from a network-based regression model which uses international
passenger travel volumes, travel distances, predictive species distribution models (for the vector species), and infection data to
quantify the relative risk of importing travel-acquired dengue infections into the US and Europe from dengue-endemic regions.
Given the necessary data, this model can be used to identify optimal locations (origin cities, destination airports, etc.) for dengue
surveillance. The model can be extended to other geographical regions and vector-borne diseases, as well as other network-based
processes.

1. Introduction

Dengue is the most common mosquito-borne viral diseases
in the world [1]. Although it is not currently endemic to
either Europe or the continental United States, except along
the Texas-México border and possibly Florida, an increase in
dengue occurrence in many of the endemic regions world-
wide, in conjunction with a significant rise in the volume of
international air travel, has resulted in a greater likelihood
of imported dengue infections among travelers returning to
the United States and Europe from dengue-endemic regions
[2]. It has also increased the potential for transport and
establishment of the mosquito vector species in those regions
of Europe and the US in which suitable habitat is available.

The causal agent for dengue is a virus that is transmitted
from person to person through the bite of infected Aedes
mosquitoes (mainly Ae. aegypti and Ae. albopictus), with
humans serving as the main viral host [1]. The geographic

establishment of dengue is thought to be limited purely by
the occurrence of its principal vector mosquito species, Ae.
aegypti and Ae. albopictus. Both species have proven to be
highly adaptable to human habitation and, as a result, the
global spread of the vector has been difficult to contain
[1]. Dengue is considered endemic to urban and suburban
areas in parts of tropical and subtropical America, part of
Australia, South and Southeast Asia, the Pacific, and eastern
Africa. In addition, the number of imported cases of dengue
in the U.S. and Europe is on the rise and further spread and
establishment are anticipated [2, 3].

At present, there is no epidemiological surveillance on
a national scale in Europe or at the state level in the
U.S. [3]. Limiting the importation and establishment of
dengue will require dedicated surveillance measures, ideally
based on reliable models of vector presence and virus
incidence. This paper presents an extendible preliminary
model which prioritizes passenger air travel routes for high
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likelihood of importing infection into the U.S. and Europe
from dengue-endemic regions. Our network-level regression
model uses air traffic volumes, travel distances, predictive
species distribution models, and infection data, to quantify
the relative likelihood of importing infection along air travel
routes. More precisely, this paper has two goals.

(i) Development of a model that allows quantification
of the risk of dengue importation through specific
air travel routes, thus identifying locations at which
surveillance systems can optimally be implemented.

(ii) Prioritization of the type of data collection efforts
that must be undertaken to enhance the predictive
accuracy of such models.

Given the requisite data, our model can be used as a
prediction tool for assessing the risk of importing dengue-
infected humans or vectors via air travel based on origin-
destination pairs as well as to analyze the effects of changes
in passenger travel routes and volumes on spatial patterns of
infection spread.

The model compounds all modes of dengue infection
which can be caused by four virus serotypes (DENV-
1, DENV-2, DENV-3, and DENV-4), and can range in
clinical manifestation from asymptomatic infection to severe
systemic disease [1]. Dengue fever (DF) is the more common
manifestation of the virus (with an estimated 50 million
infections occurring annually world wide), while dengue
haemorrhagic fever (DHF) and dengue shock syndrome
(DSS) are rarer and much more severe manifestations of
the disease. The model presented in this paper does not
distinguish between DF, DHF, and DHS cases because the
data available do not permit a more fine-tuned analysis.

Although dengue is now rare in the U.S. and Europe, the
mosquito vectors are still present. At least one of the two
major vector species, Ae. aegypti or Ae. albopictus, is known
to have established populations in many U.S. states [3]. The
European Center for Disease Control [4] recently gathered
entomological and environmental data to map the current
distribution, as well as establishment risk, for Ae. albopictus
in Europe in the event of its introduction. It concluded that
temperate strains of this species already exist and are likely to
spread with new populations becoming established in several
parts of Europe [4].

Thus, imported cases of dengue via international travel
may potentially result in establishment of an autochthonous
disease cycle and new regional outbreaks in both the U.S.
and Europe. This can occur in at least two ways: (i) locally
established mosquito populations become infected from new
hosts (infected travelers) and then spread the disease; or (ii)
mosquitoes carrying the virus arrive at a new environment
suitable for them. This threat was exemplified recently in Key
West, Florida, which experienced sizeable local outbreaks of
autochthonous dengue transmission in 2009-2010 [5]. There
have also been dengue outbreaks in south Texas, along the
Texas-Tamaulipas border, but air travel is unlikely to have
had a role in these outbreaks [6].

Epidemics of dengue, their seasonality, and oscillations
over time, are reflected by the epidemiology of dengue in

travelers [2]. Modern transportation bridges the natural bar-
riers previously responsible for containing infected vectors
to a specific geographic region. For example, the global
movement of troops and cargo ships during World War
II facilitated the dissemination of Aedes mosquitoes and
resulted in substantial spread of the disease in Southeast
Asia [7]. Transportation of used tires has been shown to be
responsible for introducing Ae. albopictus into the U.S. from
Brazil in the 1980s [2].

Various studies have been conducted to identify the
highest travel risks. One survey conducted by the Euro-
pean Network on Imported Infectious Disease Surveillance
program [8], analyzed 294 patients with DF for epidemio-
logical information and clinical features. They found most
infections were imported from Asia [9]. Tatem et al’s.
[10] estimated the relative risk of the importation and
establishment of Ae. albopictus by sea and air routes, based
on normalized measures of traffic and climatic similarity,
and found a strong positive correlation between the historic
spread of Ae. albopictus (into new regions) and a high volume
of shipping (routed from ports where the species was already
established). The total volume of travel was determined by
the number of ship visits for sea travel and passenger volume
for air travel. The climatic similarity was calculated as a
distance-based vector.

Tatem et al. [10] approach can be extended through
quantitative validation of such models. While their work
provided insight into the vector importation and estab-
lishment process, model validation remained qualitative.
In this paper we extend that approach by complementing
qualitative risk analysis with quantitative model calibration
using infection data. Moreover, Tatem et al.’s approach
addressed the risk of importation and establishment of the
vector but not the likelihood of infection directly. Our
analysis takes infected individuals into account. Additionally,
we incorporate climatic factors using species distribution
models which are more robust than statistical correlational
analysis as relied upon by Tatem et al. This methodology has
become standard in disease ecology and epidemiology [11–
13].

2. Models and Methods

Our analysis quantifies the relative risk of dengue infected
(air travel) passengers entering currently nonendemic
regions in the U.S. and Europe at which dengue cases have
been recorded. However, it does not include the importation
of infected vectors since the influence of that possibility is yet
to be established [1, 2, 4]. This section further motivates the
problem and introduces a network-based regression model
for the risk analysis.

2.1. Imported Dengue in the United States and Europe. Nearly
all dengue cases reported in the 48 continental U.S. states
were acquired elsewhere by travelers or immigrants. From
January 1996 to the end of December 2005, 1196 cases of
travel-associated dengue were reported in the continental
U.S. [14] (most dengue cases in U.S. nationals occur in those
inhabitants of noncontinental U.S. territories such as Puerto
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Rico (with over 5000 cases reported in 2005), the U.S. Virgin
Islands, Samoa, and Guam, which are all endemic regions).
In 2007, an estimated 17 million passengers traveled between
the U.S. mainland and dengue-endemic areas of Asia, the
Caribbean, Central and South America, and Oceania [15].
Since 1999 there have been 1117 cases of dengue in European
travelers reported to the European Network on Imported
Infectious Disease Surveillance [8].

Further complications arise from the severe underesti-
mation of dengue cases due to underreporting and passive
surveillance in both endemic and non-endemic regions. In
tropical and subtropical countries where dengue fever is
endemic, under-reporting may be due to misdiagnosis, lim-
itations of the standard World Health Organization (WHO)
case classification, and lack of laboratory infrastructure and
resources, among other factors [16]. In non-endemic regions
such as the U.S. and Europe, the actual number of dengue
infections is greatly underestimated due to unfamiliarity with
the disease. Additionally, 40–80% of all dengue infections
are asymptomatic and closely mimic flu symptoms for which
they are mistaken. This lack of accurate infection data makes
it difficult to assess the actual threat of the disease.

2.2. Data. The species distribution models required data on
the geographical occurrence of Ae. aegypti and Ae. albopictus
and a suite of predictive environmental variables which will
be discussed in Section 2.3.

The required data for the network model were as follows.

(1) Disease data: annual infection reports for dengue-
endemic countries, non-endemic European countries
and U.S. states.

(2) Transportation data: passenger air traffic volumes
for all flights originating from endemic regions and
destined for Europe or the U.S.

(3) Spatial data: the corresponding distances for all travel
routes.

Unliess explicitly indicated otherwise, the data used in
this model were from 2005, and aggregated to the annual
level.

The set of dengue-endemic countries was as identified by
the CDC [17]. Country-level infection data for the endemic
regions and for European countries were obtained from the
regional offices of the World Health Organization [18]. U.S.
state level infection data was taken from the CDC [14]. These
data sets include the annual number of reported cases for
2005 and 2007, the average of which was used to calibrate the
model. Infection data were incorporated in the model in two
ways. The number of reported cases at an endemic region
was treated as an independent variable in the model, while
infection reports for the susceptible node sets (U.S. states and
E.U. countries) were used to calibrate the model.

Difficulties were encountered in acquiring the necessary
infection data. First, surveillance data for dengue in Africa
were sparse. Even though all four dengue virus serotypes
have been documented there [19], we were unable to secure
country-level infection data for most African countries.
Consequently, these endemic countries were ignored in the

model. Although model performance is likely to improve if
such data could be incorporated, available reports indicated
that Africa is responsible for a relatively small fraction of
travel-acquired dengue infections [20]; thus these countries
appear to be the unlikely to have a significant impact model
predictions. We were also unable to gather infection data for
certain endemic countries in the western Pacific region which
were similarly ignored and presumed not very relevant.

Transportation data were obtained from two sources. The
U.S. air traffic data were from the Research and Innovative
Technology Administration (RITA), a branch of the U.S.
Department of Transportation (U.S. DOT), which tracks
all domestic and international flights originating or ending
in the U.S. and its surrounding regions [21]. Passenger
market data was aggregated by World Area Code (WAC)
to determine the total volume of passengers traveling from
each endemic country into any U.S. state in 2005. A similar
analysis was done using passenger air traffic data from
Eurostat [22] to determine the volume of passengers flying
into each European Union country from each endemic
country. The transportation data used in this paper focus on
passenger travel volumes and do not include cargo flights on
which vectors could potentially be transported because the
latter mode of dengue spread was excluded from this model.

The average distances used in the model were calculated
in ArcGIS 9.3. The average distances were computed for each
route as the geodesic distance between the geographic centers
of each region.

2.3. Species Distribution Models. The risk for the establish-
ment of dengue and potential cases of disease in an originally
non-endemic area depends fundamentally on the ability of a
vector to establish itself in that area. If the vector can establish
itself then the disease can become endemic in two ways: (i)
if the vector is already established, it can become infected
from a person infected with dengue arriving in that area;
or (ii) infected vectors can be transported into such an area
and establish themselves. For this process, habitat in that
area must be ecologically suitable for that vector. A relative
measure of the suitability of one area compared to another
defines a measure of the relative ecological risk [11–13]. If
the ecological risk is low, such an establishment is highly
unlikely. If that risk is high, then other factors, such as the
(temporally) immediate ambient environmental conditions
and the size of the founder population or the availability of
hosts, become critical for establishment.

The analysis here was based on habitat suitability for
the two principal dengue vector species, Ae. aegypti and Ae.
albopictus. It was assumed that these two species do not
interact, that is, the probability of the presence of each is
independent of that of the presence of the other. The relative
ecological risk for the establishment for each species was
estimated using a global species distribution model at a 1
arc-minute resolution [23, 24] based on a maximum entropy
algorithm incorporated in the Maxent software package
Version 3.3.4, [25]. Maxent was used because it has proven
to be predictively superior to other species distribution
modeling algorithm in a large variety of studies [24, 26]. As
input, Maxent uses species occurrence points (presence-only
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data) and environmental layers (the explanatory variables).
The former were obtained from the Disease Vectors database
[27]. The latter consist of four topographic variables (eleva-
tion, aspect, slope, and compound topographic index) and
a standard set of 19 climatic variables all derived from the
WorldClim database [28, 29]. Models were constructed using
a variety of subsets of these environmental variables. All
computations used default settings [26]. Averages over 100
replicate models were computed. The best model was judged
using the Akaike Information Criterion (AIC) for species
distribution models. The best model for Ae. aegypti is one
that used all 23 explanatory variables; that for Ae. albopictus
is based on elevation, slope, aspect, maximum temperature
of warmest month, minimum temperature of coldest month,
precipitation of wettest month, and precipitation of driest
month. Details of the species distribution models will be
published separately in the epidemiological literature.

The output from Maxent consists of relative suitability
values between 0 and 1 which, when normalized, can be
interpreted as the probabilistic expectation of vector presence
of a species in a cell. The probabilistic expectation of at least
one of the vector species being present in a cell was calculated
as the complement of the probability that neither is present,
assuming statistical independence. Because the infection and
travel data used in this work are at the state level for the
U.S. and the country level for Europe, the expectations are
aggregated to the same level by averaging them over all the
cells in the relevant geographical units. These expectations
define the relative ecological risk for dengue in each cell.

2.4. Mathematical Network Model. The network model pre-
dicts the expected number of dengue cases in each non-
endemic region that can be attributed to a particular endemic
region connected to it by travel. Two previous mathematical
models quantifying risk estimates for acquiring arboviral
infection are by Massad and Wilder-Smith [30] and Codeço
et. al. [31]. Massad and Wilder-Smith’s model was intended
to evaluate the risk of infection at a specific site as a
function of human population size, the number of infected
mosquitoes, and estimated parameters for the biting rate
and the probability that an infectious mosquito will infect
a susceptible human. The model did not incorporate travel
patterns or species distribution data; moreover, model
predictions were not quantitatively validated using infection
data. Codeço et. al. assessed the risk of yellow fever (YF)
emergence in the city of Rio de Janeiro, Brazil, by estimating
the probability of infected individuals arriving from YF-
endemic areas via air and bus travel, and the probability
of infective individuals triggering an epidemic (by using a
stochastic transmission model). While this model accounted
for travel patterns and local transmission probabilities, the
model predictions were again not quantitatively validated.

Our model has similarities to a feedforward artificial
neural network (ANN). Feed-forward ANNs have been
used to model learning input-output systems, and can
be calibrated through a “back-propagation” algorithm that
minimizes a cost function representing output error [32].
The approach taken in this paper differs from traditional
implementations of ANNs insofar as, not only is a response

function calibrated, but the function itself must be chosen to
suit the process.

2.4.1. Network Structure. In the proposed network structure,
geographic areas were represented as nodes, belonging to
either the set G of endemic nodes, or one of the sets NU

or NE of susceptible nodes in the United States and Europe,
respectively. The links in the network represent directed air
travel connections between geographic areas (originating
from G), while the measure Pji represents the number of
predicted infections at a susceptible node i attributed to an
endemic node j.

This directed bipartite network structure connected
endemic countries to susceptible regions (U.S. states and
E.U. countries). Initially a single model was developed which
included all susceptible regions as a single set of destination
nodes, N . However the significantly higher number of
reported infections in Europe relative to the U.S. resulted
in extremely poor predictions. The limited performance was
likely a result of unobserved variables which differentiate
the risk of importing infection into Europe versus the U.S,
such as border control procedures, quality of healthcare
and quality of disease surveillance. These variables were
difficult to quantify directly, as we found through empirical
testing, and were best accounted for by modeling the U.S.
and Europe separately. Figure 1(a) provides an example of
a bipartite network structure representative of the network
structure modeled in this paper. The network modeled in
this work was limited to the regions with available infection
data. The resulting network included 56 endemic nodes,
42 total susceptible nodes (30 U.S. states and 12 European
countries), and 664 links. The reason the network was not
fully connected is because passenger travel did not occur
between all pairs of nodes.

Figure 1(b) is a four-node extraction from the example
network to illustrate the generalized link-based functional
form used in our model. The function f ji(λ, x j , yi, zji)
represents the number of cases observed at i for which
j is responsible, where λ represents a vector of calibrated
parameters, xj represents the characteristics of origin j,
yi represents the characteristics of destination i, and zji
represents the vector of parameters specific to directed link
( j, i). The total predicted number of infections at i is Pi =∑
∀ j∈A(i) f ji(λ, x j , yi, zji), where A(i) represents the set of

endemic nodes adjacent to i.

The most critical issue was determining the functional
form of f ji(λ, x j , yi, zji). Two complications arose: first,
the process that f ji(λ, x j , yi, zji) attempts to model was too
complex to determine a functional form a priori, that is,
the relative impact different variables will have is not clear
ahead of time. Second, directional infection data (i.e., the
source of infection for travel acquired dengue cases) was not
available. Consequently, specifying the functional form of
f ji(λ, x j , yi, zji) was not feasible. Because the objective was to
identify a link-based functional form that best replicated the
number of reported cases at each susceptible region, a variety
of functional forms were examined to identify the one with
optimal performance.
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Figure 1: (a) Bipartite network connecting endemic regions to susceptible regions: the susceptible U.S. and Europe nodes represent mutually
exclusive sets; (b) link-based functions: these predict the number of infections at susceptible node A, attributed to each adjacent endemic
region (1, 2, and 3).

Table 1: Problem Notation.

NU Subset of susceptible nodes in the United States

NE Subset of susceptible nodes in Europe

N Complete set of susceptible nodes (NU

⋃
NE)

G Set of nodes in the endemic region

Ii Number of reported infections at node i

Pi Total number of predicted infections at node i

Pji Number of predicted infections at node i attributed to node j

λ Vector of parameter to be optimized

xj Vector of characteristics of infecting node j

yi Vector of characteristics of susceptible node i

z ji Vector if parameters specific to link ( j, i)

V ′
ji

Normalized passenger air travel volume between nodes j and
i, ranging from 0 to 1

Si Climate suitability of node i, ranging from 0 to 1

I ′i Normalized reported infections at node i

D′
ji

Normalized distance between nodes j and i, ranging from 0
to 1

A(i) Set of endemic nodes adjacent to susceptible node i

α, b Parameters to be optimize

2.4.2. Problem Formulation. The notation used in the formal
problem formulation is shown in Table 1.

The purpose of this analysis was to examine a variety
of families of functions, further explore the most suitable
member of each family, and examine the results from
a qualitative perspective. The objective was to find the
parameter vector λ for a given f ji(λ, x j , yi, zji) such that the
difference between Ii, the observed number of infections at

susceptible node i, and Pi, the predicted number of infections
at i, was as small as possible. To ensure this, we formulated a
nonlinear convex program to find the unknown parameter
vector λ which minimized the sum of the squared difference
between observed and predicted infection values over all
susceptible nodes in the set. The problem formulation is as
follows:

min
λ

∑

∀i∈N
(Ii − Pi)

2

s.t. Pji = f ji
(
λ, x j , yi, zji

)
∀i ∈ N ∀ j ∈ G

Pi =
∑

∀ j∈A(i)

Pji ∀i ∈ N.

(1)

The characteristics of the resulting linear program depend
on the role of the parameter vector λ in the function,
f ji(λ, x j , yi, zji). If the function is linear in respect to λ, the
resulting program can be solved analytically for the optimal
decision parameters through a system of linear equations.
In other cases, however, the resulting function may be non-
convex, and as such solvable only through simulation.

2.4.3. Functional Forms. Depending on the functional form
of f ji(λ, x j , yi, zji), namely, the behavior of f ji(λ, x j , yi, zji)
with respect to λ, the tractability of the resulting math-
ematical program will vary. In developing a sensible link
function, we considered several factors such as the highly
nonlinear response of the explanatory variable with respect
to the dependent variables considered and concerns about
overfitting the data. Various functional forms were examined
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and compared, and the best performing function was found
to have the following form:

Pji = β + α∗
V ′

ji ∗ Sj ∗ Si ∗
√
I′ j

√
D′ ji

∀i ∈ N , ∀ j ∈ G.

(2)

The motivation for the final functional form, Pji defined
above, came from the Gravity Model for Trip Distribution.
The function is the sum of two terms: the first term on
the RHS is equivalent to the constant term in a standard
regression model; while the second term bears a strong
resemblance to the Gravity Model used for trip distribution.
In the Gravity Model the fraction of trips attracted to zone j
from zone i is proportional to the population of both zones,
and inversely proportional to some measure of generalized
cost of travel between them. Similarly, in the second term of
the RHS of the equation above, the numerator accounts for
the travel volume, the relative ecological risks of the origin
and destination (from the species distribution models), and
the number of cases reported at the source, while the distance
is included in the denominator.

The square root of I′j represents the concave relationship
between the predicted number of infections at a susceptible
location and the number of reported cases at an endemic
source. For the denominator, the lowest value for the sum
of squared errors was obtained by taking the square root of
the distance. While proximity to endemic countries showed
a positive correlation to the reported cases, the differential
effect of distance was higher for areas closer to endemic
regions. The concavity of the term can be attributed to
the relationship between travel time and distance, which is
certainly not linear. In order to normalize the data, the values
for travel volume, distance, and number of reported cases at
endemic regions were rescaled by the maximum value across
all observations for their respective category.

2.4.4. Model Parameter Estimation. By rewriting the original
mathematical program in terms of the node based variables
Pi, it is evident that it holds the same structure as a multiple
linear regression. The model was solved using the Ordinary
least squares estimation procedure:

min
λ

∑

∀i∈N
(Ii − Pi)

2, (3)

where

Pi = β ∗ ξ(i) + α∗ ϕ(i) ∀i ∈ N ,

ϕ(i) =
∑

∀ j∈A(i)

V ′
ji ∗ Sj ∗ Si ∗

√
I′ j

√
D′ ji

ξ(i) = |A(i)|.

(4)

In order to estimate the values of α and β, we solved
the system of equations that resulted from the first-order

optimality conditions of the convex program shown above.
The system of equations reduced to:

∑

i

Iiξ(i)− α
∑

i

ξ(i)φ(i)− β
∑

i

ξ(i)ξ(i) = 0,

∑

i

Iiφ(i)− α
∑

i

φ(i)φ(i)− β
∑

i

φ(i)ξ(i) = 0.
(5)

Solving the system of equations yielded as estimates for α and
β:

α =
∑

i Iiξ(i)
∑

i ξ(i)φ(i)−∑i Iiφ(i)
∑

i ξ(i)ξ(i)
∑

i ξ(i)φ(i)
∑

i ξ(i)φ(i)−∑i ξ(i)ξ(i)
∑

i φ(i)φ(i)

β = α
∑

i φ(i)φ(i)−∑i Iiφ(i)
∑

i ξ(i)φ(i)
.

(6)

3. Results and Discussion

The main objective of the model was to quantify the
relative risk of various international travel routes. This was
accomplished by first predicting the number of dengue
cases specific to each travel route, and then calibrating the
network model at a regional level using infection data.
Therefore, there are two sets of results presented. Section 3.1
includes the total number of dengue cases predicted for each
susceptible region based on the calibrated model output, and
Section 3.2 includes the corresponding relative risk of each
travel route, ranked based on their likelihood of transporting
infected passengers.

The results included in this section are representative
of filtered data. The filtering process was applied to the
susceptible node set to remove outliers. The outliers were
classified differently for the European and U.S. node sets. In
the European data set any region with less than 5 cases was
considered an outlier, while only states with one reported
case were considered outliers in the U.S. node set. A lower
threshold was implemented for the U.S. as there were fewer
reported cases on average. The procedure resulted in five
nodes being removed from NE and 12 nodes being removed
from NU . After the filtering process there were 18 U.S. states
and seven European countries included in the model.

3.1. Susceptible Node-Based Predictions. The model was able
to predict closely the number of reported cases for the Euro-
pean countries, though it struggled to predict the number of
reported cases for the U.S. states accurately. The results for
the node-based predictions, Pi, are shown in Table 2(a) for
European Countries and Table 2(b) for U.S. states.

The functional form introduced in Section 2.4.3 was used
in both models, while the resulting regression parameters,
α and β had different estimates. For Europe the optimal α
and β were 271.52 and 5.08, respectively; for the U.S. 5.54
and 0.595. The combination of the low constant (β), high
α value, and good fit of the European model signifies that
the majority of variability in the data was accounted for by
the independent variables included in the model. This was
not the case with the U.S. model. On average, the European
model predictions diverged from the reported cases by 24,
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Table 2: Model output and actual reported infections for (a)
Europe and (b) the U.S.

(a) Infections for susceptible European countries.

E.U. country
Actual reported

infections
Model reported

infections

Belgium 25 31

Czech Republic 9 31

Finland 12 40

France 300 247

Germany 204 231

Sweden 61 55

United Kingdom 170 196

Total 781 831

(b) Infections for susceptible U.S. states.

U.S. State
Actual Reported

Infections
Model Reported

Infections

Hawaii 11 6

Massachusetts 14 12

New York 55 22

Pennsylvania 3 11

Florida 22 24

Georgia 7 16

North Carolina 5 9

Virginia 5 6

Illinois 3 14

Ohio 4 6

Wisconsin 2 4

Minnesota 11 6

Texas 24 20

Arizona 5 4

Nevada 2 7

California 4 22

Oregon 4 4

Washington 6 5

Total 187 196

where 112 actual cases were observed on average per node.
The U.S. model predictions diverged from the reported cases
by an average of 6.2, where an average of 10.4 cases were
reported per node.

Several factors contributed to complicating the task of
identifying a function to perfectly fit the case data. Firstly,
the limited size of the susceptible node set made it difficult
for the model to differentiate between variability and noise.
Secondly, the amount of noise in the data due unknown
factors such as variations in regional surveillance efforts
could not be accounted for. Thirdly, prevention measures
being implemented were not only difficult to determine, but
also difficult to quantify. All these uncertainties restricted
the model’s ability to estimate parameters that resulted in
good predictive properties at the node level. However, our

results show that, though the fit at the node level could
be improved upon, the route-level risk measures do show
promising results, and as such, provide some insight into the
role the independent variables play.

3.2. Endemic-Susceptible Route-Based Risk. Although the
node-based predictions can be validated based on the
reported infection data, the resulting route-based predictions
were not directly-verifiable due to the unavailability of route-
based infection data. The best measures of validation were
(i) to find route-based predictions that correspond to known
regional infection data when summed across all incoming
routes, and (ii) to compare the results with previous travel-
based patient surveys conducted to determine the most likely
place of origin for illness.

Table 3 identifies the 20 international travel routes with
the highest probability of carrying dengue-infected passen-
gers into (a) Europe and (b) the U.S., and their corre-
sponding relative risk, as produced by the model. The initial
ranking was determined based on the predicted number of
infected passengers traveling on each route. The predicted
number of infected passengers was then normalized to the
highest ranked route. Although the results shown are specific
to the filtered node sets, similar results were obtained for the
full node sets, for both Europe and the U.S. In the model
Burma, Cambodia, Laos, and Thailand were aggregated to a
single “South East Asia” endemic region.

Figure 2 compares the highest traveled international
routes with the highest risk international travel routes for
carrying infected passengers (as predicted by the model). The
links included in Figure 2(a) are representative of the twenty
highest traveled routes entering the U.S. and the twenty
highest traveled routes entering the E.U.; the line thickness
is proportional to travel volume. Figure 2(b) provides a
visual illustration of the model output, specifically the 20
international travel routes with the highest probability of
carrying dengue infected passengers into Europe and the
U.S. (the set of links listed in Table 3); the line thickness is
proportional to the relative risk of the route. The difference
between these two mappings illustrates the significance of the
regional level input variables (vector suitability and infection
data) included the model.

As stated previously, one way to verify the predicted
route-based risk was by comparing the results with previous
patient surveys conducted to identify the source of infections.
A previous study found of the travel acquired dengue cases in
Europe between 1999 and 2002 [33]:

(i) 219 (45%) originated in South-East Asia, represented
in the model as 3 of the top 6 highest risk routes,

(ii) 91 cases (19%) originated in South and Central
America, represented in the model as 3 of the top 10
highest risk routes,

(iii) 77 cases (16%) originated in the Indian subcontinent,
represented in the model as 2 of the top 15 highest
risk routes,
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(a)

(b)

Figure 2: (a) The 20 highest traveled routes entering the U.S. and E.U. There are 40 total links; the line thickness is proportional to the travel
volume. (b) The top 20 travel routes with highest relative risk of carrying Dengue infected passengers into U.S. and E.U. The line thickness
is proportional to the relative risk of the route.

(iv) 56 cases (12%) originated in the Caribbean, repre-
sented in the model as 2 of the top 20 highest risk
routes.

The model predicted Brazil-Germany and Brazil-France
as the two highest risk routes into Europe (with nearly
equivalent relative risk). This is expected, as Brazil reported
the highest number of dengue cases in the world per year,

almost 3-times those of second place Indonesia, and the
volume of traffic on the Brazil-France and Brazil-Germany
routes were two of the top 40 in the world. Indonesia,
reported a very high number of infections, but reported
a very low level of air travel on any given route destined
for Europe. Using similar logic, Southeast Asia reported
a number of infections on par with Indonesia, though
the travel volume from Southeast Asia into Germany and
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Table 3: Relative risk of spreading travel acquired dengue infection
via international travel routes from endemic countries into (a)
Europe and (b) U.S.

(a) Route-based relative risk european countries.

Rank From To Relative Risk

1 Brazil Germany 1.00

2 Brazil France 0.99

3 South East Asia Germany 0.71

4 South East Asia United Kingdom 0.52

5 Brazil United Kingdom 0.35

6 South East Asia France 0.29

7 Vietnam France 0.29

8 Singapore United Kingdom 0.27

9 Singapore Germany 0.19

10 India Germany 0.19

11 Malaysia United Kingdom 0.19

12 India United Kingdom 0.17

13
Dominican
Republic

Germany 0.16

14 Venezuela Germany 0.16

15
Dominican
Republic

France 0.16

16 Mexico France 0.16

17 Mexico Germany 0.15

18 Venezuela France 0.15

19 South East Asia Finland 0.14

20 South East Asia Sweden 0.13

(b) Route-based relative risk for U.S. states.

Rank From To Relative risk

1 Mexico Texas 1.00

2 Mexico California 0.56

3 Puerto Rico Florida 0.34

4 Brazil Florida 0.33

5 Venezuela Florida 0.24

6 Mexico Illinois 0.23

7 Puerto Rico New York 0.21

8 Costa Rica Florida 0.19

9 Mexico Florida 0.19

10 Mexico Arizona 0.19

11 Dominican Republic New York 0.17

12 Colombia Florida 0.16

13 Brazil New York 0.15

14 Mexico Georgia 0.15

15 Dominican Republic Florida 0.15

16 Brazil Texas 0.14

17 Brazil Georgia 0.12

18 Honduras Florida 0.12

19 Costa Rica Texas 0.12

20 Mexico Nevada 0.11

the United Kingdom ranked among the world’s top 25
travel routes; suggesting intuitively that travel volume is a
dominant factor in assessing infection risk.

For the U.S. the model predicted the majority of U.S.
infections were attributed to Central and South American
countries, likely a result of the close proximity, high traffic,
and high level of infection. More specifically, 19 of the top
20 highest risk routes into the U.S. (Nevada, ranked 20th not
included) were destined for states which account for a very
high fraction of incoming flights in the U.S.; accounting for
6 of the top 15 busiest American Airports by boardings [34].

As a destination, Florida accounted for 5 of the top 10
risk routes, which is supported by historical occurrence of
the disease, exemplified in the 2009-2010 local outbreaks.
Though it is possible that dengue was already present in the
locality (Key West), and previously undetected, the results
of this model suggest dengue was likely introduced via
international travelers into a locality with environmental and
social conditions ripe for transmission [5]; in the model
Puerto Rico-Florida ranked as the third highest risk route.
The travel volume on this route was among the top ten in the
world, while the proximity and climate similarity were likely
additional contributors to the infection risk.

Mexico-Texas and Mexico-California ranked as the two
highest risk routes, and were also the top two traveled routes
(by passenger volume) in the world [34]. The highest risk
travel route predicted was from Mexico to Texas; with nearly
twice the risk of Mexico-California. The high number of
infections reported in Mexico, its proximity to Texas, and the
high volume of travel between the two intuitively suggests
this to be a high-risk pairing, which is supported by the
model.

4. Conclusions

Dengue currently presents a serious risk to many parts of the
U.S. and Europe where suitable environmental conditions
for vector species’ occurrence and establishment provide the
potential for local outbreaks, were the virus to be introduced.
The background to this analysis was the increasing number
of dengue cases in the U.S. and Europe, coinciding with
an increase in both the prevalence of dengue worldwide
and increased volume of international passenger air traffic
originating from dengue-endemic regions since the 1990s.

The model presented here was developed to explore
the relationship between reported dengue infections and air
travel. It used a network-based regression to quantify the
relative risk from international air travel routes carrying
infected passengers from endemic regions to non-endemic
ones in the U.S. and Europe. Besides international pas-
senger travel volumes, the model incorporated predictive
species distribution models for the principal vector mosquito
species. The model also incorporated travel distances and
infection data. The following inferences follow from the
model results.

(i) The highest-risk travel routes suggest that the prox-
imity to endemic regions is a dominant factor. Most
high-risk routes into Europe originate in Asia (with
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the exception of Brazil and Mexico), while all top 20
routes into the U.S. originate in South and Central
America.

(ii) Travel from dengue-endemic countries presents sig-
nificant risk to Florida. Additionally, the high volume
of domestic visitors to Florida in conjunction with
established Ae. aegypti and Ae. albopictus popula-
tions, enhances Florida’s potential role as a fulcrum
spreading dengue to other parts of the continental
U.S. The recent reemergence of dengue in Florida
suggests that strong vector surveillance and control
infrastructure is critically needed for identification
and control of outbreaks of dengue.

(iii) The high risk predicted for Mexico-Texas travel is fur-
ther heightened by the risk of overland transmission
(such as that from Tamaulipas into the Brownsville
area [6]). Therefore surveillance along the Texas-
Tamaulipas border should be complemented with
surveillance at regions with airports connected to
Mexico by regular or chartered flights.

(iv) For many countries of Europe and U.S. states, if
dengue gets introduced, the establishment of an
autochthonous disease cycle is likely because many of
these areas contain suitable habitats for Ae. albopictus
and some contain established populations.

(v) Some of the “source” areas indicate that dengue has
yet to be brought under control in places where
malaria has. This means that dengue may well replace
malaria as the paradigmatic airport disease.

The results provided in this paper were obtained using
existing (historical) data from the (recent) past and do
not represent fully reliable predictions for relative risks in
the future. However, the model introduced in this paper
can be calibrated using epidemiological data from any time
period. The calibrated model can be used as a predictive
tool for quantifying route-based risk in the future provided
that the necessary data are available, including real-time
travel patterns, environmental conditions, and infection
data. Moreover, the results in this paper are aggregated at
the annual and regional (country or state) level due to the
limitations of available data. Infection data proved to be
the most difficult to gather because infection reports for
many regions in the world are not available even at the
annual level. Appropriate data will enable the extension of
the model to allow analysis at finer spatial and temporal
resolutions: the model can be regionally disaggregated to
the city level, or disaggregated by month to account for
seasonality. Moreover, this model can be deployed in other
geographical regions, used for other vector-borne diseases,
and modified to analyze other network-based processes.
Finally, this model can potentially be extended to include
other modes of transportation, such as freight and shipping
networks.

The development of such models is an integral step
in improving local and regional surveillance efforts. The
quantitative results produced by the model can lead to
more specific surveillance recommendations than the CDC is

currently able to make such as identifying (i) specific routes
on which to implement surveillance and control strategies
and (ii) optimal locations (origin cities, destination airports,
etc.) for passenger surveillance efforts. As there is currently
no vaccine for dengue; surveillance and intervention, along
with vector control, are the only relevant options to prevent
further geographic spread of the disease. The limitations of
this analysis highlight the need for improving the quality of
readily accessible disease data so as to enhance the prediction
and control of epidemic episodes of vector-borne diseases in
susceptible countries.
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