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Abstract

Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and

other pathologies. Correlating these defects to the symptoms, mechanisms, and progres-

sion of disease requires unbiased, quantitative, and high-throughput means of quantifying

nuclear morphology. To accomplish this, we developed a method of automatically segment-

ing fluorescently stained nuclei in 2D microscopy images and then classifying them as nor-

mal or dysmorphic based on three geometric features of the nucleus using a package of

Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA

splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon

4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria

Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of

dysmorphic nuclei, and other morphological features such as average nuclear area and

average eccentricity were obtained. Compared to blind observers, our procedure imple-

mented in Matlab codes possessed similar accuracy to manual counting of dysmorphic

nuclei while being significantly more consistent. The automatic quantification of nuclear

defects revealed a correlation between in vitro results and age of patients for initial symptom

onset. Our results demonstrate the method’s utility in experimental studies of diseases

affecting nuclear shape through automated, unbiased, and accurate identification of dys-

morphic nuclei.

Introduction

Abnormal cellular structures arising from proteins expressed by mutant genes can negatively

impact tissue and organ function predisposing individuals inheriting genetic mutations to
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disease [1–3]. One particularly severe example is Hutchinson-Gilford Progeria Syndrome

(HGPS) in which a mutation in the Lamin A/C (LMNA) gene causes premature aging up to

seven times faster than normal, usually culminating in death due to cardiovascular complica-

tions [1]. Other types of LMNA gene mutations are associated with a range of heart disease

symptoms including cardiomyopathy, heart failure, and arrhythmia [2,4,5]. While the exact

mechanism by which LMNA mutations cause heart disease is under investigation, it is known

that the LMNA gene expresses both the Lamin A and C proteins via alternative splicing. These

proteins form the integral meshes of the nuclear lamina, which provides structural support to

the nucleus [6]. Consequently, deficiencies in the nuclear lamina have been shown to perturb

nuclear shape by, for example, causing the formation of blebs [7]. Indeed, in some patients, dif-

ferent cell types will exhibit varied nuclear envelope imperfections such as large defects in car-

diomyocyte nuclei and the fibroblast defects [8]. This is especially interesting as some nuclear

envelope protein mutations lead to organ specific pathologies in patients. For example, there

are a variety of LMNA mutations including heterozygous splice site, nonsense, and missense

mutation, which cause diverse heart diseases with no other major pathologies [4,9,10]. Fur-

thermore, even patients with the same mutation can exhibit a variety of heart disease symp-

toms with different presentation ages from 36–54 years [4]. So far, it has not been shown if

subtle differences exist in fibroblasts of these patients that would be informative of the variabil-

ity among the patients with the same mutation. LMNA mutations are widely hypothesized to

alter the mechanical properties of cell nuclei through the production of defective structural

proteins, thus compromising the functionality and health of certain cell types [2,11–13]. Alter-

ations in nuclear shape have been correlated with changes in cellular processes such as gene

expression and cell viability [12–15]. Nuclear deformity is therefore a pertinent deficiency in

cell structure to be considered in investigations patient variability.

While dysmorphic nuclei are a hallmark of many diseases such as laminopathies [7,13] and

certain types of cancer [16–18], both unaffected and diseased cell populations can exhibit

nuclear shape defects [19,20]. Indeed, nuclei of some cell types are not universally spheroid

or elliptical, and frequently possess folds, protrusions, and other disturbances in boundary

smoothness likely involved in normal biological processes [21–24]. This makes the detection

of additional nuclear defects caused by disease far more difficult. Moreover, the proportion of

nuclei identified as abnormally shaped through manual observation of either diseased or unaf-

fected cells is subjective and user-dependent. Automatic, unbiased detection of dysmorphic

nuclei by image processing software is, therefore, preferable for both effectively quantifying

nuclear shape abnormality and determining the extent to which it arises from pathology.

Many existing methods of automatically detecting irregularities in nuclear morphology cal-

culate a single feature related to nuclear shape, measuring nuclear defect levels as the difference

in mean values of the feature between entire cell populations. Examples include quantifying

nuclear shape asymmetry averages [25] or the degree of negative boundary curvature averaged

over entire cell populations [20]. However, such approaches which attempt to capture nuclear

imperfections as an average of a single morphometric feature across a large number of cells

cannot identify individual nuclei as normally or abnormally shaped, or determine the pro-

portion of dysmorphic nuclei in a tissue. Machine learning is sometimes utilized for the

classification of disease states based on nuclear morphology, requiring a multitude (>100) of

shape features [25]. As with any machine learning algorithm, this is challenging to replicate

without performing re-training and re-validation on each experimental setup. A similar multi-

parametric, automated approach to describing nuclear morphology using far fewer features

could be used to designate single nuclei as normal or dysmorphic and evaluate the percentage

of defective nuclei within an entire population, a simpler, more intuitive, and more easily

implemented measure of nuclear defect levels.

Dysmorphic nuclei and disease presentation
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In this work, we have developed a method of automatically segmenting nuclei in two-

dimensional fluorescent images and classifying each as possessing a normal or dysmorphic

morphology based on three nuclear shape features by a package of Matlab codes. As proof of

concept, this technique was used to quantify the prevalence of dysmorphic nuclei in skin fibro-

blasts of individuals with three different LMNA mutations (LMNA-CMs), unaffected family

members and unrelated individuals as negative controls (Controls), and a patient with Hutch-

inson-Gilford Progeria Syndrome as a positive control (HGPS). The developed method identi-

fies dysmorphic nuclei with accuracy comparable to manual observation in a significantly

more consistent and unbiased manner and allowed for correlating of subtle differences in

nuclear shape of fibroblasts to a phenotype the patients presented in the clinic.

Materials & methods

Substrate fabrication

A 7.6cm x 8.3cm rectangular glass coverslip (Fisher Scientific Company, Hanover Park, IL)

was cleaned via sonication for 30 minutes in 200 proof ethanol solution. The coverslip was

then spin-coated with a 10:1 mixture of polydimethylsiloxane (PDMS) and curing agent

(PDMS, Ellsworth Adhesives, Germantown, WI), and cured at 65˚C for at least 12 hours.

Finally, the large coverslip was cut into smaller, rectangular 14mm x 12.5mm coverslips using

a diamond scriber (VWR, Radnor, PA). Coverslips were placed PDMS side facing downward

onto 100 μL drops of 0.05 mg/mL fibronectin solution for 10 minutes. Coverslips were then

rinsed 3 times in Phosphate Buffered Saline (PBS, Life Technologies, Carlsbad, CA) and stored

in 4˚C PBS until seeded with cells.

Skin fibroblast collection

Human fibroblast cells were collected from three families with different mutations of heterozy-

gous LMNA splice-site mutation (c.357-2A>G) [4] (Family A); LMNA nonsense mutation

(c.736 C>T, pQ246X) in exon 4 [10] (Family B); LMNA missense mutation (c.1003C>T,

pR335W) in exon 6 [9] (Family C). Moreover, related individuals’ fibroblast cells in each fam-

ily were collected as mutation-negative controls. Unrelated negative control fibroblast cells

were purchased from Lonza (catalog# CC-2511) and Coriell (catalog# ND31845, AG14284).

Informed consent for these studies was performed in accordance with the UC Irvine Institu-

tional Review Board, which specially approved this study (IRB# 2014–1253). For positive con-

trol, HGPS fibroblast cells were obtained from the Coriell Institute for Medical Research

(Camden, New Jersey: catalog #AG11513). In this case, the fibroblasts were grown from a skin

biopsy taken from an 8-year-old female HGPS patient possessing a LMNA G608G point muta-

tion [26]. Table 1 summarizes the cell sources and the abbreviations used for each group in

this manuscript.

Cell culture

LMNA-CM patient and Neg-CONTROL lines were expanded to passage 7 for experiments.

HGPS cell lines were expanded to passage 16. At 80% to 100% confluency, the cells were pas-

saged using 0.05% Trypsin.

Cells were seeded on 4–12 isotropic coverslips at the desired passage number and optimal

density. Cells were then expanded in Minimum Essential Media (MEM) with 10% Fetal Bovine

Serum (FBS, Life Technologies, Carlsbad, CA) and 1% Antibiotic-Antimycotic (Thermofisher

Scientific, Waltham, MA). At 24 hours of incubation, the media was changed to MEM with

2% FBS. After an additional 24 hours of incubation, the cells were fixed.

Dysmorphic nuclei and disease presentation
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As the division rate depended on patient age, the optimal cell seeding density was deter-

mined by seeding cells on isotropic coverslips in amounts varying from 75,000 to 400,000 cells

per coverslip, and expanding them as described above. After 48 hours of incubation, these cov-

erslips were examined and the optimal cell seeding density for confluency at 2 days was

identified.

Fixing and immunofluorescent staining

Staining was performed using standard techniques [27]. Briefly, upon completion of the cell

culture period, media was aspirated and coverslips were rinsed 3 times in 2–3 mL of warmed

PBS. Cells were then incubated in a warm 4% paraformaldehyde (PFA) solution (Fisher Scien-

tific Company, Hanover Park, IL) containing 0.0005% Triton X-100 (Sigma Aldrich Inc., Saint

Louis, MO) for 10 minutes at room temperature. Following fixation, the coverslips were again

washed 3 times in 2–3 mL of warmed PBS, allowing 5 minutes between rinses. The fixed sam-

ples were then stained for nuclei (4’,6’-diaminodino-2-phenylinodole (DAPI), Life Technolo-

gies, Carlsbad, CA), actin (Alexa Fluor 488 Phalloidin, Life Technologies, Carlsbad, CA), and

either fibronectin (polycloncal rabbit anti-human fibronectin, Sigma Aldrich Inc., Saint Louis,

MO) or Lamin A/C (rabbit monoclonal EP4520 (ab133256) Anti-Lamin A+C, Abcam, San

Fransisco, CA). Coverslips were then rinsed 3 times in PBS to prevent background staining.

Secondary staining of either fibronectin or Lamin A/C was achieved using goat anti-rabbit IgG

antibodies (Alexa Fluor 750 goat anti-rabbit, Life Technologies, Carlsbad, CA). The coverslips

were washed in PBS to remove residual stain and mounted on glass microscope slides with

room temperature Prolong Gold Antifade Mountant (Life Technologies, Carlsbad, CA) to pre-

vent fading of fluorescent stains during microscopy. Finally, a commercial, clear nail polish

was applied as a sealant along the edges of coverslips and then allowed to dry for 24 hours.

Image acquisition

The microscope slides containing the stained samples were imaged using an UPLFLN 40x oil

immersion objective (Olympus America, Center Valley, PA) and digital CCD camera ORCA-

R2 C10600-10B (Hamamatsu Photonics, Shizuoka Prefecture, Japan) mounted on an IX-83

Table 1. This table contains the different experimental groups (cell sources), the abbreviations used

to describe each group in the manuscript, and the passage number of the cells from that group.

Cell Sources Abbreviation Passage #

Patients in families with LMNA mutations, but only heart disease as the main

pathology

LMNA-CM 7

The family in which some of the member have splice-site LMNA mutation Family A 7

Individuals with the mutation from family A (Patients from family A) LMNA-CM-A 7

The family in which some of the member have Nonsense LMNA mutation Family B 7

Individuals with the mutation from family B (Patients from family B) LMNA-CM-B 7

The family in which some of the member have Missense LMNA mutation Family C 7

Individuals with the mutation from family C (Patients from family C) LMNA-CM-C 7

Hutchinson-Gilford progeria syndrome (purchased from Coriell Institute for

Medical Research)

HGPS 16

Siblings of patients from families A-C with no LMNA mutations (Related

Negative Control)

R.N.-

CONTROL

7

Unrelated Negative Control (commercially purchased cell lines) U.N.-

CONTROL

7

Aggregated Negative Control (Both Related and Unrelated Negative controls

aggregated into a single group)

Neg-

CONTROL

7

https://doi.org/10.1371/journal.pone.0188256.t001
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inverted motorized microscope (Olympus America, Center Valley, PA). Fluorescence images

of ten randomly selected fields of view per slide were taken at 40x magnification (6.22 pixels/

μm resolution) for each sample.

Image analysis and feature extraction from nuclear boundary

Fluorescently labeled nuclei were detected and outlined using custom-written Matlab codes. A

detailed description of the image analysis process is provided in the Supplemental Materials

(S1 Fig and S1 Text). Briefly, each nucleus was isolated (S4C and S4D Fig), individually thre-

sholded (S4E Fig), and outlined with the snake algorithm (S4F and S4G Fig). The natural coor-

dinates of the outline were then interpolated to consist of 1000 evenly-spaced points (S4G Fig).

In order to classify nuclei as normal or dysmorphic, three shape features related to the nuclear

boundary were calculated. First, relative concavity (RC) of each nucleus (Fig 1A) was calcu-

lated using the method described in Langevin, et al. [28]. The difference (d) between the area

of the convex hull (h) of each nucleus and the area enclosed by its calculated boundary (a) was

divided by the convex hull area (Fig 1B):

RC ¼
h � a

h
¼

d
h

ð1Þ

Next, mean negative curvature (MNC) was calculated for each nucleus boundary using the

method described in Driscoll, et al. [20]. The extrinsic curvature of each point along the

nucleus boundary was calculated by fitting a circle (S4 Code) to that boundary point and two

other points each 25 boundary points to each side of it, and then using the radius to calculate

curvature as κ = 1

r. All negative curvature values along the boundary of a nucleus were aver-

aged, and then multiplied by the square root of the area of that nucleus in order to non-dimen-

sionalize the parameter:

MNC ¼
ffiffiffi
a
p
Pl¼N

l¼1

kl
jkl j
� 1

� �
� 1

2
� kl

h i
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l¼1

1 �
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jkl j
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h i ¼ �
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Pl¼N

l¼1

k2
l � kl jkl j

jkl j

h i

Pl¼N
l¼1

kl � jkl j

jkl j

h i ð2Þ

where l represents a nucleus boundary position, and N is the total number of boundary points.

Calculation of mean negative curvature according to Eq 2 was accomplished in Matlab logi-

cally (using the find function to group all boundary curvature values below zero) rather than

algebraically. Areas of negative curvature correspond to both blebs and invaginations in the

nucleus due to the inward folding of the nuclear envelope, creating regions where the nuclear

boundary becomes concave as opposed to the positive boundary curvature created by the

smooth surface of a normal nucleus (Fig 1C). Any nucleus possessing no points of negative

boundary curvature was assigned a mean negative curvature value of zero. Lastly, the single

most negative curvature value (NCmax) in the boundary curvature profile of each nucleus was

also recorded and used as a feature to assess nuclear shape abnormality (Fig 1C):

NCmax ¼ max
1�l�N

ffiffiffi
a
p 1

2

k2
l � kljklj

jklj

� �� �

ð3Þ

To better elucidate observer-code and observer-observer differences, three dimensional

(3D) plots were generated with the RC, MNC, and NCmax variables on the axes. On the 3D

plot, each nucleus in the validation set corresponded to a single point color coded according to

agreements (agreement on normal, disagreement (normal/defective), disagreement (defective/

normal), and agreement on defective).
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Statistics

Analysis of Variance (ANOVA) with Tukey’s method was used for mean comparisons among

conditions. The student t-test was used if comparison was made between a single pair of data

points. Linear trends were determined using linear regression, and both the R2 value for the

Fig 1. Quantifying nuclear shape characteristics. A) Nucleus outline generated by MATLAB image

analysis, where a = nuclear cross sectional area; B) Convex hull generated from nucleus outline, where h =

area of convex hull, d = h–a; C) Curvature profile of nucleus boundary. Arrows beginning at points along the

nucleus boundary show the curvature value corresponding to that boundary point. Mean negative curvature is

calculated using the average of all negative curvature values (shaded in red) (Eq 2). The point of maximum

negative curvature is indicated by a dotted line.

https://doi.org/10.1371/journal.pone.0188256.g001

Dysmorphic nuclei and disease presentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0188256 November 17, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0188256.g001
https://doi.org/10.1371/journal.pone.0188256


trend and significance for both constants were calculated. P values of 0.05 or less were consid-

ered statistically significant. The level of agreement in classification of nuclei among different

manual observers and the Matlab analysis codes was assessed using percent agreement, but

Cohen’s Kappa was also calculated as it was possible for the manual observers to guess [29,30].

3. Results

Automatic designation of abnormally shaped nuclei

A training data set was created by cropping 243 LMNA-CM patient and control nuclei from

their images using ImageJ (68 U.N.-CONTROL, 101 R.N.-CONTROL, and 74 LMNA-CM).

All nuclei in the training set were manually designated by at least two observers as either dys-

morphic or normally shaped (Fig 2A). Using the Matlab codes, mean negative curvature (Fig

2B), relative concavity (Fig 2C), and maximum negative curvature (Fig 2D) were calculated for

each nucleus in the training set. The manually designated normal nucleus possessing the great-

est calculated feature value in the training set became the upper limit for that feature (Red lines

in Fig 2B–2D), while the manually designated dysmorphic nucleus possessing the lowest fea-

ture value became the lower limit for that feature (Green lines in Fig 2B–2D). In order to dif-

ferentiate nuclei with feature values between these upper and lower limits, an intermediate

limit was also created (Orange lines in Fig 2B–2D). The intermediate limit for each feature was

set to a value to minimize the combined number of manually labeled abnormal nuclei below

the limit and manually labeled normal nuclei above it to minimize the amount of classification

error.

A classification scheme was created using the three limits for each feature. Any nucleus pos-

sessing a relative nuclear concavity, mean negative curvature, or maximum negative curvature

below the lower limit for that feature was designated as normal (Step 1, Fig 2E). Then, any

nucleus above the upper limit for any of the three features was designated as dysmorphic (Step

2, Fig 2E). Additionally, any nucleus in which two of the aforementioned features exceeded the

corresponding intermediate limits was also designated as dysmorphic (Step 3, Fig 2E), and all

other nuclei were designated as normal (Step 4, Fig 2E). This classification scheme could then

be used to automatically designate new nuclei as normal or dysmorphic (Fig 2F). The method

was tested against a validation set of nuclei manually classified by two independent observers,

and the agreement was found to be above 90% (Table 2). To aid in visualization of disagree-

ments, the three parameters were plotted for each nuclei of the validation set color coded for

classification (Fig 2G). The outlier (pink circle with pink arrow pointing to nuclei Fig 2G and

2H) occurred due to the Matlab code independently thresholding each nuclei and outlining a

sharp invagination not noticed by the observer during rapid classification. The observer classi-

fied an overexposed nucleus as abnormal (Fig 2H, blue open circle nuclei), while the Matlab

code draws the outline around gray pixels that are impossible for an observer to notice next to

the bright white of the over-exposure. In both of the above cases, it could be argued that the

Matlab code suite outperforms the manual observer. Most of the disagreements between the

automated Matlab code analysis and the observer occur in the same region as the disagree-

ments between the two observers (Fig 2I). In this region, the defects are slight (Fig 2H) and are

easily missed by the observers. Therefore, the consistency of the automatic Matlab codes is an

advantage of our method.

Effect of lamin A/C staining on nuclear shape analysis

To demonstrate the method’s versatility, it was used to analyze images of nuclei labeled by dif-

ferent fluorescent stains. When the same nuclei were visualized using both Anti-Lamin A/C

Antibody (S3A Fig) and DAPI (S3B Fig), no significant differences were observed in area,

Dysmorphic nuclei and disease presentation
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Fig 2. Training, classification scheme, and output. (A) Training set nuclei were manually designated by observers as normal or abnormal;

Distribution of training set nuclei by (B) mean negative curvature, (C) relative concavity, and (D) maximum negative curvature; (E) Algorithm

classification scheme. Step 1: All nuclei below at least one lower limit (shown in green, B-D) are classified as normal. Step 2: All other nuclei

above at least one upper limit (shown in red, B-D) are classified as abnormal. Step 3: Nuclei possessing shape feature values between the

lower and upper limits but above two intermediate limits (shown in orange, B-D) classified as abnormal. Step 4: Nuclei not satisfying any of

these conditions are classified as normal; (F) Automatic classification of nuclei as normally or abnormally shaped based on classification

scheme. Scale bar: 25 μm. (G) 3D clustering of normal and defective nuclei for the validation set with Observer 2 vs. Matlab codes; (H)

Disagreement examples for Observer 2 vs. Matlab codes, and between two observers; white arrows point to possible defects noticed by an

Dysmorphic nuclei and disease presentation
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eccentricity, and mean negative curvature calculated by the Matlab codes (S3C Fig). The per-

centage of nuclei automatically designated as dysmorphic between the two image sets were

also not significantly different (S3F Fig).

Characterizations of nuclear morphology

The nuclei from an HGPS (Fig 3A), Neg-CONTROL (Fig 3B), and LMNA-CM (Fig 3C) condi-

tions were analyzed, and average nuclear area, eccentricity, and mean negative curvature were

calculated for all groups including a breakdown by family. The averages among nuclei auto-

matically designated as dysmorphic were also calculated for each group.

Consistent with morphological observations of HGPS cell nuclei, the average percentage of

dysmorphic nuclei was significantly greater in HGPS patient coverslips than in those of all neg-

ative control individuals (Fig 3D). Surprisingly, the average percentage of dysmorphic nuclei

in LMNA-CM group was significantly lower than in the Neg-CONTROL group despite a simi-

lar average age between the groups. Additionally, the average mean negative curvature of dys-

morphic nuclei for some of the families was significantly reduced compared to their HGPS

positive control and Neg-CONTROL counterparts, which did not differ significantly from

each other (Fig 3E).

The average area of all HGPS nuclei was significantly lower than that of dysmorphic HGPS

nuclei alone (Fig 3F). No significant difference in area was observed between dysmorphic

nuclei and overall nuclei in the other groups, but the area of the LMNA-CM-A dysmorphic

nuclei was significantly smaller than in either the positive (HGPS) or negative controls (Neg-

CONTROL) groups. The area of the defective nuclei for each individual was also plotted as a

function of age showing no apparent correlations (S5 Fig). The average eccentricities of HGPS

nuclei were significantly lower than that of Neg-CONTROLs, while some of the LMNA-CM-

families (A & B) had nuclei eccentricity that was significantly higher than that of negative con-

trols (Fig 3G).

Correlation with onset of clinical symptoms

In Fig 4A, the percentage of dysmorphic nuclei in the cells from people with no mutations

(unrelated controls-dark blue, related controls-light blue) was plotted against the age at which

the biopsy was taken. As expected [31], the percent of dysmorphic nuclei increases with age of

observer; inset highlights a small invagination missed by the observer; Scale bar: 10 μm; (I) 3D plot from G color coded for agreement and

disagreement between the two observers.

https://doi.org/10.1371/journal.pone.0188256.g002

Table 2. Quantified rating reliability among observers and Matlab codes. Inter-rater reliability between

observers and Matlab codes, as well as intra-rater reliability of one observer and the Matlab codes, was quan-

tified using Cohen’s Kappa. Mathematically, the Cohen’s Kappa ranges from zero to one with larger values

indicating better consistency. Acceptable values have been debated, but values above 0.6 have generally

been considered acceptable [29]. A label of 72 hours. indicates a second trial performed by the same observer

or Matlab codes 72 hours following the first. The percent agreement was also calculated for each pair and was

consistently above 90%.

Individual and Trial Cohen’s Kappa % Agreement

Observer 1 vs. Observer 2 0.59 90.2%

Observer 1 vs. Matlab Codes 0.59 90.0%

Observer 2 vs. Matlab Codes 0.71 94.4%

Observer 1 vs. Observer 1 (72 hrs.) 0.70 91.3%

Matlab Codes vs Matlab Codes (72 hrs.) 1.00 100%

https://doi.org/10.1371/journal.pone.0188256.t002
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biopsy for negative controls (Fig 4A, blue solid line). It was found that the patient data for all

three families fell within the 95% prediction band of the control trend line.

Unlike HGPS patients (purple star Fig 4A), the patients in the three families (LMNA-CM)

do not exhibit skin abnormalities, and thus it is unsurprising that only the HGPS samples lie

outside the prediction interval. However, majority of the LMNA-CM individuals are below

the trend-line, which explains the aggregated average percent defective for LMNA-CM and

LMNA-CM-A groups. From clinical data [4,9,10], we knew that the older patients in the

cohort (LMNA-CM) developed heart disease later in life. Therefore, we plotted the difference

between each patient’s cells’ dysmorphic nuclei percentage and the predicted value based on

the control trend line (green arrow, Fig 4A) against the age at which patients first presented

with heart disease symptoms (Fig 4B). Patients with higher positive deviation from negative

controls’ trend-line were found to present with heart disease symptoms at a younger age (prior

to 45 years, vertical dotted line Fig 4B). Indeed, there is a significant linear correlation (R2 =

0.84, P< 0.003) between patient separation from age-matched negative control prediction and

the onset of symptoms age. While the Coriell Institute does not provide the information of

when this particular patient (catalog # AG11513) developed heart disease symptoms, it is typi-

cal for individuals with the HGPS disease to present with heart disease symptoms very early in

Fig 3. Classification and nuclear morphology measurements in skin fibroblast nuclei. Examples images for: (A) HGPS positive control nuclei,

(B) R.N.-CONTROL- Family A, and (C) LMNA-CM-A nuclei. Nuclei outlined in green have been designated as normal, while nuclei outlined in red

have been designated as dysmorphic; (D) Percentage of dysmorphic nuclei and number of nuclei per coverslip; For % dysmorphic, significance was

found for all pairs except for the ones indicated. For the number of nuclei, only HGPS was significantly different. (E) Mean negative curvature;

significance is indicated with a matrix on the plot. (F) Nuclear area; # denotes significance in an internal pair comparison between overall and

dysmorphic condition with the t-test; * denotes significance found among conditions with the ANOVA test. (G) Nuclear eccentricity with the

significance among groups indicated in the matrix. Error bars: one standard deviation. Sample sizes for the HGPS, Neg-CONTROL, LMNA-CM,

LMNA-CM-A, LMNA-CM-B and LMNA-CM-Care 11, 101, 75, 27, 27, and 21 respectively and the passage numbers for all the samples are indicated in

Table 1. Scale bar: 25 μm.

https://doi.org/10.1371/journal.pone.0188256.g003

Fig 4. Nuclear defects and age. (A) Percentage of dysmorphic skin fibroblast nuclei in LMNA-CM patients, related and unrelated negative controls, and

HGPS patient, versus age of biopsy. Regression line (solid dark green line), confidence and prediction intervals (long dark green dashes and short light

green dashes, respectively) correspond to data of all related and unrelated negative controls (R2 = 0.21, Pslope < 0.001). Purple line serves as a visual guide

of the percentage of dysmorphic skin fibroblast nuclei in the HGPS patient. Blue line, as an example, displays difference of dysmorphic nuclei percentage of

a patient and the control regression line. Each individual (plotted point) represents an average from 4–12 samples, with the average sample size n = 8.5; (B)

At age of biopsy for an individual, the difference between dysmorphic nuclei is plotted against age of symptom onset. Regression line (solid black line),

confidence and prediction intervals (long light gray dashes and short dark gray dashes, respectively) has an R2 = 0.84 and P < 0.003. In addition, HGPS

data collapses on the master curve of the linear regression trend. Passage number for all the samples are indicated in Table 1.

https://doi.org/10.1371/journal.pone.0188256.g004
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life [32,33]. To compare the HGPS positive control to the LMNA-CM group, it was similarly

plotted assuming a presentation age at 2 years (purple star—Fig 4B). Interestingly, the normal-

ized data for the HGPS cell-line will fall within the prediction limit of the patient trend-line

(black line—Fig 4B) as long as heart disease symptoms were first developed in this particular

patient prior to 16 years of age, which is very likely based on clinical reports [32,33].

Discussion

The automatic quantification and characterization of nuclei proposed in this work was validated

by comparing the negative and positive control cell lines. For example, both nuclear area and

eccentricity were consistent with previously described trends between HGPS and negative con-

trol fibroblast nuclei [34–36]. The automatic classification and counting of dysmorphic nuclei

provides advantages over the exclusive use of averaged shape features such as mean negative

curvature. Measuring the proportion of dysmorphic nuclei present in a tissue is in many cases

a more intuitive metric to compare the prevalence of defective nuclei in cells from specific tis-

sues and individuals. Furthermore, the individual identification of dysmorphic nuclei allows

researchers to specifically examine the morphology of those nuclei. Dermal fibroblasts cultured

from most individuals, even those with pathologies which cause severe nuclear blebbing such as

HGPS, possess a mixture of both dysmorphic and normally shaped nuclei [37]. Shape descrip-

tors such as mean negative curvature are unable to provide information pertaining to a subset

of these populations, always incorporating the measured values of normal nuclei into a calcu-

lated average. Additionally, our method demonstrated that unlike LMNA-CM patient and con-

trol nuclei, dysmorphic and normal HGPS nuclei possessed a significant area difference. While

differences in average area compared to negative controls and an increase in average area by

late passages in HGPS nuclei have been previously described, the size difference between the

normal and dysmorphic nuclei present in the same HGPS cell population prior to this work

were either qualitatively observed or not interrogated [34,37,38]. One explanation put forth for

the prevalence of giant nuclei in HGPS cell populations is mitotic abnormalities leading to poly-

ploidy [39]. By providing quantitative data regarding the relative size of dysmorphic HGPS

nuclei, our Matlab codes may aid in substantiating such hypotheses in the future. Unlike previ-

ous methods applied to nuclear shape analysis [20,28,40,41], we are able to determine whether

alterations to nuclear morphology other than a misshapen envelope in diseased cell lines, such

as changes in area, apply solely to dysmorphic nuclei or to the entire population (Fig 3F).

Automatic classification of images has been extensively studied. Matlab software has sub-

stantial image analysis capabilities and open source sub-routines used in our method [42–45].

Similar open sourced software, CellProfiler, has also been utilized to analyze images [46–48].

Indeed, CellProfiler in combination with Matlab has been used to analyze the morphology of

the nuclei in multiple cell types to determine the mechanisms of Cofilin [48], but the actual

CellProfiler and Matlab codes are not provided. The Matlab codes we included in the support-

ing information (S1–S7 Codes) have already been trained for the described task and provide a

variety of unique outputs (Fig 3) not readily available from basic CellProfiler or Matlab instal-

lations. Another method for automated classification would involve machine learning such as

neural networks [25,49–52]. This method is more complex than what was utilized in our soft-

ware codes, but it can be more powerful for classifying subtle differences. For example, classi-

fying cancerous breast tissue manually requires pathologists to be trained for multiple years. In

such a case, machine learning is essential to capture the multitude of image properties analyzed

by an experience human eye [52]. Thus in a simpler classification problem, such as determin-

ing defective nuclei from a fluorescent stain image, there was no need to employ the more

complex methods of machine learning.
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The capability of our simpler automated method was demonstrated by applying it to char-

acterize fibroblast nuclei from LMNA mutation patients who mainly present with heart dis-

ease. The significant difference in nuclear area (overall and defective) between LMNA-CM-A

and both the positive and negative controls (Fig 3F) was not driven by one individual (S5 Fig),

but indicates an overall trend. Along with the significantly higher eccentricity of the LMNA-

CM-A and LMNA-CM-B nuclei (Fig 3G), this indicates potential avenues of investigation in

terms of the elastic properties of the nuclei lamina caused by specific mutations. Indeed, the

larger average eccentricity observed in LMNA-CM-A and LMNA-CM-B nuclei compared to

either HGPS or controls could indicate greater deformability, a quality with potential relevance

in diseases such as cardiomyopathies, which affects cyclically contracting and mechanically

strained tissues. Conversely, the significant reduction in the average percentage of dysmorphic

nuclei in the LMNA-CM compared to the negative controls (Fig 3D) is driven by a few indi-

viduals who have low numbers of defective nuclei for their age group (Fig 4A). For example,

the individual from Family A who exhibited an onset of heart disease symptoms at age 36 had

approximately the same number of nuclei defects as an older patient in Family A who did not

exhibit heart disease symptoms until age 56 (Fig 4). In general, those below and above the

trend-line in Fig 4A can be viewed as aging “slower” and “faster” than the average population,

respectively. Thus, while the amount of defective nuclei in the LMNA-CM patients fell within

the prediction interval of a negative control population, the “slow aging” individuals seemed to

be partially protected from the effects of the mutation and, consequently, developed heart dis-

ease later in life (Fig 4B). This difference between patients is likely driven by genetic modifiers

[44] and based on our data, we plan to search for proactive genetic modifiers in Family A.

These results also help explain the surprisingly low average percent of dysmorphic nuclei in

the LMNA-CM population (Fig 3D). Indeed, the LMNA-CM population is skewed by the lack

of “faster aging” elderly patients, which, we believe, is the results of these individuals develop-

ing heart disease early in life with fatal consequences.

By individually identifying and characterizing dysmorphic nuclei, our method provides an

opportunity to explore subtle differences among individuals and populations. As the method

was automated, it was possible to analyze cell-lines from 22 individuals (over 25 thousand

nuclei in total) spanning four different LMNA mutations and appropriate age-matched con-

trols. The results provide further avenues of investigation of the genetic modifiers protecting

some patients as well as the mechanisms linking the mutation to the disease. This powerful

method can also, in the future, be applied to any other cell type or disease where investigating

nuclear morphology could elucidate pathological mechanisms.

Supporting information

S1 Text. Detailed description of analysis method and matlab codes.

(PDF)

S1 Code. NucleiDetect.m is a matlab code that outlines the nuclei in the images. The

detailed description of the code is provided in S1 Text.

(M)

S2 Code. NucleiClassify.m is a matlab code that classifies the nuclei as normal or defective.

The detailed description of the code is provided in S1 Text.

(M)

S3 Code. BoundaryRefine.m is a matlab function used by NucleiDetect.m. The detailed

description of the code is provided in S1 Text.

(M)
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S4 Code. calc_circle.m is a matlab function used by NucleiDetect.m. The detailed descrip-

tion of the code is provided in S1 Text.

(M)

S5 Code. curvature.m is a matlab function used by NucleiDetect.m. The detailed description

of the code is provided in S1 Text.

(M)

S6 Code. curvature_circle.m is a matlab function used by NucleiDetect.m. The detailed

description of the code is provided in S1 Text.

(M)

S7 Code. ColoredNuclei.m is a matlab function used by NucleiClassify.m. The detailed

description of the code is provided in S1 Text.

(M)

S1 Fig. Overview of image analysis. Starting with an unprocessed, 2D fluorescent nuclei

image and ending with the generation of nuclei boundaries, which are overlaid on the original

image. Boxes represent steps in the image analysis process while arrows represent progression

to a new or previous step.

(TIF)

S2 Fig. Process for manual exclusion of overlapping nuclei. a Following automatic segmen-

tation of nuclei, an image is displayed with all detected nuclei highlighted and numbered,

including one undetected pair of overlapping nuclei; b User is prompted to choose an action

after reviewing the displayed image, entering ‘6’ in order to exclude the overlapping nuclei

from further analysis, and then entering the number corresponding to that body in the image;

c The overlapping nuclei are excluded from analysis, and highlighted in red.

(PDF)

S3 Fig. Consistency of nuclear morphology measurements of Matlab codes across multiple

fluorescent stains. Nuclei were visualized with both a Lamin A+C immunofluorescence label

and b DAPI, and then segmented by the image analysis Matlab code; c Average area, d average

eccentricity, and e average mean negative curvature were then calculated based on nuclear

boundaries in both the DAPI and Lamin A+C stain images (n = 48 nuclei). f The percentage

of nuclei designated as dysmorphic was also calculated for all images and averaged by stain

type (n = 12 images). Error bars represent one standard deviation. Scale bar: 25 μm.

(TIF)

S4 Fig. Image processing steps for nuclear boundary extraction. a Original grayscale image;

b Binary image generated from first intensity threshold; c Regions of original grayscale image

isolated based on detected bodies in binarized image; d Region of original image correspond-

ing to a single nucleus; e Binary image generated from second intensity threshold; f Outline of

nucleus generated; g Outline smoothed and given sub-pixel resolution using snake algorithm;

h Nuclei labeled and outlined with snake algorithm boundaries; i Overlapping nuclei (red out-

line) excluded from analysis; j Example data of nuclear area and orientation. Scale bar: 25 μm.

(PDF)

S5 Fig. Plot of defective nuclei area as a function of the age at which biopsy was taken for

each individual. Plot shows no correlations for the data.

(PDF)
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