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Abstract: Trichoderma hamatum strain Th23, isolated from tomato roots, was molecularly identified
using phylogenetic analysis based on ITS, tef1, and rpb2 gene sequences and evaluated for its
efficiency in suppressing tobacco mosaic virus (TMV) infection for the first time. Under greenhouse
conditions, the application of Th23 promoted tomato growth with significant increases in shoot
and root parameters as well as improved total chlorophyll content. Compared to the nontreated
tomato plants, the soil pretreatment of tomato plants 48 h before TMV inoculation produced a
significant reduction in the TMV accumulation level by 84.69% and enhanced different growth
parameters. In contrast, TMV had a deleterious impact on fresh and dry matter accumulation and
inhibited photosynthetic capacity. Furthermore, the protective activity of Th23 was associated with a
significant increase in reactive oxygen species scavenging enzymes (PPO, CAT, and SOD) as well as
decreased nonenzymatic oxidative stress markers (H2O2 and MDA) compared to the TMV treatment
at 15 days post-viral inoculation (dpi). In addition, considerable increases in the transcriptional
levels of polyphenolic genes (HQT and CHS) and pathogenesis-related proteins (PR-1 and PR-7)
were shown to induce systemic resistance against TMV. Consequently, the ability of T. hamatum
strain Th23 to promote plant growth, induce systemic resistance, and boost innate immunity against
TMV infestation supported the incorporation of Th23 as a potential biocontrol agent for managing
plant viral infections. To the best of our knowledge, this is the first report of the antiviral activity of
T. hamatum against plant viral infection.

Keywords: Trichoderma; TMV; enzymes; stress markers; pathogenesis-related proteins; molecular
mechanism; tomato

1. Introduction

Tobacco mosaic virus (TMV) is a single-stranded positive-sense RNA belonging to the
Tobamovirus genus that infects many plant species in several families, primarily tobacco
and tomato plants as well as most Solanaceae family plants [1,2]. TMV infection results
in mosaic signs on the leaves, yellowing plant tissue, and significant economic losses
worldwide [3]. Since TMV has an extensive host range, it has a devastating effect on the
hosts’ yields. New approaches to controlling TMV are required because of the shortage
of suitable and effective control [4]. Biological control agents have long been shown to
improve plant defense systems and lower disease severity and incidence. Among the
biological control agents that have proven to have a reasonable degree of pathogen control,
plant growth-promoting fungi (PGPF) are well known for their ability to minimize the
disease incidence of many fungal, bacterial, and viral plant pathogens and trigger plant
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defense reactions [5]. The use of beneficial Trichoderma fungi to prevent viral plant diseases
has attracted interest because it is a safe and environmentally friendly method of controlling
pathogens [6].

Trichoderma spp. are free-living parasitized fungi known as bioagents because of
their competency to suppress or even kill phytopathogens [7,8]. They can also elicit a
host immune response against pathogenic microbes with potential benefits for vegetative
growth [9] and enhance photosynthetic rates and respiration reactions by reconfiguring
plant gene transcription [10]. In tomatoes, Trichoderma hamatum successfully induced
resistance to Botrytis cinerea and Xanthomonas vesicatoria [11,12]. Mastouri et al. [13] found
that treating tomato seeds with T. harzianum relieved various biotic and abiotic stressors.
Thus, after colonizing roots, Trichoderma species can interact well with plants, and in some
cases, chemically operate as endophytic symbiotic organisms. As a result, they can modify
the activation of many plant genes and even plant physiology [14]. Through studying
several molecular and biochemical components of host–virus interaction and establishing
the precise role of ROS, it was reported that T. harzianum had positive effects on the tomato
defense system against cucumber mosaic virus (CMV) infection [15].

Plants generally compensate for diseases through a variety of cellular processes in-
cluding (i) up- or downregulation of certain genes; (ii) changes in the levels of different
compounds known to play a role in the host defense pathway including reactive oxygen
species (ROS); (iii) increased expression of particular transcriptional regulators, defen-
sive scheme genes, and heat-shock proteins; and (iv) improvement in the mobility of
biomolecules, enzymes, and growth factors involved [16,17]. Pathogenesis-related pro-
teins (PRs) are primarily found in the systemic acquired resistance (SAR) pathway and
are potent as antipathogenic agents [18]. Furthermore, Singh et al. [19] found that bi-
otic inducers raised the levels of several PRs such as peroxidase and chitinase isozymes.
The increase in PR-1 as a SA molecular marker gene is closely linked to the activation
of salicylic acid (SA) during pathogen infection and a variety of physiological responses
in plants in response to biotic stressors [20,21]. Polyphenolic substances are among the
secondary metabolites that play a significant role in plant development, growth, and
tolerance to biotic and abiotic stresses [22]. The biochemical and molecular research on
the host–pathogen–antagonist relationship is critical for understanding the dynamics of
infectious diseases. By penetrating the plant epidermal tissues, Trichoderma spp. has the
capability to colonize plant roots, which usually results in triggering different metabolic
pathways by modifying gene expression [23,24]. It has been observed that when a plant
comes into contact with a pathogen, a SAR mechanism is triggered, but when it comes
into contact with a nonpathogenic organism, an ISR mechanism is activated [25,26]. Many
studies have used transcriptional analysis to determine the expression of defense genes
and proteins in response to Trichoderma-induced resistance (TIR) against various pathogens,
which has established that TIR is preceded by the upregulation of genes encoding vital
defense enzymes and PR-proteins [27,28]. T. hamatum UoM13 was reported as a mediator
of plant systemic immunity by significantly increasing the activity of SA-inducible genes
such as glucanase, PPO, POX, PAL, PR-1, and PR-5, all of which are considered essential
SAR markers [27].

Although there is already evidence that Trichoderma spp. has a role in viral disease
resistance in plants, there have been no previous studies exploring alterations in plant
physiology and antiviral activities of T. hamatum against plant viral infections. The primary
goal of this investigation was to isolate, identify, and evaluate the protective activity of
the T. hamatum strain Th23 against TMV infection under controlled greenhouse conditions
for the first time. Moreover, the effects of Th23 on the viral symptom appearance, tomato
growth parameters, chlorophyll content, and the accumulation level of TMV inside infected
tissues were estimated. Furthermore, the transcriptional level changes of two polyphenolic
genes, hydroxycinnamoyl Co A quinate hydroxycinnamoyl transferase (HQT) and chalcone
synthase (CHS), and three PR proteins (PR-1, PR-2, and PR-7) as well as some defense
enzymes including polyphenol oxidase (PPO), catalase (CAT), and superoxide dismutase
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(SOD) were evaluated. The ability to use Th23 against TMV infection could be crucial
for developing a thorough understanding of the plant–pathogen–bioagent complex and
building effective viral disease control strategies.

2. Materials and Methods
2.1. Collecting, Isolating, and Identifying Samples

Trichoderma isolate was obtained from soil rhizosphere samples collected from tomato-
growing areas in Egypt’s El-Behira governorate. Using the Trichoderma TSM specific media,
the antagonistic isolate was isolated using the serial dilution plate method by Elad et al. [29].
The resultant fungal colonies were purified using the hyphal tip separation procedure, and
the fungus was kept on potato dextrose agar (PDA) (HiMedia Laboratories Pvt. Limited,
Mumbai, India) for further examination. To identify the isolate, the ITS, rpb2, and tef1 genes
(Table 1) were used as well as the morphological traits. In PCRs, a 1 µL volume of each
primer pair (10 pmole), 20 µL of 2x MyTaq Red Mix (Bioline Inc., Ansan, Korea), 2 µL of
fungus DNA, and 26 µL of molecular grade water were used. Cycling was performed as
follows in a gradient SureCycler (Agilent Technologies, Santa Clara, CA, USA): an initial
step at 94 ◦C for 5 min, followed by 40 cycles at 95 ◦C, 55 ◦C, and 72 ◦C each for 1 min,
and a final extension step at 72 ◦C. After sequencing the PCR amplicons, the nucleotide
sequences were aligned using MEGA X software. The resulting sequences were compared
to those in the GenBank database using the NCBI-BLAST tool.

Table 1. Sequences of primers used in this study.

Primer Code Target Gene Direction Nucleotide Sequences (5′-3′) References

ITS Internal Transcribed Spacer Forward TCCGTAGGTGAACCTGCGG
[30]Reverse TCCTCCGCTTATTGATATGC

rpb2 RNA polymerase II subunit 2 Forward GAYGAYMGWGATCAYTTYGG
[31]Reverse CCCATRGCTTGYTTRCCCAT

tef1 Translation elongation factor 1 alpha Forward CATCGAGAAGTTCGAGAAGG
[32]Reverse AACTTGCAGGCAATGTGG

TMV-CP Tobacco mosaic virus-coat protein Forward ACGACTGCCGAAACGTTAGA
[33]Reverse CAAGTTGCAGGACCAGAGGT

PR-1 Pathogenesis related protein-1 Forward CCAAGACTATCTTGCGGTTC
[34]Reverse GAACCTAAGCCACGATACCA

PR-2 β-1,3-glucanases Forward TATAGCCGTTGGAAACGAAG
[34]Reverse CAACTTGCCATCACATTCTG

PR-7 Proteinase
Forward AACTGCAGAACAAGTGAAGG

[34]Reverse AACGTGATTGTAGCAACAGG

CHS Chalcone synthase Forward CACCGTGGAGGAGTATCGTAAGGC
[35]Reverse TGATCAACACAGTTGGAAGGCG

HQT
Hydroxycinnamoyl Co A: quinate

hydroxycinnamoyl transferase
Forward CCCAATGGCTGGAAGATTAGCTA

[35]Reverse CATGAATCACTTTCAGCCTCAACAA

β-actin Beta-actin
Forward ATGCCATTCTCCGTCTTGACTTG

[36]Reverse GAGTTGTATGTAGTCTCGTGGATT

2.2. TMV Isolate, Inoculum Preparation, and Greenhouse Investigation

The tobacco mosaic virus (TMV) strain KH1 (MG264131) used in this study has been
previously characterized [37]. To prepare 20 µg/mL of TMV inoculum, the concentration
was adjusted with 100 mM phosphate buffer, pH 7. The tomato virus-free Carmen F1
seeds (Nongwoo Bio, Co. Ltd., Gyunggi-do, Suwon, Korea) were sown in a controlled
greenhouse in trays prefilled with peat moss mixture. After three weeks, the seedlings were
transported into 25 cm pots, and each pot was filled with five kilograms (kg) of sand and
clay (1:1). Trichoderma inoculum was prepared by serial dilution and used as 5 mL/kg
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at a 1 × 108 spores/mL concentration. A week later, the two upper leaves of each tomato
seedling were dusted with carborundum and gently mechanically inoculated with 1 mL of
semi-purified TMV [38].

There were four treatments in the trial; each treatment consisted of three replicates,
and every replicate had a three-pot. The tomato plants treated with TMV-free inoculum
buffer and foliar sprayed with sterile water served as the control (mock treatment). Plants
mechanically inoculated with TMV only were used as the TMV treatment. Plants inoculated
with Trichoderma hamatum only were identified as the Th23 treatment. Plants were inocu-
lated with T. hamatum 48 h before being mechanically inoculated with TMV (Th23 + TMV
treatment). All of the plants were kept in the greenhouse at a temperature of 28 ± 2 ◦C/
18 ± 2 ◦C at day/night and 75% relative humidity. The TMV symptoms were observed,
day after day. At 15 days post-viral inoculation (dpi), nine leaves collected from three
plants per pot were combined and ground for total chlorophyll content quantification by a
SPAD-502Plus meter (Konica Minolta, Inc., Tokyo, Japan) as well as the enzyme activity
estimations and RNA extraction. The plant’s length and fresh and dried weights of each
treatment’s shoot and root systems (g) were assessed.

2.3. Determination of Enzyme Activity

All of the fine chemicals used in this section were purchased from Sigma-Aldrich
(St. Louis, MO, USA) and all measurements were performed by a UV–Vis spectrophotome-
ter (EMCLAB Instruments GmbH, Duisburg, Germany).

2.3.1. Oxidative Stress Markers
Malondialdehyde

The thiobarbituric acid (TBA) method [39] was used to determine the malondialdehyde
(MDA) content in plant leaves. The leaves were pulverized with 0.1% trichloroacetic acid
(TCA) and centrifuged at 12,000× g for 30 min. After that, the supernatants were incubated
with a mixture of TCA and TBA (4:1 v/v) for 30 min. Then, all the mixes were quickly chilled.
The MDA content was measured at 600 nm and expressed as µM/g fresh weight (FW).

Hydrogen Peroxide

To determine the amount of hydrogen peroxide (H2O2) in tomato leaves, the samples
were homogenized with 0.1% TCA [40]. Equal amounts of the supernatant, 10 mM of
potassium dihydrogen phosphate (pH 7), and potassium iodide (1 M) were mixed and left
at 25 ◦C for 15 min., then centrifuged at 12,000× g for 10 min. The resultant supernatant
absorbance was measured at 390 nm. The quantity of H2O2 was expressed as µM/g FW.

2.3.2. Antioxidant Enzymes

The extracts used in this section were obtained by pulverizing tomato leaves in phos-
phate buffer and spun at 12,000× g for 30 min. The pellets were discarded, and the extracts
were preserved at −20 ◦C until used.

Polyphenol Oxidase

The polyphenol oxidase (PPO) enzyme was determined using a mixture of enzyme
extract, Tris-HCl (50 mM, pH 6), and quinone (1:2:1, v/v/v), then left at 25 ◦C for 10 min [41].
The absorbance was measured at 420 nm and expressed in µM/g FW.

Catalase

The catalase (CAT) activity was conducted by mixing 478.5 µL of 25 mM potassium
phosphate buffer containing in a final concentration 10 mM H2O2 and 12.5 µL of enzyme
extract [42]. The CAT activity was determined by decomposing the H2O2 in 1 min at 240 nm
and expressed as µM/g FW.
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Superoxide Dismutase

The superoxide dismutase (SOD) enzyme determination method was conducted
with minor modifications [43]. A mixture of 50 mM potassium dihydrogen phosphate
(pH 7.8), 0.1 mM ethylenediaminetetraacetic acid, 75 mM nitro blue tetrazolium, 10 mM
L-methionine, and 20 mM riboflavin were left to react with 100 µL of enzyme extract at
room temperature under fluorescent lamps for 20 min before being placed in the dark. The
activity of SOD was measured at 560 and expressed as mol/g FW.

2.4. Analysis of Defense-Related Genes
2.4.1. Extraction of RNA and cDNA Synthesis

Three biological duplicates of each treatment’s leaves were collected at 15 dpi and
stored at 80 ◦C until usage. A GeneJET RNA Purification Kit was used to isolate the total
RNA (Thermo Fisher Scientific Co., Waltham, MA, USA). Each biological sample was made
up of nine distinct samples from nine different plants. The purity of the isolated RNA was
measured using UV–Vis spectroscopy (EMCLAB Instruments GmbH, Duisburg, Germany).
Each sample was reverse transcribed to cDNA with GoScript™ Reverse Transcriptase
(Promega, WI, USA) using a mix of oligo dT and hexamer random primers. In a gradient
SureCycler (Agilent Technologies, Santa Clara, CA, USA), the RT-PCR reaction was carried
out at 42 ◦C for 1 h and then deactivated at 80 ◦C for 5 min. The cDNA amplicons were
stored at 20 ◦C until they were used in qRT-PCR.

2.4.2. Quantitative Real-Time PCR (qRT-PCR) Assays

The accumulation levels of TMV coat protein gene (TMV-CP) as well as the tran-
scriptional levels of three PR-proteins (PR-1, PR-2, and PR-7) and two phenylpropanoid
pathway genes (CHS and HQT) were investigated. The primer sequences are presented
in Table 1. The ratio of the expression of the TMV-CP gene and the housekeeping gene
in tomato plants was used to calculate the viral accumulation level. The β-actin gene was
used as a housekeeping gene to standardize the expression levels of all genes [44,45]. For
the qRT-PCR assay, each biological treatment was carried out in three replicates using
the GoTaq® qPCR Master Mix (Promega, Wisconsin, USA) on PikoReal (Real-Time PCR,
Thermo Fisher Scientific Co., Waltham, MA, USA) as previously reported [46]. The 2−∆∆CT

method [47] was used to precisely quantify and calculate the relative transcriptional level
of each tested gene.

2.5. Statistical Analysis

All data were statistically evaluated using the least significant difference (LSD) at
a 0.05 probability using CoStat software (ANOVA). Gene expression (upregulation) was
indicated by relative transcriptional levels greater than 1, whereas gene expression (down-
regulation) was indicated by values less than 1.

3. Results
3.1. Isolation and Identification of Trichoderma Isolate

The morphological analysis of the isolated Trichoderma isolate from tomato plant
roots was compatible with the Trichoderma genus features according to the common
taxonomic phenotypical criteria. Its conidia were green in color, single-celled, oval, smooth,
or rough. Conidiophores were long, branching, and not whorly, with solo phialides or
in-groups arising from tiny terminal bunches at a 90◦ angle from the conidiophore. A PCR
technique was used to confirm the morphological identification of the Trichoderma isolate
by amplifying PCR amplicons of three genes of ITS, rpb2, and tef1 with approximately 600,
1050, and 500 bp, respectively.
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The partial sequences of the three amplified genes ITS, rpb2, and tef1 were obtained,
then submitted to NCBI GenBank, and were assigned to Trichoderma hamatum strain Th23
with accession numbers MW797032, OL412667, and OL439486, respectively. A comparison
of the generated ITS region nucleotide sequence of the T. hamatum strain Th23 with the
GenBank identified isolates demonstrated that the genetic homogeneity closest to 99%
of the ITS sequence was with Trichoderma spp. (MH285237 and MK871313), T. hamatum
(MN176381), and T. asperellum (JX173862) (Figure 1A). Comparing the T. hamatum strain
Th23 rpb2 nucleotide sequence with those isolates of T. hamatum in the GenBank database
clarified that the highest homogeneity was 100% with T. hamatum (AB853847 and EU883555)
(Figure 1B). The maximum nucleotide sequence similarity of the tef1 gene (100%) was
observed with T. hamatum isolates from different countries (MK800143, KU738444, and
AY750893) (Figure 1C).
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Figure 1. Phylogenetic trees show the relationship of the Trichoderma hamatum strain Th23 (shown in
a red rectangle) among closely related Trichoderma isolates from GenBank based on partial sequences
of three genes: ITS (A), rpb2 (B), and tef1 (C) generated by MEGA X software.

3.2. Effect of Th23 on Viral Symptoms Development, Tomato Plants Growth Parameters, and Total
Chlorophyll Content

Under greenhouse conditions, the protective activity of Trichoderma hamatum strain
Th23 (anti-TMV) was evaluated on tomato plants. Compared to nontreated plants, Th23
+ TMV treatment considerably reduced the disease symptoms and enhanced plant de-
velopment. The TMV characteristic symptoms started to appear on tomato leaves of
TMV-inoculated plants (TMV treatment) at 12 dpi and ended with a severe mosaic pattern
and yellowing symptoms at 15 dpi (Figure 2). On the other hand, a five-day delay with
mild mosaic symptom development was observed in the Th23 + TMV treatment tomato
plants. No TMV signs were observed on tomato plants treated with Th23 or the mock
(control) (Figure 2).
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Figure 2. The protective activity of Trichoderma hamatum isolate Th23 against TMV on tomato leaves
at 15 dpi (Th23 + TMV treatment). TMV treatment showed mild mosaic symptoms compared to Th23
and the mock treatments showed no developed symptoms.

Compared to the mock and TMV treatments, the Th23 and Th23 + TMV treatments
had a significant impact (p ≤ 0.05) on the shoot and root system characteristics (Table 2).
For growth parameters, shoot, and root, the Th23 treatment exhibited the highest values,
followed by the Th23 + TMV treatment. The Th23 treatment showed the highest shoot
length (40.31 cm), fresh (11.33 g), and dry (4.08 g) weights, which recorded an increase
in percentages of 74.35%, 91.06%, and 42.16%, respectively (Table 2). On the other hand,
Th23 + TMV treatment exhibited significant increases of 50.22%, 27.15%, and 11.85% for
shoot length, fresh, and dry weights, respectively (Table 2). Compared to the mock treat-
ment, the tomato plants treated with TMV alone showed a considerable reduction in the
shoot system’s length, fresh, and dry weights, recorded at 23.12 cm, 5.93 g, and 2.87 g,
respectively. Similarly, significant (p ≤ 0.05) increases in length or fresh and dry weights of
the root system by 95.08%, 94.75%, and 45.05% were recorded after treatment of the tomato
plant with Th23 (Table 3). Moreover, Th23 + TMV treatment revealed significant increases
in the length or fresh and dry weights of the root system of tomato plants, which reached
14.56 cm, 4.75 g, and 2.05 g with an increasing percentage of 49.18%, 55.74%, and 12.64%,
respectively (Table 3). In contrast, significant reductions in the root system parameters were
detected after infection with TMV in nontreated tomato plants (Table 3).

Table 2. The effect of different treatments of Th23 and TMV inoculation on the length, fresh, and dry
weights of the shoot system in tomato plants.

Treatment
Shoot ± SD *

Length (cm) Increase (%) Fresh Weight (g) Increase (%) Dry Weight (g) Increase (%)

Mock 33.44 ± 3.29 c 44.64 7.59 ± 2.01 b 27.99 3.23 ± 0.51 b 12.54
TMV 23.12 ± 5.21 d —– 5.93 ± 2.48 c —– 2.87 ± 0.64 c —–
Th23 40.31 ± 3.34 a 74.35 11.33 ± 3.97 a 91.06 4.08 ± 0.41 a 42.16

Th23 + TMV 34.73 ± 3.98 b 50.22 7.54 ± 1.98 b 27.15 3.21 ± 0.35 b 11.85

* SD, Standard deviation. The mean values in each of the columns that begin with the same letter are not
statistically different (p ≤ 0.05).

Table 3. The effect of different treatments of Th23 and TMV inoculation on the length, fresh, and dry
weights of the root system in tomato plants.

Treatment
Root ± SD *

Length (cm) Increase (%) Fresh Weight (g) Increase (%) Dry Weight (g) Increase (%)

Mock 11.41 ± 0.63 c 16.91 4.11 ± 0.45 c 34.75 2.03 ± 0.63 b 11.54
TMV 9.76 ± 0.72 d —– 3.05 ± 0.34 d —– 1.82 ± 0.47 c —–
Th23 19.04 ± 2.14 a 95.08 5.94 ± 1.19 a 94.75 2.64 ± 0.51 a 45.05

Th23 + TMV 14.56 ± 2.18 b 49.18 4.75 ± 1.23 b 55.74 2.05 ± 0.72 b 12.64

* SD, Standard deviation. The mean values in each of the columns that begin with the same letter are not
statistically different (p ≤ 0.05).



J. Fungi 2022, 8, 228 8 of 20

A significant difference in the total chlorophyll content of tomato leaves was ob-
served in all treatments. The Th23 treatment exhibited the highest chlorophyll content
(41.33 SPAD unit), followed by the mock treatment (35.89 SPAD unit), Th23 + TMV treat-
ment (34.81 SPAD unit), and the TMV treatment (28.85 SPAD unit). Compared to the control
(mock) treatment, the Th23 treatment showed a significant increase of 15.16%, while TMV
treatment exhibited a reduction in total chlorophyll by 24.40% in tomato leaves suffering
from higher levels of mosaic and disease symptoms.

3.3. Effect of Th23 Application on TMV Accumulation Level

Regarding the accumulation levels of TMV particles inside the infected tissues, the
Th23 + TMV treatment plants exhibited a significant decrease in the accumulation levels of
TMV when compared to the TMV treatment plants. The TMV content was quantified based
on the ratio of the cycle threshold (Ct) value of the TMV-CP gene to the tomato internal
control actin gene. The qRT-PCR data showed that the accumulation level of TMV-CP of
the TMV treatment was a 29.32-fold change, whereas it was 4.49-fold for the Th23 + TMV
treatment plants. No TMV was detected in the mock or Th23 tomato plant treatments. Thus,
the small amount of TMV detected in the Th23 pretreated plants—with a considerable
reduction in viral accumulation level by 84.69%—indicated that Th23 could induce plant
resistance to TMV proliferation in tomato tissues.

3.4. Oxidative Stress Markers Assay

Compared to mock treatment, the tomato plant leaves infected with TMV showed
a significant increase in the content of H2O2 and MDA (Figure 3). For MDA, the TMV
treatment exhibited the highest level (312.23 µM/g FW) with a significant increase of
136.16% compared to the mock treatment of 132.21 µM/g FW. On the other hand, the
tomato plants of two treatments, Th23 and Th23 + TMV, showed a considerable reduction in
MDA content compared to the TMV treatment. The Th23 treatment recorded 169.46 µM/g
FW while Th23 + TMV showed 184.73 µM/g FW (Figure 3A). Similar to MDA, H2O2
was significantly elevated upon TMV infection (Figure 3B). The TMV treatment showed
the greatest H2O2 level (10.09 µM/g FW), which exhibited a considerable increase of
153.52% compared to the control (3.98 µM/g FW). On the other hand, the pretreatment of
tomato plants with Th23 (Th23 + TMV treatment) recorded 6.91 µM/g FW with significant
decreases in the H2O2 level by 31.52% compared to the nontreated tomato plants. Moreover,
no significant difference between the Th23 treatment (4.02 µM/g FW) and mock treatment
plants was recorded (Figure 3B).
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Figure 3. (A) Malondialdehyde content (MDA) and (B) hydrogen peroxide accumulation levels
as affected by various treatments including untreated plants (mock), TMV-treated plants (TMV),
Trichoderma hamatum strain Th23 application (Th23), and T. hamatum strain Th23 application 48 h
before TMV inoculation (Th23 + TMV). The mean values in each of the columns that begin with the
same letter are not statistically different (p ≤ 0.05).

3.5. Antioxidant Enzymes Activity

The three antioxidant enzymes, catalase (CAT), polyphenol oxidase (PPO), and su-
peroxide dismutase (SOD), were clearly differentiated upon TMV infection and Th23
treatments (Figure 4). Most importantly, Th23 treatment induced an antioxidant defense
system and significantly increased the three-enzyme content inside tomato leaves. For PPO
activity, the Th23 treatment exhibited the highest level (0.31 µM/g FW), with an increase in
its activity of 138.46% and 210% when compared to the mock treatment (0.13 µM/g FW)
and TMV treatment (0.10 µM/g FW), respectively. Similarly, the Th23 + TMV treatment
induced the PPO activity (0.19 µM/g FW) with significant increases of 46.15% and 90%
compared to the mock and TMV treatments, respectively (Figure 4). Regarding antioxi-
dant enzyme CAT activity, the Th23-pretreated tomato plants showed the greatest level
of content (0.57 µM/g FW) with a significant increase of 67.65% and 21.27% compared to
TMV and mock treatments, respectively (Figure 4). In addition, Th23 + TMV treatment
exhibited 0.46 µM/g FW activity with an increase of 35.29% compared to then nontreated
plants. Compared to the mock treatment (0.47 µM/g FW), no significant change (p ≤ 0.05)
was reported with Th23 + TMV treatment (Figure 4). Concerning SOD activity, the results
showed that the SOD level content was considerably decreased upon TMV infection. The
TMV treatment was significantly reduced by 27.88% compared to the control (0.45 µM/g
FW). Although there was a slight reduction in SOD activity of Th23 + TMV treatment
(0.43 µM/g FW), no significant difference was reported compared with the control. The
Th23 treatment showed the highest SOD activity (0.59 µM/g FW) with significant increases
of 84.38% and 31.11% compared to the TMV and mock treatments, respectively (Figure 4).
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Figure 4. Polyphenol oxidase (PPO), catalase (CAT), and sodium dismutase (SOD) kinetic levels
as affected by various treatments including untreated plants (mock), TMV-treated plants (TMV),
Trichoderma hamatum strain Th23 application (Th23), and T. hamatum strain Th23 application 48 h
before TMV inoculation (Th23 + TMV). The mean values in each of the columns that begin with the
same letter are not statistically different (p ≤ 0.05).

3.6. Transcriptional Levels of Defense-Related Genes
3.6.1. Polyphenolic Biosynthetic Pathway

The qRT-PCR results showed significant increases (p ≤ 0.05) in the relative expres-
sion levels of the two polyphenolic biosynthetic pathway genes, HQT and CHS, in the
Th23-treated tomato plants, either challenged with TMV or not (Figure 5). The Th23
treatment recorded the highest transcript of HQT with a relative transcriptional level of
3.69-fold change higher than the mock treatment plants. Similarly, a significant increase
with a relative transcriptional level of 2.82-fold change greater than the control was re-
ported in the Th23 + TMV treatment tomato plants. No significant difference was noted
between the TMV treatment and control (Figure 5). Regarding the CHS transcript, it was
reported that TMV treatment suppressed and significantly downregulated CHS in tomato
plant tissues. Intriguingly, the application of Th23 induced CHS transcripts in Th23 and
Th23 + TMV treatments. The Th23 treatment exhibited the highest relative transcriptional
level (2.16-fold), followed by the Th23 + TMV treatment with a 1.29-fold change higher than
the mock treatment. The TMV treatment showed a relative expression level of 0.79-fold
lower than mock treatment plants (Figure 5).
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Figure 5. Polyphenol biosynthetic pathway genes (HQT and CHS) and pathogenesis-related proteins’
(PR-1, PR-2, and PR-7) relative expression levels quantified by qRT-PCR as affected by various
treatments including untreated plants (mock), TMV-treated plants (TMV), Trichoderma hamatum
strain Th23 application (Th23), and T. hamatum strain Th23 application 48 h before TMV inoculation
(Th23 + TMV). The mean values in each of the columns that begin with the same letter are not
statistically different (p ≤ 0.05).

3.6.2. Pathogenesis-Related Proteins

In the present study, the three pathogenesis-related proteins (PR-1, PR-2, and PR-7)
were significantly differentiated upon challenging tomato plants with Th23 and/or TMV
infection (Figure 5). For PR-1, it was shown that the treatment of tomato plants with
Th23 isolate, either alone or before TMV infection, triggered the expression of the PR-1
gene. The Th23 treatment showed a relative expression level of 4.22-fold change higher
than the control, which revealed a significant increase of 385.06% compared to the TMV
treatment. Furthermore, Th23 + TMV treatment induced PR-1 with a relative expression
level of 2.64-fold change higher than the mock treatment. The nontreated tomato plants
challenged with TMV only exhibited a significant (p ≤ 0.05) decreasing PR-1 level, with a
relative expression level of 0.87-fold change lower than the control (Figure 5). Regarding
the PR-2 transcript profile, it was reported that the TMV infection considerably induced
PR-2 in the infected tomato tissues with a relative expression level of 3.73-fold higher than
the mock treatment. The Th23 + TMV treatment exhibited a slight upregulation with a
relative transcriptional level of 1.22-fold higher than the control. Among the Th23 and
mock treatments, no significant change was reported (Figure 5). Concerning PR-7, the
treatment of tomato plants with the Th23 isolate significantly induced the expression of
PR-7. The Th23 treatment exhibited the highest expression level (2.76-fold), while the
Th23 + TMV treatment showed a relative transcriptional level of 1.90-fold higher than the
mock treatment. On the other hand, no significant difference was observed in the TMV
treatment compared to the mock treatment at p ≤ 0.05 (Figure 5).

4. Discussion

Plant diseases, particularly plant viral infestations, are responsible for significant
crop losses, and pose a serious threat to food security all over the world [48]. Due to
the difficult problem of their control and their changing environmental conditions, it is
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urgently necessary to discover and identify new biocontrol agents capable of controlling
plant viral infections. The use of plant growth-promoting microorganisms as biocontrol
agents is a safe alternative to the harmful use of chemicals and is seen as a long-term and
environmentally friendly alternative [45]. There are, to date, few studies on the role of
Trichoderma spp. in the induction of plant defenses against viral infections. The majority
of prior research has spotlighted the critical role of Trichoderma spp. in the management
of plant-fungal and bacterial diseases. Due to the increasing number of species and the
paucity of morphological characteristics, it is very difficult to differentiate Trichoderma
species using morphological characteristics [49,50]. Sequences of the most variable regions
of specific genes are now becoming increasingly useful in identifying closely related species.
In the current study, the ITS (Acc# MW797032) sequencing BLAST and phylogenetic tree
results were not sufficient for species delimitation of the isolated Trichoderma strain. It
was reported that the analysis based on ITS sequences has been shown to be ineffective in
distinguishing closely related species within Trichoderma species complexes [51]. The gene
sequences of tef1 and rpb2 genes are very informative and have been shown to be useful in
investigating closely related strains at the species level [50,52]. As a result, the tef1 and rpb2
genes have become the preferred markers for identifying Trichoderma strains [53]. Based on
the NCBI-BLAST alignment and phylogenetic tree analysis of rpb2 (Acc# OL412667) and
tef1 (Acc# OL439486) genes, the isolated Trichoderma strain was identified as Trichoderma
hamatum strain Th23.

Under greenhouse conditions, the soil application of the Th23 isolate, either alone or
48 h before TMV infection, significantly (p ≤ 0.05) enhanced the growth of tomato plants as
well as chlorophyll content. At 15 dpi, the Th23 treatment exhibited the highest growth
parameter values, followed by the Th23 + TMV treatment. On the other hand, the TMV
treatment showed a significantly negative impact on the growth of tomato plants at all the
growth parameters. Several authors have shown that the application of Trichoderma spp.
was associated with an increase in root length, shoot length, and dry weight compared
to the control plants [9,54–56]. Generally, the severe morphological and physiological
changes including mosaic symptoms that occur upon viral infection are linked to changes
in chlorophyll content and result in reduced photosynthesis [21,57]. Thus, the changes in
chlorophyll pigment content upon viral infection can be used to indicate the functional
status of photosynthesis in plants [58]. In the current study, the analysis of chlorophyll
content showed that Th23 and Th23 + TMV treatments resulted in significant changes
in chlorophyll content compared to tomato leaves of the TMV treatment. These results
were in agreement with the findings of other researchers who showed that the application
of Trichoderma spp. increased the chlorophyll content of the treated plants [59,60], while
chlorophyll reduction was associated with a viral infection [57,58]. Consequently, the
application of Th23 strain can boost photosynthetic rates and efficiency in plants [10],
primarily through enhancing the plant’s redox state [61]. The current findings confirmed
that Th23 can protect tomato plants against TMV not only by modulating symptoms and
thus reducing disease severity, but also by lowering viral accumulation inside plant tissues.
The observation of symptoms as well as the severity of the disease demonstrated that Th23
treatment reduced TMV in all treated plants. On the other hand, the significant decrease in
TMV accumulation level (84.69%) confirmed the protective efficacy of Th23 against TMV
infestation. Thus, the obtained data suggest that Th23 could stimulate the host’s innate
immune system and/or trigger SAR, resulting in TMV suppression and/or replication
inhibition. The findings were consistent with those of Tamandegani et al. [57], who reported
that the pretreatment of soils with T. asperellum was associated with a significant reduction
in CMV accumulation levels when compared with the untreated control cucumber plants. It
was reported that Trichoderma-induced resistance to viral infection was usually associated
with a reduction in virus concentration and disease severity, indicating that different
defensive pathways were implicated [6,57,62]. The obtained results were consistent with
the reported protective activities of different Trichoderma spp. against various plant viral
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infestations. It was shown that pretreating plants with Trichoderma spp. resulted in a
considerable reduction in viral accumulation compared to nontreated plants [15,57,62].

Oxidative burst accumulation is one of the first reactions in the plant defense system.
Reactive oxygen species (ROS) regulate various cellular processes including antimicro-
bial activity and the regulation of certain plant transcription factors [63]. One of the
ROS molecules belonging to nonradical oxidants is hydrogen peroxide (H2O2). In plant–
pathogen interactions, H2O2 serves various functions including inhibition of pathogen
propagation, affects the defense system, and is a SAR signal molecule [64]. In the current
study, H2O2 levels in the TMV treatment were 2.53 times higher than in the mock treatment
plants. The same findings were obtained in a study on CMV reported by Song et al. [65],
who noticed CMV enhanced H2O2 buildup in tomato and cucumber chloroplasts and mito-
chondria. Additionally, a study by Sorahinobar et al. [66] reported that H2O2 builds up fast
once the virus infects the host, increasing resistance. At the same time, H2O2 levels were
decreased in the Th23 + TMV treatment compared to the TMV treatment. This decrease may
have been due to the protective activity of Th23 and a reduction in the TMV accumulation
inside the treated tomato tissues. This result was similar to the findings of Luo et al. [67],
who noticed that CMV + T. asperellum decreased the damaging effects of ROS in cucumber;
thus, one probable mechanism of T. asperellum-induced CMV resistance is the stimulation
of early plant defense mechanisms. Regarding the MDA level, the TMV treatment showed
2.36 times higher MDA levels compared to the controls. MDA accumulation had a limited
significant increase in Th23 and Th23 + TMV treatments (169.46 and 184.73 µM/g FW,
respectively) compared to the control (132.21 µM/g FW). These findings were consistent
with those of Sobhy et al. [68] and Loreto and Velikova [69]. They suggested that an in-
crease in MDA could indicate that plants are under oxidative stress, and thus could be a
promising biomarker of membrane breakdown in pathogen-infected plants. Similar results
were reported by Anthony et al. [70] in bananas infected with Fusarium fungus.

It is well known that CAT protects plant cells under stress exposure from ROS oxidative
damage by converting ROS components to less toxic and more stable molecules such as
oxygen and water [71,72]. In our study, the CAT enzyme decreased in tomato plants
inoculated with TMV compared with the control, while it significantly increased in tomato
plants treated with Th23 alone and Th23 + TMV. It seems that the preapplication of Th23
before TMV inoculation normalizes and cures the plant from TMV infection and keeps the
accumulation levels of the CAT enzyme in normal conditions compared with the control
plants. It has been proposed that CAT increases cell wall resistance, induces defense
genes, accumulates SA signal, and suppresses RNA silencing [73]. The CAT enzyme
may interact with viral movement protein, which is involved in symptom induction such
as the CMV 2b protein reported by Mathioudakis et al. [74]. Likewise, the enhanced
synthesis of antioxidant enzymes such as SOD and PPO in infected tomato plant leaves
counteracted the higher MDA and H2O2 levels, limiting tissue oxidation [72,75] as well
as limiting pathogen invasion by reinforcing cell walls [76]. Such antioxidant enzymes
were significantly higher in plants that interacted with pathogens following exposure to the
biocontrol agent such as Trichoderma spp., which triggers the induced systematic resistance
by secreting defense-related enzymes including PPO, against viral pathogens, according
to previous studies [57,77,78]. In our investigation, tomato plant inoculation with TMV
alone caused a significant decrease in PPO and SOD activity. In contrast, in plants treated
with Th23 only or with Th23 + TMV, both PPO and SOD enzyme activities reached their
maximum levels. This change suggested that these enzymes could play a crucial role in
ROS detoxification. Thus, the Th23 strain could activate PPO and SOD to prevent the
tomato plant cells from TMV multiplication and transmission by establishing polymerized
phenolic barriers around infection sites to kill the pathogen [79,80].

The expression of hundreds of genes is triggered by the plant–virus interaction. It was
reported that plant defensive responses were regulated by crosstalk between the SA, JA,
and ET signaling pathways [81].
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The qRT-PCR results showed that the relative expression levels of the two polypheno-
lic biosynthesis pathway genes, HQT and CHS, were significantly increased in Th23-treated
tomato plants, whether challenged with TMV or not. CHS, the first enzyme in the flavonoid
pathway, transforms p-coumaroyl CoA into naringenin chalcones and is regarded as a
key precursor necessary for plant flavonoids [35,44]. HQT is a principal enzyme in the
biosynthesis of chlorogenic acid, catalyzing the conversion of caffeoyl-CoA and quinic
acid to chlorogenic acid [82]. Chlorogenic acid is a polyphenolic compound that is im-
portant in improving plant resistance and inhibiting pathogens such as viruses [83,84].
In the current investigation, the Th23 treatment had the greatest transcript of HQT with
a relative transcriptional level 3.69-fold greater than the mock-treated plants. Similarly,
with the Th23 + TMV treatment, tomato plants showed a substantial rise, with a relative
expression level 2.82-fold higher than the control. In terms of the CHS transcript, it has been
demonstrated that TMV infection significantly decreased CHS expression in tomato plant
tissues after TMV treatment. Surprisingly, the application of Th23 induced CHS transcripts
in Th23 and Th23 + TMV treatments. It was reported that the roots invaded by T. harzianum
demonstrated great resistance against dangerous organisms, which was connected with
changes in phenolic accumulation by Yedidia et al. [85]. Consequently, phenolics accumu-
lating in Trichoderma-treated plants can act as electron and hydrogen donors, protecting
plant tissue from oxidative damage during pathogen infection [86]. Previous research
has found that overexpression of CHS could result in a large accumulation of flavonoid
and isoflavonoid compounds with broad antimicrobial activity against a wide range of
phytopathogens [87–90]. Additionally, it was reported that increases in chlorogenic acid
levels were linked to increased HQT expression and vice versa [82,88]. Thus, the elevation
of transcriptional expression of these genes demonstrates their antiviral role, implying
that the tomato plant can utilize polyphenolic compounds as one of its defenses against
viral infection and spread. In line with the obtained results, the increased expression levels
of CHS and HQT resulted in the accumulation of polyphenolic compounds inside plant
tissues, the development of SAR, and increased resistance against TMV infestation [21].
As a result, pretreating tomato plants with Th23 may result in an increase in numerous
flavonoid compounds. Thus, Th23 might be used to combat TMV infections as a biocontrol
agent. However, further study is needed for future field uses.

Several reports have proposed that a convergent collection of PR proteins is responsi-
ble for SAR development and is effective in suppressing pathogen multiplication and/or
dissemination [21,91,92]. For PR-1, it was shown that the TMV treatment exhibited a sig-
nificant decrease in PR-1 expression level by 0.77-fold lower than the control at p ≤ 0.05.
On the other hand, the Th23 treatment or Th23 + TMV treatment triggered the expres-
sion level of PR-1 with significant increases of 385.06% and 203.45%, respectively, when
compared with the TMV treatment. Salicylic acid (SA) is a well-known plant signal phy-
tohormone molecule, and its role in plant immune activation has been documented for
more than two decades [20,93,94]. Furthermore, several studies have shown that PR-1 is an
SA marker gene, an important regulator of SAR, and a predictor of early plant defensive
response [93,95]. Meanwhile, induction of PR-1 is frequently associated with SA accumu-
lation, which results in SAR activation [20,96,97]. As a result, we hypothesized that Th23
may produce elicitor metabolite compounds that induce systemic resistance, activating SAR,
and enhancing plant resistance to viral infection. PR-7, the most prominent PR gene in tomato
plant tissues, encodes endoproteinase activity in plants. It has emerged as a major component
of plant defensive response proteins against various pathogens [91,98–100]. In this study, the
Th23 treatment had the highest expression level, followed by Th23 + TMV treatment, with
a relative transcriptional level 2.76- and 1.90-fold higher than the mock treatment, respec-
tively. It was postulated that PR-7 participated in pathogen perception and signaling cascade
activation in infected tomato plants via specialized processing of a LRP (leucine-rich repeat
protein) [101,102]. However, more characterization and functional analysis of PR-7 will lead
to a more in-depth understanding of its role in plant–viral interactions.
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In addition to their primary role in viral transport from cell to cell, PR-2 encoding
-1,3-glucanases mediate cell-to-cell communication and long-distance signaling by limiting
callose deposition near plasmodesmata [103–105]. They are involved in pathogenic defense
and several physiological plant activities and are primarily induced by SAR and SAR
inducers such as SA [37,106,107]. In the current study, TMV infection considerably induced
PR-2 in the TMV treatment with a relative transcriptional level 3.73-fold higher than in
the mock treatment. The findings were consistent with previous research that revealed
significant activation of PR-2 in response to viral infections in a variety of plant species
including Arabidopsis, tobacco, potato, and tomato [37,108–111]. Moreover, a lack of tobacco
PR-2 expression was associated with lower viral infection susceptibility [111], whereas
overexpression accelerated PVY infection spread across cells [112,113]. Interestingly, treat-
ments of tomato plants with Th23 prior to TMV infection showed a slight increase in PR-2
compared to the control plants. There were no significant changes reported between Th23
and mock treatments in tomato plants at p ≤ 0.05. Thus, the preapplication of Th23 before
viral infection may reduce TMV infection by lowering PR-2 expression and inhibiting
long-distance viral movement between cells.

5. Conclusions

In this study, we investigated, for the first time, the effects of Trichoderma hamatum Th23
in tomato plants as a safeguard against TMV. Th23 can induce tomato systemic resistance
against TMV by modulating the plant response, triggering multiple plant defense pathways,
increasing resistance, and preventing the suppression of defense genes. The preapplication
of Th23 before TMV infection significantly enhanced tomato growth parameter heights,
improved total chlorophyll, decreased disease severity, and reduced TMV accumulation
inside infected tissues. Moreover, a reduction in oxidative stress markers (MDA and H2O2)
and elevation of the antioxidant enzymes (SOD, CAT, and PPO) were also reported. In
addition, the triggering of transcriptional levels of HQT, CHS, PR-1, and PR-7 was observed.
The results implied the potential of Th23 application in plant viral disease control.
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