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Abstract

Throughout the last decade, the so-called replication crisis has stimulated many research-

ers to conduct large-scale replication projects. With data from four of these projects, we

computed probabilistic forecasts of the replication outcomes, which we then evaluated

regarding discrimination, calibration and sharpness. A novel model, which can take into

account both inflation and heterogeneity of effects, was used and predicted the effect esti-

mate of the replication study with good performance in two of the four data sets. In the other

two data sets, predictive performance was still substantially improved compared to the

naive model which does not consider inflation and heterogeneity of effects. The results sug-

gest that many of the estimates from the original studies were inflated, possibly caused by

publication bias or questionable research practices, and also that some degree of heteroge-

neity between original and replication effects should be expected. Moreover, the results indi-

cate that the use of statistical significance as the only criterion for replication success may

be questionable, since from a predictive viewpoint, non-significant replication results are

often compatible with significant results from the original study. The developed statistical

methods as well as the data sets are available in the R package ReplicationSuccess.

Introduction

Direct replication of past studies is an essential tool in the modern scientific process for assess-

ing the credibility of scientific discoveries. Over the course of the last decade, however, con-

cerns regarding the replicability of scientific discoveries have increased dramatically, leading

many to conclude that science is in a crisis [1, 2]. For this reason, researchers in different fields,

e. g. psychology or economics, have joined forces to conduct large-scale replication projects. In

such a replication project, representative original studies are carefully selected and then direct

replication studies of these original studies are carried out.

By now, many of the initial projects have been completed and their data made available to

the public [3–9]. The low rate of replication success in some of these projects has received

enormous attention in the media and scientific communities. Moreover, these results lead to

an increased awareness of the replication crisis as well as to increased interest in research on

the scientific process itself (meta-science).
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Making forecasts about an uncertain future is a common human desire and central for deci-

sion making in science and society [10, 11]. There have been many attempts to forecast the

outcomes of replication studies based on the results from the original studies [5, 7, 12–15].

This is interesting for various reasons: First, a forecast of how likely a replication will be “suc-

cessful” according to some criterion (e. g. an effect estimate reaches statistical significance) can

help to assess the credibility of the original finding in the first place and inform the decision

whether a replication study should be conducted at all. Second, after a replication has been

completed, its results can be compared to its forecast in order to assess compatibility between

the two findings. Finally, forecasting can also be helpful in designing an informative replica-

tion study, for example it can be used for sample size planning.

Although there have been theoretical contributions to the literature long before the replica-

tion crisis started [16–18], the last years have witnessed new developments regarding forecast-

ing of replication studies. Moreover, due to the increasing popularity of replication studies,

forecasts could be evaluated with actual data.

For instance, prediction markets have been used in order to estimate the peer belief about

whether a replication will result in a statistically significant outcome [5, 7, 12, 15]. Prediction

markets are a tool to aggregate beliefs of market participants regarding the possibility of an

investigated outcome and they have been used successfully in numerous domains, e. g. sports

and politics. However, despite good predictive performance, taking statistical significance as

the target variable of the forecasts requires arbitrary dichotomization of the outcomes,

although one would prefer to rather forecast the replication effect estimate itself. Moreover,

the evaluation of these forecasts was usually based on ad-hoc measures such as correlation of

the estimated probabilities with the outcome. In fields where forecasting is of central impor-

tance, e. g. meteorology, climatology, or infectious disease epidemiology, extensive methodol-

ogy has been developed to specifically assess calibration, discrimination, and sharpness of

probabilistic forecasts [11]. It is therefore of interest to assess whether more insights about the

forecasts can be gained when applying a more state-of-the-art evaluation strategy. Finally, it is

also of interest to benchmark the prediction market forecasts with statistical forecasts that do

not require recruiting experts and setting up prediction market infrastructure.

A statistical method to obtain probabilistic forecasts of replication estimates was proposed

by Patil, Peng, and Leek [13] and then also used in the analysis of the outcomes of some large-

scale replication projects. Specifically, the agreement between the original and replication

study was assessed by a prediction interval of the replication effect estimate based on the origi-

nal effect estimate. This method was illustrated using the data set from the Reproducibility
Project: Psychology [4], and it was also used in the analyses of the Experimental Economics Rep-
lication Project [5] and the Social Sciences Replication Project [7]. In all of these analyses, the

coverage of the 95% prediction intervals was examined to assess predictive performance.

Although this evaluation method provides some clue about the calibration of the forecasts,

more sophisticated methods exist to assess calibration and sharpness specifically [11]. More-

over, the prediction model which was used does not take into account that the original effect

estimates may be inflated. In the statistical prediction literature, the phenomenon that future

observations of a random quantity tend to be less extreme than the original observation, is

commonly known as regression to the mean and usually addressed by shrinkage methods [19].

This effect might be even more pronounced by the influence of publication bias [20, 21] or

questionable research practices [22, 23]. Finally, the model from Patil et al. [13] also makes the

naive assumption that the effect estimates from both studies are realizations of the same under-

lying effect size, however, there is often between-study heterogeneity [24, 25]. This can be

caused, for example, by different populations of study participants or different laboratory

equipment being used in the original and replication study.
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The objective of this paper is to improve on the previous statistical forecasts and also on

their evaluation. In particular, we will develop and evaluate a novel prediction model which

can take into account inflation of the original effect estimates as well as between-study hetero-

geneity of effects. With the available data from large-scale replication projects, we aim to pre-

dict the effect estimates of the replication studies based on the estimates from the original

studies and knowledge of the sample size in both studies. We will assess the forecasts regarding

discrimination, calibration, and sharpness using state-of-the-art evaluation methods from the

statistical prediction literature. Finally, we will also benchmark them with the forecasts from

prediction markets and the naive model which was used so far.

It is worth pointing out that in our forecasting approach the link between original and repli-

cation study is based only on information from the original study and the sample size of the

replication study. This is fundamentally different from approaches where the link between

original and replication study is estimated from a training sample of past original and replica-

tion study pairs, as for example done recently by Altmejd et al. [14]. Since in our approach no

replication estimates are used to estimate any parameter, all evaluations presented in this

paper provide “out-of-sample” performance measures, thereby eliminating the need to split

the data and perform cross-validation.

The structure of this paper is as follows: descriptive results on the data collected are pre-

sented in the following section. We then develop a novel model of effect sizes that addresses

the shortcomings of the model used in previous analyses. Next, we compute forecasts for the

collected data and systematically evaluate and compare them with forecasts based on the previ-

ously used model. Finally, the paper ends with a discussion of the results obtained.

Data

Data from all replication projects with a “one-to-one” design (i. e. one replication for one orig-

inal study) that are, to our knowledge currently available, were collected. The R code and

details on data preprocessing can be found in S1 Appendix. In all data sets, effect estimates

were provided as correlation coefficients (r). An advantage of correlation coefficients is that

they are bounded to the interval between minus one and one and are thus easy to compare and

interpret. Moreover, by applying the variance stabilizing transformation, also known as Fisher

z-transformation, ŷ ¼ tanh� 1
ðrÞ, the transformed correlation coefficients become asymptoti-

cally normally distributed with their variance only being a function of the study sample size n,

i. e. VarðŷÞ ¼ 1=ðn � 3Þ [26].

Reproducibility project: Psychology

In the Reproducibility Project: Psychology, 100 replications of studies from the field of psychol-

ogy were conducted [4]. The original studies were published in three major psychology jour-

nals in the year 2008. Only the study pairs of the “meta-analytic subset” were used, which

consists of 73 studies where the standard error of the Fisher z-transformed effect estimates can

be computed [27].

Experimental economics replication project

This project attempted to replicate 18 experimental economics studies published between 2011

and 2015 in two high impact economics journals [5]. For this project a prediction market was

also conducted in order to estimate the peer beliefs about whether a replication will result in a

statistically significant result. Since the estimated beliefs are also probabilistic predictions, they
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can be compared to the probability of a significant replication effect estimate under the statisti-

cal prediction models.

Social sciences replication project

This project involved 21 replications of studies on the social sciences published in the journals

Nature and Science between 2010 and 2015 [7]. As in the experimental economics replication

project, a prediction market to estimate peer beliefs about the replicability of the original stud-

ies was conducted and the resulting belief estimates can be used as a comparison to the statisti-

cal predictions.

Experimental philosophy replicability project

In this project, 40 replications of experimental philosophy studies were carried out. The origi-

nal studies had to be published between 2003 and 2015 in one of 35 journals in which experi-

mental philosophy research is usually published (a list defined by the coordinators of this

project) and they had to be listed on the experimental philosophy page of the Yale university

[8]. Effect estimates on correlation scale and effective sample size for both the original and rep-

lication were only available for 31 study pairs. Our analysis uses only this subset.

Descriptive results

Fig 1 shows plots of the original versus the replication effect estimate, both on the correla-

tion scale. Most effect estimates of the replication studies are considerably smaller than

those of the original studies. In particular, the mean effect estimates of the replications are

roughly half as large as the mean effect estimates of the original studies. This is not the case

for the philosophy project, however, where the mean effect estimate only decreased from

0.39 to 0.34. Furthermore, studies showing a comparable effect estimate in the replication

and original study usually also achieved statistical significance, while studies showing a

large decrease in the effect estimate were less likely to achieve statistical significance in the

replication.

Fig 2 illustrates the elicited prediction market beliefs about whether the replication studies

will achieve statistical significance. In the case of the economics data set, the distribution of the

prediction market beliefs is very similar for significant and non-significant replications. In the

social sciences project, on the other hand, the elicited beliefs separate significant and non-sig-

nificant replications completely for a cut-off around 0.55.

Methods

To introduce some notation, denote the overall effect by θ, study-specific underlying effects by

θo and θr, and their estimates by ŷo and ŷr, with the subscript indicating whether they come

from the original or the replication study. Let the corresponding standard errors be denoted

by σo and σr and also let the heterogeneity variance be τ2. Similarly, define the variance ratio as

c ¼ s2
o=s

2
r , the relative between-study heterogeneity as d ¼ t2=s2

o , and also denote the corre-

sponding test statistics by to ¼ ŷo=so and tr ¼ ŷr=sr. Finally, letF(x) be the cumulative distri-

bution function of the standard normal distribution evaluated at x and let zα denote the 1 − α
quantile thereof.
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We propose the following Bayesian hierarchical model for the effect estimates

ŷk j yk � Nðyk; s
2

kÞ ð1aÞ

yk j y � Nðy; t2Þ ð1bÞ

y � Nðmy; s
2

y
Þ ð1cÞ

where s2
k; t

2; my; s
2
y

are fixed and k 2 {o, r} (see Fig 3 for a graphical illustration). After a suit-

able transformation a large variety of effect size measures are covered by this framework

(e. g. mean differences, odds ratios, correlations). For instance, ŷk ¼ tanh � 1ðrkÞ and

Fig 1. Original effect estimate versus replication effect estimate. Effect estimates are on correlation scale. The color

indicates whether statistical significance at the (two-sided) 0.05 level was achieved.

https://doi.org/10.1371/journal.pone.0231416.g001

Fig 2. Statistical significance of replication effect estimate versus prediction market belief. The significance

threshold α = 0.05 (two-sided) is used in all cases.

https://doi.org/10.1371/journal.pone.0231416.g002
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s2
k ¼ 1=ðnk � 3Þ are used in the four data sets for our analysis. The normality assumption is

also common to many meta-analysis methods. Together with a fixed heterogeneity variance

τ2, it leads to analytical tractability of the predictive distributions. In this model, the case where

effect estimates of the original and replication studies are not realizations of the same, but of

slightly different underlying random variables is taken into account and controlled by the het-

erogeneity variance τ2. That is, for the limiting case τ2! 0, the study-specific underlying

effects θo and θr are assumed to be the same, while for the other extreme τ2!1, θo and θr are

assumed to be completely unrelated. Furthermore, the choice of the prior distribution of θ pro-

vides additional flexibility to incorporate prior knowledge about the overall effect. In the fol-

lowing, the predictive distributions of the replication effect estimate under two interesting

prior distributions are discussed.

Flat prior

If the prior distribution Eq (1c) is chosen to be flat, the posterior distribution of the overall

effect θ after observing the original study effect estimate becomes y j ŷo � Nðŷo; s
2
o þ t

2Þ. The

posterior predictive distribution of ŷr then turns out to be

ŷr j ŷo � Nðŷo; s
2
o þ s

2
r þ 2t2Þ: ð2Þ

Under this predictive model, one implicitly assumes the effect estimation in the original study

to be unbiased, since the predictive density is centered around the original effect estimate.

Fig 3. Hierarchical model of effect sizes in replication setting. Random variables are encircled (and grey if they are

observable).

https://doi.org/10.1371/journal.pone.0231416.g003
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Furthermore, the uncertainty coming from the original and replication study, as well as the

uncertainty from the between-study heterogeneity is taken into account. Also note that for τ2

= 0, Eq (2) reduces to the naive model from Patil et al. [13] used in previous analyses.

Given this predictive model, the test statistic of the replication is distributed as

tr j to � Nð
ffiffi
c
p
� to; cþ 1þ 2cdÞ; ð3Þ

which only depends on the original test statistic to, the variance ratio c, and the relative hetero-

geneity d. From Eq (3) one can easily compute the power to obtain a statistically significant

result in the replication study. Hence, this generalizes the replication probability [16, 17], i. e.
the probability of obtaining a statistically significant finding in the same direction as in the

original study, to the setting of possible between-study heterogeneity.

Sceptical prior

Instead of a flat prior, one can also choose a normal prior centered around zero for Eq (1c),

reflecting a more sceptical belief about the overall effect [28]. Moreover, we decided to use a

parametrization of the variance parameter inspired by the g-prior [29] known from the regres-

sion literature, i. e. y � Nð0; g � ½s2
o þ t

2�Þ with fixed g> 0. A well-founded approach to specify

the parameter g when no prior knowledge is available is to choose it such that the marginal

likelihood is maximized (empirical Bayes estimation). In doing so, the empirical Bayes esti-

mate ĝ ¼ maxfŷ2
o=ðs

2
o þ t

2Þ � 1; 0g is obtained. Fixing g to ĝ and applying Bayes’ theorem,

the posterior distribution of the overall effect θ after observing the original effect estimate

becomes y j ŷo; ĝ � Nðs � ŷo; s � ½s2
o þ t

2�Þ, with shrinkage factor

s ¼
ĝ

1þ ĝ
¼ max 1 �

1þ d
t2
o

; 0

� �

: ð4Þ

Fig 4 shows the shrinkage factor s as a function of the relative between-study heterogeneity d
and the test statistic (or the two-sided p-value) of the original study. Interestingly, for d = 0, Eq

(4) reduces to the factor known from the theory of optimal shrinkage of regression coefficients

[19, 30].

The posterior predictive distribution of ŷr under this model becomes

ŷr j ŷo � Nðs � ŷo; s � ðs2
o þ t

2Þ þ s2
r þ t

2Þ: ð5Þ

The promise of this method is that shrinkage towards zero should improve predictive

Fig 4. Evidence-based shrinkage. Shrinkage factor s as function of the test statistic to (bottom axis) and the two-sided

p-value po (top axis) of the original study and the relative between-study heterogeneity d ¼ t2=s2
o .

https://doi.org/10.1371/journal.pone.0231416.g004
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performance by counteracting the regression to the mean effect. As such, shrinkage also coun-

teracts effect estimate inflation caused by publication bias to some extent. That is, the contribu-

tion of the original effect estimate to the predictive distribution shrinks depending on the

amount of evidence in the original study (evidence-based shrinkage). The less convincing the

result from the original study, i. e. the smaller to, the more shrinkage towards zero. On the

other hand, shrinkage decreases for increasing evidence and in the limiting case the predictive

distribution is the same as under the flat prior, i. e. s! 1 for to!1. Moreover, the shrinkage

factor in Eq (4) is also influenced by the ratio d=t2
o . If the test statistic is not substantially larger

than the relative between-study heterogeneity, i. e. t2
o � d, heterogeneity also induces shrink-

age towards zero.

Based on this predictive model, the distribution of the test statistic of the replication study

depends only on the relative quantities c, d, and to. From Eq (6), it is again straightforward to

compute the power for a significant replication outcome.

tr j to � Nðs �
ffiffi
c
p
� to; s � ðcþ cdÞ þ 1þ cdÞ; ð6Þ

Fig 5 shows the replication probability as a function of the original test statistic to (or two-

sided p-value po) and for different values of the variance ratio c. Note that the curves of the

shrinkage methods stay constant until to reaches a point where Eq (4) starts to become larger

than zero. If the original study showed a “just significant result” (to� 1.96) and the precision is

equal in the original and the replication study (c = 1), the replication probability is just 0.5

when a flat prior is used. This surprising result was already noted two decades ago [16], yet it

has not become part of statistical literacy and many practitioners of statistics are still perplexed

when they hear about it. If a sceptical prior is used, the replication probability becomes even

lower. Moreover, when the precision of the replication is smaller (c< 1), the replication proba-

bility is also lower, whereas with increased precision (c> 1) the replication probability also

increases. Finally, for small to the replication probability is higher when there is heterogeneity

compared to when there is no heterogeneity, while the opposite is true for large to.

Fig 5. Replication probability. Probability of a significant replication outcome in the same direction as in the original

study at (two-sided) α = 0.05 level as a function of the test statistic to (bottom axis) and p-value po (top axis) of the

original study and variance ratio c ¼ s2
o=s

2
r . The dashed line indicates z0.025� 1.96. In the case of heterogeneity, d ¼

t2=s2
o is set to one, otherwise to zero.

https://doi.org/10.1371/journal.pone.0231416.g005
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Specification of the heterogeneity variance

One needs to specify a value for the heterogeneity variance τ2 to compute predictions of ŷr.

However, it is not possible to estimate τ2 using only the data from the original study, since the

overall effect θ in the marginal likelihood of ŷo j y � Nðy; s2
o þ t

2Þ is also unknown.

Ideally, a domain expert would carefully assess original study and replication protocol, and

then specify how much heterogeneity can be expected for each study pair individually. This is,

however, beyond the scope of this work. We instead want to compare forecasts that use a posi-

tive “default value” of τ2 to forecasts for which τ2 is set to zero. The goal is then to assess

whether or not it makes a difference in predictive performance when heterogeneity is taken

into account. Of course we will also investigate how robust our conclusions are to the choice of

the default value for τ2 by conducting a sensitivity analysis (see section “Sensitivity analysis of

heterogeneity variance choice”).

To determine the value of τ2, we adapted an approach originally proposed to determine

plausible values for τ2 of heterogeneous log odds ratio effects [28 Chapter 5.7.3, P. 168]: Based

on the proposed hierarchical model Eq (1), 95% of the study-specific underlying effects θk, k 2
{o, r} should lie within the interval θ ± z0.025 � τ. We want to specify a value for τ, such that the

range of this interval is not zero, but also not very large, because the whole purpose of a replica-

tion study is to replicate an original experiment as closely as possible. The comparison of the

limits of this interval is, however, easier if they are transformed to the correlation scale, since

θk are a Fisher z-transformed correlations θk = tanh−1(rk) in all used data sets. We therefore

looked at the difference of the transformed 97.5% to the transformed 2.5% quantile, δ(τ) =

tanh(θk,97.5%) − tanh(θk,2.5%) as a function of the heterogeneity parameter τ for an overall effect

of θ = 0 (Fig 6). We then chose a value for τ that lead to a plausible value of δ(τ). However, this

raises the question of how one should classify these differences and which value should be cho-

sen for the current setting. In the context of power analysis, there exist many classifications of

effect size magnitudes, e. g. the one by Cohen [31]. We think this classification is appropriate

since it was developed to characterize effects in psychology and other social sciences, the fields

from which the data at hand are. In this classification a medium effect size should reflect an

effect which is “visible to the eye” (r = 0.3), a small effect size should be smaller but not trivial

(r = 0.1), and a large effect size should have the same difference to the medium effect size as

the small effect size, but in the other direction (r = 0.5). For direct replication studies, we think

it is reasonable to assume that the between-study heterogeneity should not be very large,

because these kinds of studies are usually matched as closely as possible to the original studies.

Fig 6. The difference between backtransformed quantiles δ(τ) = tanh(θk,97.5%) − tanh(θk,2.5%) as a function of

between-study heterogeneity τ for θ = 0. The values corresponding to small, medium, and large effect sizes on the

correlation scale according to the classification by Cohen [31] are depicted by dotted lines.

https://doi.org/10.1371/journal.pone.0231416.g006
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We therefore chose τ = 0.08, such that δ(τ), the difference between the 97.5% and 2.5% quan-

tiles of the study-specific underlying effects, is not larger than the size of a medium effect.

An alternative approach would be to use empirical heterogeneity estimates known from the

literature. We therefore also compared the chosen value to the empirical distribution of 497

between-study heterogeneity estimates of meta-analyses with correlation effect sizes in the

journal Psychological Bulletin between 1990 and 2013 [32] (see S2 Appendix for details). The

value of 0.08 corresponds to the 34% quantile of the empirical distribution, which we think is

reasonable as those estimates stem from meta-analyses of ordinary studies that are likely to be

more heterogeneous than direct replication studies.

Predictive evaluation methods

A large body of methodology is available to assess the quality of probabilistic forecasts. When

comparing the actual observations with their predictive distributions, one can distinguish dif-

ferent aspects. Discrimination characterizes how well a model is able to predict different obser-

vations. Calibration, on the other hand, describes the statistical agreement of the whole

predictive distribution with the actual observations, i. e. they should be indistinguishable from

randomly generated samples from the predictive distribution. One can also assess sharpness of

the predictions, i. e. the concentration of the predictive distribution [11].

Proper scoring rules are an established way to assess calibration and sharpness of probabi-

listic forecasts simultaneously. We therefore computed the mean logarithmic (LS), quadratic

(QS), and continuous ranked probability score (CRPS) for continuous predictive distributions

[33], and the mean (normalized) Brier score (BS) for binary predictive distributions [34]. In

order to specifically evaluate calibration, several methods were used: First, calibration tests

based on scoring rules were conducted, i. e. Spiegelhalter’s z-test [35] for forecasts with a binary

target and four calibration tests based on LS and CRPS [36] for forecasts with a continuous tar-

get. All of these tests exploit the fact that under the null hypothesis of perfect calibration, the

distribution of certain scores can be determined. Second, the probability integral transform
(PIT), i. e. the value of the predictive cumulative distribution function evaluated at the actual

observed value, was computed for each forecast. Under perfect calibration, the PIT values

should be uniformly distributed which can be assessed visually, as well as with formal tests

[33]. Third, the calibration slope method was used to evaluate calibration by regressing the

actual observations on their predictions, i. e. for forecasts with a binary target using logistic

regression. A well calibrated prediction model should lead to a regression slope β� 1, whereas

β> 1 and β< 1 indicate miscalibration [37]. Finally, to assess the discriminative quality of the

forecasts with a binary target, the area under the curve (AUC) was computed [38 Chapter

15.2.3].

Software

All analyses were performed in the R programming language [39]. The full code to reproduce

analyses, plots, and tables is provided in S3 Appendix. Methods to compute prediction inter-

vals and to conduct sample size calculations (see S2 Appendix for details), as well as the four

data sets are provided in the R package ReplicationSuccess which is available at

https://r-forge.r-project.org/projects/replication/.

Results

In this section, predictive evaluations of four different forecasting methods applied to the data

sets are shown: the method with the flat prior and τ = 0, corresponding to the previously

used method from Patil et al. [13] (denoted by N for naive), the method with the flat prior and
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τ = 0.08 (denoted by H for heterogeneity), the method with the sceptical prior and τ = 0

(denoted by S for shrinkage), and the method with the sceptical prior and τ = 0.08 (denoted by

SH for shrinkage and heterogeneity).

Forecasts of effect estimates

In the following, evaluations of forecasts of the replication effect estimates are shown.

Prediction intervals. Fig 7 shows plots of the original versus the replication effect esti-

mates. In addition, the corresponding 95% prediction interval is vertically shown around each

study pair.

Comparing the different methods across projects, the S method shows similar coverage as

the N method in the economics and philosophy data sets (83–84%), whereas in the psychology

and social sciences data sets the S method (75–76%) shows a higher coverage compared to the

N method (67–70%). As expected, when heterogeneity is taken into account, the prediction

intervals become wider and the coverage improves considerably in all cases. In the philosophy

and economics projects the highest coverage is achieved for the forecasts from the H method

(94%), while in the psychology and social sciences projects the highest coverage is achieved for

Fig 7. Original and replication effect estimates with 95% prediction intervals of the replication effect estimates

(vertical lines). Forecasting methods are abbreviated by N for naive, S for shrinkage, H for heterogeneity, SH for

shrinkage and heterogeneity.

https://doi.org/10.1371/journal.pone.0231416.g007
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the SH forecasts (88–95%). Moreover, in all but the psychology data set, the best method is

able to achieve nominal coverage, whereas in the psychology data set the best method achieves

slightly less. These improvements suggest improved calibration of the forecasts which take het-

erogeneity into account (and shrinkage in the case of the social sciences and psychology data

sets). Finally, in the psychology and social sciences projects, the replication effect estimates

that are not covered by their prediction intervals tend to be smaller than the lower limits of the

intervals. In the economics and philosophy projects, on the other hand, the non-coverage

appears to be more symmetric.

Scores. Table 1 shows the mean quadratic score (QS), mean logarithmic score (LS), and

the mean continuous ranked probability score (CRPS) for each combination of data set and

forecasting method. The SH method achieved the lowest mean score for each score type and in

all projects, suggesting that this method performs the best among the four methods. The N

method, on the other hand, usually showed the highest mean score across all score types, indi-

cating that this method performs worse compared to the other methods. We also tested for

deviation from equal predictive performance using paired tests and in most cases there is evi-

dence that the difference between the scores of the SH forecasts and the scores of the other

forecasts is substantial (see S2 Appendix for details).

Calibration tests. A total of four score-based calibration tests have been performed.

These tests exploit the fact that for normal predictions under the null hypothesis of perfect cali-

bration, the first two moments of the distribution of the mean LS and the mean CRPS can be

derived and appropriate unconditional calibration tests can be constructed. Moreover, the

functional relationship between the two moments can be used to define a regression model in

which the individual scores are regressed on their (suitably transformed) predictive variances

leading to another procedure to test for miscalibration [36]. A theoretically well-founded way

Table 1. Mean quadratic score (QS), mean logarithmic score (LS), mean continuous ranked probability score (CRPS), and harmonic mean of p-values from four

score-based calibration tests (p� ).

Project Method Score Type p�

QS LS CRPS

Experimental Economics N −0.83 0.34 0.21 0.013

n = 18 S −1.17 0.17 0.17 0.056

H −1.14 0.18 0.21 0.24

SH −1.32 0.02 0.17 0.79

Experimental Philosophy N −1.33 −0.05 0.12 0.0005

n = 31 S −1.46 −0.06 0.12 0.0002

H −1.51 −0.18 0.12 0.81

SH −1.67 −0.20 0.11 0.66

Psychology N −0.07 0.87 0.22 < 0.0001

n = 73 S −0.15 0.86 0.19 < 0.0001

H −0.55 0.51 0.22 < 0.0001

SH −0.85 0.27 0.18 < 0.0001

Social Sciences N −0.17 0.85 0.22 < 0.0001

n = 21 S −0.58 0.54 0.19 < 0.0001

H −0.67 0.55 0.21 < 0.0001

SH −1.17 0.25 0.18 0.01

Forecasting methods are abbreviated by N for naive, S for shrinkage, H for heterogeneity, SH for shrinkage and heterogeneity.

https://doi.org/10.1371/journal.pone.0231416.t001
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to summarize the p-values of these tests is to use their harmonic mean p� [40–42], which is also

shown in Table 1 (see S2 Appendix for non-summarized results).

Taken together, there is strong evidence for miscalibration of all forecasts in the psychology

and social sciences projects. In the economics project, on the other hand, there is no evidence

for miscalibration of the H and SH forecasts and weak evidence for miscalibration of the other

forecasts. Finally, in the philosophy project there is strong evidence for miscalibration of the N

and S forecasts and no evidence for miscalibration of the H and SH forecasts.

PIT histograms. Fig 8 shows histograms of the PIT values of the four forecasting methods

along with p-values from Kolmogorov-Smirnov tests for uniformity. In some of the histograms

in the social sciences and economics projects there are bins with zero observations, however,

these projects also have the smallest sample sizes. In the psychology and social sciences data

sets, the N method shows extreme bumps in the lower range of the PIT values, while the histo-

grams of the H, S, and SH methods look flatter, suggesting less miscalibration. In the econom-

ics data set, the PIT histograms also show bumps in the lower range, but to a much lower

degree than in the psychology and social sciences data sets. Finally, in the philosophy data set

the histograms look acceptable for all methods, suggesting no severe miscalibration.

Forecasts of statistical significance

Since statistical significance of the replication study is one of the most commonly used criteria

for replication success, in the following section the probability of significance under the inves-

tigated predictive distributions will be evaluated using methods suited for probabilistic fore-

casts of binary target variables. Moreover, in the social sciences and experimental economics

projects these forecasts can also be compared to forecasts from the prediction markets. The

Fig 8. Histograms of PIT values with p-values from Kolmogorov-Smirnov test for uniformity. Dashed lines

indicate number of counts within bins expected under uniformity. Forecasting methods are abbreviated by N for

naive, S for shrinkage, H for heterogeneity, SH for shrinkage and heterogeneity.

https://doi.org/10.1371/journal.pone.0231416.g008
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significance threshold α = 0.05 for a two-sided p-value was used in all cases. Most of the evalua-

tions were also conducted for smaller α thresholds and are reported in S2 Appendix.

Expected number of statistically significant replication studies. By summing up all

probabilities for significance under each method within one project, the expected number of

statistically significant replication outcomes is obtained and can be compared to the observed

number, e. g. with a χ2-goodness-of-fit test (shown in Table 2). In general, the observed num-

ber of significant replication studies is smaller than the expected number for all methods in all

data sets, yet the amount of overestimation differs between the methods. The overestimation is

the smallest for the SH method and the largest for the N method across all data sets.

In the economics and philosophy projects there is no evidence of a difference between

expected and observed under the S and SH method, whereas there is weak to moderate evi-

dence of a difference for the N and H methods. In the social sciences and psychology projects,

on the other hand, there is strong evidence for a difference between the expected and the

observed number of significant replications for all methods, suggesting miscalibration of these

forecasts. Furthermore, the expected numbers under the prediction market (PM) method in

the economics and social sciences projects do not differ substantially from what was actually

observed, providing no evidence for miscalibration of these forecasts.

Brier scores. In Table 3 the mean (normalized) Brier scores are shown for each combina-

tion of data set and forecasting method. The mean normalized Brier score [34] is shown

because it enables the comparison of models across data sets in which the proportion of signifi-

cant replications differs (e. g. in the psychology data set the proportion is much lower than in

the others). It is computed by BSn = (BS0 − BS)/BS0 where BS0 is the baseline Brier score

assuming that all replication studies are given an estimated probability of significance equal to

the proportion of significant replications. Hence, BSn is positive if the predictive performance

of the model is better than the baseline prediction.

Table 2. Observed and expected number of statistically significant replication studies along with p-value from χ2-goodness-of-fit test.

Project Method Observed Expected p-value

Experimental Economics N 11 15.0 0.012

n = 18 S 11 13.6 0.16

H 11 14.3 0.057

SH 11 12.4 0.49

PM 11 13.6 0.16

Experimental Philosophy N 23 27.8 0.004

n = 31 S 23 26.2 0.11

H 23 26.5 0.076

SH 23 24.1 0.65

Psychology N 24 55.4 < 0.0001

n = 73 S 24 49.2 < 0.0001

H 24 53.5 < 0.0001

SH 24 45.9 < 0.0001

Social Sciences N 13 19.9 < 0.0001

n = 21 S 13 19.2 < 0.0001

H 13 18.9 < 0.0001

SH 13 17.6 0.006

PM 13 13.3 0.89

Forecasting methods are abbreviated by N for naive, S for shrinkage, H for heterogeneity, SH for shrinkage and heterogeneity, PM for prediction market.

https://doi.org/10.1371/journal.pone.0231416.t002
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In the social sciences and psychology projects the predictive performance is poor for all sta-

tistical methods. Namely, all mean Brier scores are larger than 0.25, a score that can be

obtained by simply using 0.5 as estimated probability every time and additionally all mean nor-

malized Brier scores are negative. In the economics project, the S and SH methods achieve a

positive mean normalized Brier score, while it is negative for the N and H methods. Finally,

the forecasts in the philosophy project show the best performance, i. e. all methods except the

N method achieve a positive mean normalized Brier score with the SH method showing the

largest value. Moreover, the PM forecasts show a normalized Brier score of about zero in the

economics projects, which is comparable to the statistical methods, whereas in the social sci-

ences project, the performance is remarkably good, far better than all statistical forecasts in

this project.

Table 3 also displays the results of Spiegelhalter’s z-test. In the psychology and social sci-

ences data sets the test provides strong evidence for miscalibration of all statistical forecasts,

but only weak evidence for miscalibration of the PM forecasts in the social sciences data set. In

the economics data set, on the other hand, there is no evidence for miscalibration of the S, SH

and the PM forecasts and weak evidence for miscalibration of the N and H forecasts. Finally,

in the philosophy data set there is moderate evidence for miscalibration of the N and S fore-

casts, but no evidence for miscalibration of the H and SH forecasts.

Calibration slope. Fig 9A shows the calibration slopes obtained by logistic regression of

the outcome whether the replication achieved statistical significance on the logit transformed

estimated probabilities. In all but the psychology project the confidence intervals are very wide

due to the small sample size. Also note that it was not possible to obtain the calibration slope

for the PM method in the social science project because of complete separation. In the psychol-

ogy and social sciences projects, the slopes of all methods are considerably below the nominal

value of one suggesting miscalibration. However, the H and SH methods show higher values

Table 3. Mean Brier score (BS), mean normalized Brier score (BS norm), and test-statistic with p-value from Spiegelhalter’s z-test.

Project Method BS BS norm z p-value

Experimental Economics N 0.271 −0.139 2.5 0.013

n = 18 S 0.226 0.048 1.1 0.25

H 0.262 −0.104 2.0 0.042

SH 0.227 0.046 0.8 0.43

PM 0.243 −0.021 1.5 0.15

Experimental Philosophy N 0.193 −0.007 3.3 0.0009

n = 31 S 0.173 0.097 2.1 0.039

H 0.170 0.110 1.6 0.11

SH 0.148 0.229 0.2 0.83

Psychology N 0.394 −0.784 10.0 < 0.0001

n = 73 S 0.335 −0.518 7.8 < 0.0001

H 0.363 −0.644 8.5 < 0.0001

SH 0.289 −0.308 5.2 < 0.0001

Social Sciences N 0.346 −0.468 7.2 < 0.0001

n = 21 S 0.324 −0.374 5.5 < 0.0001

H 0.310 −0.316 4.9 < 0.0001

SH 0.272 −0.155 3.4 0.0006

PM 0.114 0.519 −2.0 0.044

Forecasting methods are abbreviated by N for naive, S for shrinkage, H for heterogeneity, SH for shrinkage and heterogeneity, PM for prediction market.

https://doi.org/10.1371/journal.pone.0231416.t003
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than the methods that do not take heterogeneity into account, indicating improvements in cal-

ibration. In the economics and philosophy projects, the slopes of all methods are closer to one

and all confidence intervals include one, suggesting no miscalibration.

Area under the curve. Fig 9B shows the area under the curve (AUC) for each combina-

tion of data set and forecasting method. The 95% Wald type confidence intervals were com-

puted on the logit scale and then backtransformed. Note that in the social sciences project for

the PM forecasts, an AUC of one (without confidence interval) was obtained because the fore-

casts were able to completely separate non-significant and significant replications. The statisti-

cal forecasts in the social sciences project, on the other hand, show AUCs between 0.5 and 0.6

with wide confidence intervals, suggesting no discriminatory power. In the philosophy and

psychology projects the H and SH methods show the highest AUCs. The former are around

0.8, while the latter are about 0.7, indicating reasonable discriminatory power of all forecasts.

Finally, in the economics data set the N and S methods achieve the highest AUCs with values

of around 0.75, but with very wide confidence intervals which all include 0.5.

Sensitivity analysis of heterogeneity variance choice

For the H and SH methods the heterogeneity parameter τ was set to a value of 0.08 as described

earlier. We performed a sensitivity analysis to investigate how much the results change when

other values are selected. The change in predictive performance was investigated using the

mean QS, mean LS, and mean CRPS, as they are good summary measures for calibration and

sharpness of a predictive distribution. Furthermore, optimizing the mean score has been pro-

posed as a general method of parameter estimation, which also includes maximum likelihood

estimation (i. e. optimum score estimation based on the LS) [43] (Section 9).

Fig 10 shows the the mean scores for each project as a function of the heterogeneity τ. In

general, many of the mean score functions are rather flat, suggesting large uncertainty about

the τ parameter. However, the chosen value of 0.08 seems plausible for the economics and phi-

losophy projects, as it is close to the minima of all mean score functions. The values of τ, which

minimize the mean score functions in the social sciences and psychology projects, on the other

hand, are substantially larger than 0.08. The SH model shows smaller mean scores than the H

model over the entire range of τ in all but the philosophy data set, where both models show

comparable mean scores. This suggests that evidence-based shrinkage leads to a better (or at

Fig 9. Calibration slope and area under the curve (AUC) with 95% confidence interval. Forecasting methods are

abbreviated by N for naive, S for shrinkage, H for heterogeneity, SH for shrinkage and heterogeneity, PM for prediction
market.

https://doi.org/10.1371/journal.pone.0231416.g009
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least equal) predictive performance across all data sets and that the comparison of the methods

is not severely influenced by the choice of τ.

Discussion

This paper addressed the question to what extent it is possible to predict the effect estimate of a

replication study using the effect estimate from the original study and knowledge of the sample

size in both studies. In all models we assumed that after a suitable transformation an effect can

be modelled by a normally distributed random variable. Furthermore, we either assumed that

in the original study the effect was estimated in an unbiased way (naive model), or we shrunk

the effect towards zero based on the evidence in the original study (shrinkage model). In a

Bayesian framework, the former arises when choosing a flat prior distribution for the effect,

while the latter arises by choosing a zero-mean normal prior and estimating the prior variance

by empirical Bayes. Finally, the models also differed in terms of whether between-study hetero-

geneity of the effects was taken into account or not, which was incorporated by a hierarchical

model structure of the effect sizes.

Replication has been investigated from a predictive point of view before; Bayarri and May-

oral [18] used a similar hierarchical model but chose a full Bayesian approach with priors put

also on the variance parameters. For the underlying effect, on the other hand, they chose a flat

prior, which leads to a predictive distributions without shrinkage towards zero. Patil et al. [13]

used a simpler model which was derived in a non-Bayesian framework, but corresponds to our

naive model. This model was then used to obtain forecasts of replication effect estimates using

the data set from the Reproducibility Project: Psychology [4] and also in the analyses of the

Experimental Economics Replication Project [5] and the Social Sciences Replication Project [7].

In all of these analyses, however, apart from examining the coverage of the prediction intervals,

Fig 10. Mean scores as a function of τ for each score type and project. The dashed line indicates the chosen value of

0.08. Minima are indicated by a cross. Forecasting methods are abbreviated by H for heterogeneity and SH for

shrinkage and heterogeneity.

https://doi.org/10.1371/journal.pone.0231416.g010
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no systematic evaluation of the predictive distributions was conducted, even though there exist

many well established methods for evaluating probabilistic forecasts. For this reason, we com-

puted and evaluated the predictive distributions under the four different models for the three

aforementioned data sets and additionally for the data from the Experimental Philosophy Repli-
cability Project [8].

Predictive evaluation

By taking into account between-study heterogeneity, evidence-based shrinkage, or both, cali-

bration and sharpness have improved compared to the naive method. Forecasts obtained with

the shrinkage and heterogeneity method usually showed a higher coverage of the prediction

intervals, more uniformly distributed PIT values, substantially lower mean scores, and less or

no evidence of miscalibration. The improvements have been larger in the social sciences and

psychology and smaller in the economics and philosophy projects. However, in the psychology

and social sciences projects, the tests still suggest some miscalibration, even for the heterogene-

ity and shrinkage model which performed the best, while there is less evidence for miscalibra-

tion in the philosophy and economics projects.

Furthermore, in the social sciences and economics data sets, the forecasts could be com-

pared to forecasts from the non-statistical prediction market method which provides an esti-

mate of the peer-beliefs about the probability of significance. In the economics data set, the

shrinkage methods showed equal performance compared to the prediction market, while in

the social sciences data set, the prediction market method performed better than any of the sta-

tistical methods.

It seems likely that in many of the investigated fields there is between-study heterogeneity

present, as the models that take heterogeneity into account always performed the same or bet-

ter than their counterparts which do not take heterogeneity into account. This is not surpris-

ing, as many of the replications used for example samples from different populations or

different materials than those in the original studies [24]. Evidence-based shrinkage also

improved predictive performance considerably in most cases, indicating that shrinkage is nec-

essary to counteract regression to the mean. Moreover, this could suggest that the effect esti-

mates from the original studies were to some degree inflated or even false positives, e. g.

because of publication bias or the use of questionable research practices.

Differences between replication projects

The predictive performance differed between the replication projects. There are several possi-

ble explanations for this phenomenon. The number of studies within a replication project

could be one possible reason for the differences in the results of some of the evaluation meth-

ods, e. g. calibration tests. That is, the psychology project consists of many more study pairs,

which leads to higher power to detect miscalibration in this project compared to the other

projects.

Another explanation might be that differences in the study selection process of the replica-

tion projects lead to the observed differences. For instance, the original studies in the social sci-

ences project were selected from the journals Nature and Science, which are known to mainly

promote novel and exciting research, while in the philosophy, economics, and psychology

projects they were selected from standard journals. Furthermore, if an original study contained

several experiments, the rules to select the experiment to be replicated differed between the

projects. In the psychology project, by default the last experiment was selected, whereas in the

social sciences and philosophy projects by default the first experiment was selected. In the eco-

nomics project, however, “the most central result” according to the judgement of the
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replicators was selected by default. If on average researchers report more robust findings at the

first position and more exploratory findings at the last position of a publication (or the other

way around), this might have systematically influenced the outcome of the replication studies.

Similarly, when replicators can decide for themselves which experiment they want to replicate,

they might systematically choose experiments with more robust effects that are easier to

replicate.

It may also be the case that the degree of inflation of original effect estimates varies between

the different fields and that this leads to the observed differences. In particular, in the econom-

ics, social sciences, and psychology projects, the predictive performance was more substantially

improved through evidence-based shrinkage than in the philosophy project, although the

amount of shrinkage was roughly the same in all projects (see S2 Appendix for details). One

possible explanation might be that experimental philosophy is less susceptible to publication

bias, as it is a much younger field where there is high acceptance for negative or null results

[8]. However, it may also be that in the early days of a field more obvious and more robust

effects are investigated, which could explain the higher replicability of experimental philoso-

phy findings.

Conclusions

The attempt to forecast the results of replication studies brought new insights. Using a model

of effect sizes which can take into account inflation of original study effect estimates and

between-study heterogeneity, it was possible to predict the effect estimate of the replication

study with good predictive performance in two of the four data sets. In the other two data sets,

predictive performance could still be drastically improved compared to the previously used

naive model [13], which assumes that the effect estimates of the original study are not inflated

and that there is no between-study heterogeneity.

These results have various implications: First, state-of-the-art methods for assessing dis-

crimination, calibration, and sharpness should be used to evaluate probabilistic forecasts of

replication outcomes. This allows to make more precise statements about the quality of the

forecasts compared to the ad-hoc methods which were used so far [5, 7, 12, 13, 15]. Second,

researchers should be aware of the fact that original and replication effect estimates may show

some degree of heterogeneity, although the study designs are as closely matched as possible.

Finally, for the design of a new replication study, the developed model can also be used to

determine the sample size required to obtain a significant replication result for a specified

power. Our method provides a more principled approach compared to just shrinking the tar-

get effect size ad hoc by an arbitrary amount as was done in the planning of previous replica-

tion studies. Software for doing this as well as the four data sets are available in the R package

ReplicationSuccess (https://r-forge.r-project.org/projects/replication/).

However, in the analysis of replication studies it may not be a good idea to reduce replica-

tion success solely to whether or not a replication study achieves statistical significance. One

reason for this is that replication studies are often not sufficiently powered [44], so from a

predictive point of view it is then not unlikely that non-significance will occur, even if the

underlying effect is not zero. Another problem is that significance alone does not take into

account effect size, i. e. significance can still be achieved by increasing the sample size of the

replication study, even if there is substantial shrinkage of the replication estimate. We recom-

mend instead to adopt more quantitative and probabilistic reasoning to assess replication

success. Methods such as replication Bayes factors [45] or the sceptical p-value [46] are prom-

ising approaches to replace statistical significance as the main criterion for replication

success.
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Our results also offer interesting insights about the predictability of replication outcomes in

four different fields. However, they should not be interpreted to mean that research from one

field is more credible than research from another. There are many other factors which could

explain the observed differences in predictive performance (see the discussion in the section

“Differences between replication projects”). The complexity underlying any replication project

is enormous, we should applaud all the researchers involved for investing their limited

resources into these endeavours. There is an urgent need to develop new methods for the design

and analysis of replication studies; these data sets will be particularly useful for these purposes.

The approach used in this paper also has some limitations: In all models, the simplifying

assumption of normally distributed likelihood and prior has been made, which can be ques-

tionable for smaller sample sizes. Moreover, a pragmatic Bayesian approach was chosen, i. e.
no prior was put on the heterogeneity variance τ2 and the variance hyperparameter of θ was

specified with empirical Bayes. We recognize that a full Bayesian treatment, such as in the

work of Bayarri and Mayoral [18], could reflect the uncertainty more accurately. However, our

strategy leads to analytical tractability of the predictive distribution. This facilitates interpret-

ability and allows to easily study limiting cases, which would be harder for a full Bayes

approach where numerical or stochastic approximation methods are required. Moreover, it is

well known that shrinkage is necessary for the prediction of new observations. The empirical

Bayes shrinkage factor has proven to be optimal in very general settings [19, 30] and is for

example also employed in clinical prediction models [38]. Furthermore, the data sets used all

come from relatively similar fields of academic science. It would also be of interest to perform

the same analysis on data from from the life sciences, as well as for non-academic research.

Finally, only data from replication projects with “one-to-one” design were considered. It

would also be interesting to conduct similar analyses for data from replication projects which

use “many-to-one” replication designs, such as the “Many Labs” project [3, 6, 9], especially for

the assessment of heterogeneity.
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25. McShane BB, Tackett JL, Böckenholt U, Gelman A. Large-scale replication projects in contemporary

psychological research. The American Statistician. 2019; 73(sup1):99–105. https://doi.org/10.1080/

00031305.2018.1505655

26. Fisher RA. On the probable error of a coefficient of correlation deduced from a small sample. Metron.

1921; 1:3–32.

27. Johnson VE, Payne RD, Wang T, Asher A, Mandal S. On the reproducibility of psychological science.

Journal of the American Statistical Association. 2016; 112(517):1–10. https://doi.org/10.1080/

01621459.2016.1240079 PMID: 29861517

28. Spiegelhalter DJ, Abrams R, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Evalua-

tion. New York: Wiley; 2004.

29. Zellner A. On assessing prior distributions and Bayesian regression analysis with g-prior distributions.

In: Goel P, Zellner A, editors. Bayesian Inference and Decision techniques: Essays in Honor of Bruno

de Finetti. vol. 6 of Studies in Bayesian Econometrics and Statistics. Amsterdam: North-Holland; 1986.

p. 233–243.

30. Copas JB. Regression, prediction and shrinkage (with discussion). Journal of the Royal Statistical Soci-

ety. 1983; 45:311–354.

31. Cohen J. A power primer. Psychological Bulletin. 1992; 112(1):155–159. https://doi.org/10.1037//0033-

2909.112.1.155 PMID: 19565683

32. Erp SV, Verhagen J, Grasman RPPP, Wagenmakers EJ. Estimates of between-study heterogeneity for

705 meta-analyses reported in Psychological Bulletin from 1990-2013. Journal of Open Psychology

Data. 2017; 5(1):4. https://doi.org/10.5334/jopd.33

33. Gneiting T, Balabdaoui F, Raftery E. Probabilistic forecasts, calibration and sharpness. Journal of the

Royal Statistical Society: Series B (Statistical Methodology). 2007; 69:243–268. https://doi.org/10.

1111/j.1467-9868.2007.00587.x

34. Schmid CH, Griffith JL. Multivariate Classification Rules: Calibration and Discrimination. In: Armitage P,

Colton T, editors. Encyclopedia of Biostatistics. vol. 5. 2nd ed. Wiley; 2005. p. 3491–3497.

35. Spiegelhalter DJ. Probabilistic prediction in patient management and clinical trials. Statistics in Medi-

cine. 1986; 5:421–433. https://doi.org/10.1002/sim.4780050506 PMID: 3786996

36. Held L, Rufibach K, Balabdaoui F. A score regression approach to assess calibration of continuous

probabilistic predictions. Biometrics. 2010; 66:1295–1305. https://doi.org/10.1111/j.1541-0420.2010.

01406.x PMID: 20353460

37. Cox DR. Two further applications of a model for binary regression. Biometrika. 1958; 45(3/4):562–565.

https://doi.org/10.2307/2333203

PLOS ONE Probabilistic forecasting of replication studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0231416 April 22, 2020 22 / 23

https://doi.org/10.1002/sim.4780110705
http://www.ncbi.nlm.nih.gov/pubmed/1604067
https://doi.org/10.1002/sim.1072
https://doi.org/10.1002/sim.1072
http://www.ncbi.nlm.nih.gov/pubmed/12210627
https://doi.org/10.1198/000313002155
https://doi.org/10.1177/096228029700600206
http://www.ncbi.nlm.nih.gov/pubmed/9261914
https://doi.org/10.1371/journal.pone.0066844
https://doi.org/10.1371/journal.pone.0066844
http://www.ncbi.nlm.nih.gov/pubmed/23861749
https://doi.org/10.1002/sim.6525
https://doi.org/10.1002/sim.6525
http://www.ncbi.nlm.nih.gov/pubmed/25988604
https://doi.org/10.1371/journal.pone.0005738
http://www.ncbi.nlm.nih.gov/pubmed/19478950
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1177/0956797611430953
http://www.ncbi.nlm.nih.gov/pubmed/22508865
https://doi.org/10.1126/science.aad7243
http://www.ncbi.nlm.nih.gov/pubmed/26941311
https://doi.org/10.1080/00031305.2018.1505655
https://doi.org/10.1080/00031305.2018.1505655
https://doi.org/10.1080/01621459.2016.1240079
https://doi.org/10.1080/01621459.2016.1240079
http://www.ncbi.nlm.nih.gov/pubmed/29861517
https://doi.org/10.1037//0033-2909.112.1.155
https://doi.org/10.1037//0033-2909.112.1.155
http://www.ncbi.nlm.nih.gov/pubmed/19565683
https://doi.org/10.5334/jopd.33
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1002/sim.4780050506
http://www.ncbi.nlm.nih.gov/pubmed/3786996
https://doi.org/10.1111/j.1541-0420.2010.01406.x
https://doi.org/10.1111/j.1541-0420.2010.01406.x
http://www.ncbi.nlm.nih.gov/pubmed/20353460
https://doi.org/10.2307/2333203
https://doi.org/10.1371/journal.pone.0231416


38. Steyerberg E. Clinical Prediction Models. Springer-Verlag New York; 2009.

39. R Core Team. R: A Language and Environment for Statistical Computing; 2019. Available from: https://

www.R-project.org/.

40. Good IJ. Significance tests in parallel and in series. Journal of the American Statistical Association.

1958; 53(284):799–813. https://doi.org/10.1080/01621459.1958.10501480

41. Wilson DJ. The harmonic mean p-value for combining dependent tests. PNAS. 2019; 116(4):1195–

1200. https://doi.org/10.1073/pnas.1814092116 PMID: 30610179

42. Held L. On the Bayesian interpretation of the harmonic mean p-value. PNAS. 2019; 116(13):5855–

5856. https://doi.org/10.1073/pnas.1900671116 PMID: 30890644

43. Gneiting T, Raftery E. Strictly proper scoring rules, prediction, and estimation. Journal of the Amerian

Statistical Association. 2007; 102:359–377. https://doi.org/10.1198/016214506000001437

44. Anderson SF, Maxwell SE. Addressing the “replication crisis”: Using original studies to design replica-

tion studies with appropriate statistical power. Multivariate Behavioral Research. 2017; 52(3):305–324.

https://doi.org/10.1080/00273171.2017.1289361 PMID: 28266872

45. Ly A, Etz A, Marsman M, Wagenmakers EJ. Replication Bayes factors from evidence updating. Behav-

ior Research Methods. 2018; 51(6):2498–2508. https://doi.org/10.3758/s13428-018-1092-x

46. Held L. A new standard for the analysis and design of replication studies (with discussion). Journal of

the Royal Statistical Society: Series A (Statistics in Society). 2020; 183(2):431–448. https://doi.org/10.

1111/rssa.12493

PLOS ONE Probabilistic forecasting of replication studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0231416 April 22, 2020 23 / 23

https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1080/01621459.1958.10501480
https://doi.org/10.1073/pnas.1814092116
http://www.ncbi.nlm.nih.gov/pubmed/30610179
https://doi.org/10.1073/pnas.1900671116
http://www.ncbi.nlm.nih.gov/pubmed/30890644
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1080/00273171.2017.1289361
http://www.ncbi.nlm.nih.gov/pubmed/28266872
https://doi.org/10.3758/s13428-018-1092-x
https://doi.org/10.1111/rssa.12493
https://doi.org/10.1111/rssa.12493
https://doi.org/10.1371/journal.pone.0231416

